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Abstract. We consider the functional inequality

(∗) min(f(x), f(y)) ≤ f

�
x + y

2

�
≤ max(f(x), f(y)) (x, y ∈ X),

where f is a real valued function on a linear space X. This inequality is satisfied by
Jensen functions (that are solutions of the Jensen functional equation) and, in the case
X = R, by monotone functions. The main result of the paper shows that, under some
regularity assumptions, any solution of (∗) is of the form f = g ◦ α, where α : X → R
is an additive function and g : