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A proper standard C�-algebra whose automorphism
and isometry groups are topologically reflexive

By LAJOS MOLNÁR (Debrecen)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on the occasion of their 60th birthday

Abstract. In this paper we present a proper C∗-subalgebra of B(H) containing
all finite rank operators whose automorphism and isometry groups are topologically
reflexive. This solves an open problem raised in our former paper [Mol1].

1. Introduction and the main result

Let X be a Banach space and for any subset E ⊂ B(X) define

refal E = {T ∈ B(X) : Tx ∈ Ex for all x ∈ X}

and
refto E = {T ∈ B(X) : Tx ∈ Ex for all x ∈ X},

where bar denotes norm-closure. The collection E of transformations is
called algebraically reflexive if refal E = E . Similarly, E is said to be topo-
logically reflexive if refto E = E . The study of reflexive subspaces of the
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operator algebra B(H) of the Hilbert space H is one of the most active re-
search areas in operator theory (see, for example, [Lar] and the references
therein).

Reflexivity problems concerning sets of linear transformations acting
on operator algebras rather than on Hilbert spaces were first studied by
Kadison and Larson and Sourour. In [Kad] and [LaSu] it was proved
that the Lie-algebra of all derivations of a von Neumann algebra, respec-
tively that of B(X) are algebraically reflexive. As for topological reflexiv-
ity, Shul’man [Shu] proved that the derivation algebra of any C∗-algebra
is topologically reflexive. Concerning automorphisms which are at least
so important as derivations, the first reflexivity result of the above kind
was obtained by Brešar and Šemrl. They proved in [BrSe] that for a
separable infinite dimensional Hilbert space H, the group of all automor-
phisms of B(H) is algebraically reflexive. Here we should emphasize that
in the present paper by an automorphism we mean a merely multiplica-
tive linear bijection, so the ∗-preserving property is not assumed. In our
paper [Mol1] we proved that the group of all automorphisms as well as
the group of all surjective isometries of B(H) are even topologically re-
flexive. Since this phenomenon seems to be rather exceptional (in fact, as
it was shown in [BaMo, Theorem 5], there are even von Neumann alge-
bras with topologically nonreflexive automorphism and isometry groups;
see also [Mol2]), in [Mol1] we raised the question of the existence of a
proper C∗-subalgebra of B(H) containing all finite rank operators whose
automorphism and isometry groups are topologically reflexive. The aim of
this note is to answer this question.

In what follows let H,K be infinite dimensional separable complex
Hilbert spaces. Denote by F(H) the set of all finite rank operators in B(H).
A subalgebra A of B(H) is called standard if it contains F(H). The ideal
of all compact operators on H is denoted by C(H). Let {H1, . . . , Hn} =
{Hi} be a fixed finite sequence of pairwise orthogonal closed subspaces
of H which generate H. Let B({Hi}) denote the C∗-subalgebra of B(H)
consisting of all operators A ∈ B(H) for which A(Hi) ⊂ Hi holds true for
every index i = 1, . . . , n. Obviously, B({Hi}) is isomorphic to the direct
sum B(H1)⊕ . . .⊕B(Hn). Now, we can formulate the main result of the
paper which gives affirmative answer to our question in [Mol1, p. 192]
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Theorem. The automorphism group and the isometry group of the
C∗-algebra C(H) + B({Hi}) are topologically reflexive.

Let A be a C∗-algebra. We say that the bounded linear map Φ:A→A

is an approximately local automorphism of A if for every A ∈ A there
exists a sequence (Φn) of automorphisms such that Φ(A) = limn Φn(A).
The definition of approximately local surjective isometries should now be
self-explanatory. Our main result can be reformulated by saying that every
approxiamtely local automorphism of C(H)+B({Hi}) is an automorphism
and similar statement holds true for isometries as well.

It seems to be a natural idea to try to obtain our Theorem from our
former reflexivity results [Mol1, Theorem 2 and Theorem 3]. In fact, one
might think that every approximately local automorphism of the algebra
C(H) + B({Hi}) is, by restriction, an approximately local automorphism
of the direct sum B(H1)⊕. . .⊕B(Hn) and then apply the mentioned result
in [Mol1]. However, the starting point of this argument is false. Namely, it
is easy to give an automorphism of C(H⊕H)+B({H, H}) whose restriction
to B({H,H}) is not an automorphism of B({H, H}). For example, let
0 6= P be a finite rank projection on H and let S, T ∈ B(H) be such that
kerS = ker T = rng P , rng S = rng T = rng(I−P ) and ST = TS = I−P .
Using elementary computations, one can check that the map

[
A K

C B

]
7−→

[
P T

S P

] [
A K

C B

] [
P T

S P

]

is an automorphism of the algebra C(H ⊕ H) + B({H, H}) which does
not leave B({H, H}) invariant. Therefore, we have to look for a different
approach to verify our main result.

2. Proof

We reach the proof of the Theorem via a series of auxiliary statements.
First, in what follows we need the concept of Jordan homomorphisms. A
linear map J between algebras A and B is called a Jordan homomorphism
if

J (A)2 = J (A2) (A ∈ A).

Observe that linearizing the previous equality, i.e. replacing A by A + B
we can deduce that J satisfies

J (AB + BA) = J (A)J (B) + J (B)J (A) (A,B ∈ A).
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Our main objectives are standard C∗-algebras. The structures of all Jor-
dan automorphisms, automorphisms, antiautomorphism (i.e. linear bijec-
tions reversing the order of multiplication) as well as surjective isometries
of these algebras are easy to describe as we see in the following proposition.

Proposition 1. Let A ⊂ B(H) be a standard C∗-algebra. Then every

Jordan automorphism of A is either an automorphism or an antiautomor-

phism. In the first case we have an invertible bounded linear operator T

on H such that Φ is of the form

Φ(A) = TAT−1 (A ∈ A).

In the second case we have an invertible bounded linear operator S on H

such that Φ is of the form

Φ(A) = SAtrS−1 (A ∈ A),

where tr denotes the transpose with respect to an arbitrary but fixed com-

plete orthonormal sequence in H. This latter assertion is equivalent to

saying that there is an invertible bounded conjugate-linear operator S′ on

H such that

Φ(A) = S′A∗S′−1 (A ∈ A).

If A contains I and Ψ : A → A is a surjective linear isometry, then there

are unitary operators U, V on H such that Φ is either of the form

Ψ(A) = UAV (A ∈ A)

or of the form

Ψ(A) = UAtrV (A ∈ A).

Proof. It is a well-known theorem of Herstein [Her] (see also [Pal,
Theorem 6.3.7]) that every Jordan homomorphism onto a prime algebra is
either a homomorphism or an antihomomorphism. Since every standard
operator algebra is prime, we have the first assertion. It is a classical
theorem of Kadison [KaRi, 7.6.17, 7.6.18] that every surjective linear
isometry of a unital C∗-algebra is a Jordan ∗-automorphism (i.e. a Jordan
automorphism preserving the ∗-operation) followed by multiplication by
a fixed unitary element. Now, our statement follows from folk results on
the forms of automorphisms, antiautomorphisms, ∗-automorphisms and



Reflexivity of the automorphism and isometry groups 567

∗-antiautomorphisms of standard operator algebras (cf. [Che] and [Sem]).
¤

Let Φ : A → A be an approximately local automorphism. We are now
interested in the question of when it follows that Φ is a Jordan homomor-
phism. A possible solution is given in the following proposition.

Proposition 2. LetA,B ⊂ B(H) be closed ∗-subalgebras and suppose

that for every self-adjoint element A of A, the spectral measure of any Borel

subset of σ(A) which is bounded away 0 belongs to A. If Φ : A → B is a

continuous linear map which sends projections to idempotents, then Φ is

a Jordan homomorphism.

Proof. Let P,Q ∈ A be mutually orthogonal projections. Then
Φ(P )+Φ(Q) is an idempotent and since it is the sum of two idempotents,
we have Φ(P )Φ(Q) = Φ(Q)Φ(P ) = 0. If λ1, . . . , λn are real numbers and
P1, . . . , Pn ∈ A are mutually orthogonal projections, then we infer

(
Φ

(
n∑

k=1

λkPk

))2

=

(
n∑

k=1

λkΦ(Pk)

)2

=
n∑

k=1

λ2
kΦ(Pk)

= Φ




(
n∑

k=1

λkPk

)2

 .

By the spectral theorem and the continuity of Φ this implies that Φ(A)2 =
Φ(A2) holds true for every self-adjoint element A ∈ A. Linearizing this
equality, we immediately get Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A) for
every self-adjoint A,B ∈ A. Finally, if T ∈ A is arbitrary, then it can
be written in the form T = A + iB with self-adjoint A,B ∈ A and the
previous equalities result in Φ(T )2 = Φ(T 2). ¤

For any idempotents P, Q ∈ B(H) we write P ≤ Q if QP = PQ = P .

Lemma 3. Let Qn be a bounded sequence of idempotents in B(H)
such that Qn ≤ Qn+1 (n ∈ N). Then (Qn) converges strongly to an

idempotent Q ∈ B(H).

Proof. It follows from the proof of [Mol1, Lemma 2, p. 186]. ¤
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Proposition 4. Let A ⊂ B(H) be a standard C∗-algebra. Suppose

that the linear subspace generated by the set of all projections in A is

norm-dense and that for every closed nontrivial ideal I of A, the quotient

algebra A/I contains uncountably many pairwise orthogonal projections.

Let Φ : A → B(K) be a continuous Jordan homomorphism. If (Pn) is

a maximal family of rank-one projections in B(H), then the idempotent

E =
∑

n Φ(Pn) is well-defined (we mean that it does not depend on the

particular choice of (Pn)), E commutes with the range of Φ and we have

Φ(.) = Φ(.)E.

Proof. The assertions that E is well-defined and commutes with the
range of Φ follow easily from the proof of [Mol1, Lemma 2, p. 187]. As for
the remaining statement Φ(.) = Φ(.)E, observe that the map

Ψ : A 7−→ Φ(A)(I − E)

is a continuous Jordan homomorphism and it is easy to see that Ψ vanishes
on every finite-rank projection. The kernel I of Ψ is a closed Jordan ideal
of A. It is well-known that every closed Jordan ideal in a C∗-algebra is
an associative ideal as well [CiYo, Theorem 5.3]. Therefore, I is a closed
associative ideal in A. If I 6= A, then by our assumption on A it follows
that the range of Ψ contains an uncountable family of pairwise orthogonal
nonzero idempotents. Since this contradicts the separability of K, we have
Ψ = 0. Thus we have Φ(.) = Φ(.)E. ¤

Corollary 5. Let A be as in Proposition 4 above. If Φ, Φ′ : A → B(K)
are continuous Jordan homomorphisms which coincide on F(H), then we

have Φ = Φ′.

Proof. Let (Pn) be a maximal family of pairwise orthogonal rank-
one projections in B(H). Let A ∈ A be arbitrary. By Proposition 4 we
infer

2Φ(A) =
∑

n

(Φ(A)Φ(Pn) + Φ(Pn)Φ(A))

=
∑

n

Φ(APn + PnA) =
∑

n

Φ′(APn + PnA)

=
∑

n

(Φ′(A)Φ′(Pn) + Φ′(Pn)Φ′(A)) = 2Φ′(A). ¤
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Proposition 6. Let Φ : C(H) → C(K) be a continuous Jordan homo-

morphism. Then the second adjoint Φ∗∗ of Φ defines a weak∗-continuous

Jordan homomorphism from B(H) to B(K) which extends Φ.

Proof. It is well-known that the dual space of C(H) is the Banach
algebra T(H) of all trace-class operators on H and the dual space of T(H)
is B(H). The dualities in question are given by the pair

〈A,B〉 = tr AB

where A ∈ C(H), B ∈ T(H), respectively A ∈ T(H), B ∈ B(H). Here, tr
denotes the usual trace-functional.

Now, if K ∈ C(H) and T ∈ T(K), then we compute

tr Φ∗∗(K)T = tr KΦ∗(T ) = trΦ(K)T.

This apparently gives us that Φ∗∗ is an extension of Φ. Let P ∈ B(H) be
an arbitrary projection and let (Pn) be a monotone increasing sequence
of finite rank projections which converges strongly to P . We then have
trPnT → trPT for every trace-class operator T and we infer

trΦ(Pn)T = tr PnΦ∗(T ) −→ tr PΦ∗(T ) = trΦ∗∗(P )T.

This implies that Φ(Pn) converges weakly to Φ∗∗(P ). On the other hand,
by Lemma 3 it follows that Φ(Pn) converges strongly to an idempotent.
Hence, Φ∗∗(P ) is an idempotent whenever P is a projection. Using Propo-
sition 2 we obtain that Φ∗∗ is a Jordan homomorphism. ¤

Proposition 7. Let A be as in Proposition 4. If, in addition, A con-

tains I, and Φ : A → B(K) is a unital, continuous Jordan homomorphism

which preserves the rank-one operators, then there is an invertible bounded

linear operator T : H → K so that Φ is either of the form

Φ(A) = TAT−1 (A ∈ A)

or of the form

Φ(A) = TAtrT−1 (A ∈ A).

Proof. Let Ψ be the restriction of Φ onto C(H). Clearly, rng Ψ ⊂
C(H). By Proposition 6, Ψ∗∗ is a weak∗-continuous Jordan homomorphism
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which preserves the rank-one operators. Moreover, by Corollary 5 we have
Ψ∗∗|A = Φ and hence Ψ∗∗(I) = I. We now apply a result of Hou [Hou,
Theorem 1.3] on the form of rank-one preservers. This says that either
there are continuous linear operators T : H → K and S : K → H so that
Ψ∗∗ is of the form

Ψ∗∗(A) = TAS (A ∈ B(H))

or there are bounded conjugate-linear operators T ′ : H → K and S′ : K→H

so that Φ is of the form

Ψ∗∗(A) = T ′A∗S′ (A ∈ B(H)).

In fact, Hou’s theorem was formulated for weak-continuous maps but an
inspection of the proof shows that this condition was used only to prove
the continuity of T, S and to show that if the above formula is valid on
F(H), then it holds true on B(H) as well. Obviously, in both places
weak∗-continuity can play the same role. Going further in our proof, let
us suppose that Ψ∗∗ is of the first form. Since Ψ∗∗ is a Jordan homomor-
phism, it preserves the idempotents. This yields that 〈x, y〉 = 1 implies
〈Tx, S∗y〉 = 1 for every x, y ∈ H. We have 〈STx, y〉 = 〈x, y〉 (x, y ∈ H)
which gives ST = I. On the other hand, Ψ∗∗ is unital and hence we infer
TS = I. Therefore S = T−1. If Ψ∗∗ is of the second form above, one can
follow the same argument. ¤

After this preparation we now are in a position to prove our main
result.

Proof of Theorem. Suppose that Φ is a continuous linear map which
is an approximately local automorphism of the C∗-algebra A = C(H) +
B({Hi}). We first show that Φ is a Jordan homomorphism. Observe that
A does not fulfil the condition in Proposition 2, so we have to invent a more
sophisticated argument. Clearly, the restrictions Φ|C(H) and Φ|B({Hi})
send idempotents to idempotents. To these maps Proposition 2 applies and
we obtain that they are Jordan homomorphisms. By the local property
of Φ and the form of automorphisms of standard operator algebras it is
apparent that Φ maps C(H) into itself. Let Ψ = Φ∗∗|C(H). Proposition 6
tells us that Ψ is a Jordan homomorphism on B(H). For every i we define
linear maps Φi,Ψi : B(Hi) → B(H) by

Φi(A) = Φ(Â) and Ψi(A) = Ψ(Â),
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where Â is the element of B({Hi}) which coincide with A on Hi and with 0
on H⊥

i . The maps Φi, Ψi are Jordan homomorphisms which are equal on
C(Hi). Observe that for any infinite dimensional separable Hilbert space
K, the algebra B(K) satisfies the conditions in Proposition 4. This is
because of the well-known facts that the only nontrivial closed ideal in
B(K) is C(K) and that the Calkin algebra B(K)/C(K) has uncountably
many pairwise orthogonal idempotents (see e.g. the proof of [KaRi, 10.4.11.
Proposition]). Using Corollary 5 we deduce Φi(A) = Ψi(A) (A ∈ B(Hi)).
After summation we conclude that Φ(A) = Ψ(A) holds true for every
A ∈ B({Hi}). Since Ψ is a Jordan homomorphism which extends Φ|C(H),
we compute

Φ(A)Φ(K) + Φ(K)Φ(A) = Ψ(A)Ψ(K) + Ψ(K)Ψ(A)

= Ψ(AK + KA) = Φ(AK + KA)

for every A ∈ B({Hi}), K ∈ C(H). The fact that Φ is a Jordan homomor-
phism now follows from the equality

(Φ(K + A))2 = Φ(A)2 + Φ(A)Φ(K) + Φ(K)Φ(A) + Φ(K)2

= Φ(A2 + AK + KA + K2) = Φ((K + A)2).

Next, we assert that Φ preserves the rank-one operators. Indeed, as a
consequence of the local property of Φ we obtain that Φ sends every rank-
one operator to an operator having rank at most one. Furthermore, if the
image of a rank-one operator under Φ is 0, then the kernel of Φ is nontrivial.
Since this kernel is a closed Jordan ideal and hence an associative ideal as
well, it follows that Φ vanishes on C(H). Moreover, since the C∗-algebra
A = C(H) + B({Hi}) satisfies the conditions in Proposition 4 (see the
reference to the Calkin algebra above), by Corollary 5 we infer Φ = 0.
But, apparently, Φ(I) = I which is a contradiction. This shows that Φ
preserves the rank-one operators. Now, from Proposition 7 it follows that
there is an invertible operator T ∈ B(H) such that Φ is either of the form

Φ(A) = TAT−1 (A ∈ A)

or of the form
Φ(A) = TAtrT−1 (A ∈ A).



572 Lajos Molnár

Suppose that Φ is of this latter form. Let Hi be an infinite dimensional
subspace from our collection {Hi}. Pick an operator U ∈ A which is a
unilateral shift on Hi and the identity on H⊥

i . Obviously, U has a left
inverse in A but it does not have a right one. Clearly, the same must
hold true for the image of U under any automorphism of A. Let (Φn) be
a sequence of automorphisms of A for which Φ(U) = limn Φn(U). Since
the set of all elements which have right inverse in A is open, we deduce
that Φ(U) has no right inverse. On the other hand, we can compute

Φ(U)Φ(U∗) = Φ(U∗U) = Φ(I) = I.

Thus, we have arrived at a contradiction and, consequently, it follows that
Φ(A) = TAT−1 for every A ∈ A.

So, Φ is a homomorphism on A. Since Φ maps A into A, we have
TAT−1 ∈ A for every A ∈ A. We claim that this implies that T−1AT ∈ A

(A ∈ A) which then will give us the surjectivity of Φ. Consider the matrix
representations of the elements of A corresponding to the subspaces {Hi}.
Let T = [Tij ] and T−1 = S = [Sij ]. Let the index i0 be fixed for a moment
and pick any operator Ai0 ∈ B(Hi0). By TAT−1 ⊂ A we obtain that the
off-diagonal elements of the matrix [Tii0Ai0Si0j ] are all compact operators.
So, for any i 6= j we have Tii0B(Hi0)Si0j ⊂ C(Hj , Hi). It is well-known
that a bounded linear operator is compact if and only if its range does
not contain an infinite dimensional closed subspace. Using this character-
ization, from Tii0B(Hi0)Si0j ⊂ C(Hj , Hi) we can infer that either Tii0 or
Si0j must be compact. Let us remove those rows and colums from the
matrices of T and S which correspond to finite dimensional subspaces but
hold on the numbering of the entries. Denote the matrices obtained in
this way by T̃ and S̃, respectively. Obviously, we still have the property
that, considering the ith column of T̃ and the ith row of S̃, from any pair
of entries sitting in different positions, one of them is compact. We show
that in every row and column of T̃ there is exactly one non-compact entry
and the same holds true for S̃. To see this, consider the ith column of T̃ .
If every entry of it is compact, then by ST = I it follows that the identity
on Hi is compact which implies that Hi is finite dimensional and this is
a contradiction. Next, suppose that there are two non-compact entries
in the column in question. Then it easily follows that the ith row of S̃

consists of compact entries. Using ST = I just as above, we arrive at
a contradiction again. Therefore, there is exactly one non-compact entry
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in every column of T̃ . Suppose that there is a row in T̃ which contains
two non-compact elements. Then we necessarily have another row of T̃

whose entries are all compact. But by TS = I this is untenable. Hence,
we have proved that every row and column of T̃ contain exactly one non-
compact entry. Clearly, this implies that S̃ has the same property. In fact,
there is a non-compact element in position ij in T̃ if and only if there is
a non-compact element in position ji in S̃. Now, it is apparent that the
off-diagonal elements in [Sii0Ai0Ti0j ] are all compact. This gives us the
desired inclusion SAT ⊂ A and we obtain the surjectivity of Φ. Con-
sequently, the automorphism group of C(H) + B({Hi}) is topologically
reflexive.

Let us now prove the topological reflexivity of the isometry group.
By Proposition 1, every surjective isometry of A preserves the unitary
group. Plainly, if Φ is a continuous linear map which is an approximately
local surjective isometry, then Φ has the same preserver property. But the
structure of unitary group preservers on C∗-algebras is well-known. In fact,
[RuDy, Corollary] gives us that there is a unital Jordan ∗-homomorphism
Ψ on A and a unitary element U ∈ A so that Φ(A) = UΨ(A) (A ∈ A).
Obviously, we may suppose that U = I. Similarly to the case when our
map was an approximately local automorphism, one can verify that Φ
preserves the rank-one operators. Therefore, by Proposition 7 we infer
that there is an invertible operator (in fact, a unitary one in the case of
Jordan ∗-homomorphisms) T such that Φ is either of the form

Φ(A) = TAT−1 (A ∈ A)

or of the form
Φ(A) = TAtrT−1 (A ∈ A).

This latter form can be rewritten as Φ(A) = T ′A∗T ′−1 with some invertible
bounded conjugate-linear operator T ′. The proof can now be completed
as in the case of the automorphism group. ¤

To conclude the paper we note that it seems to be an exciting question
to investigate the reflexivity of the automorphism and isometry groups of
the C∗-algebra C(H)+B({Hi}) in the case when the set {Hi} of subspaces
is infinite. We feel that this problem is much more difficult than what we
have treated here and the solution needs a completely different approach.
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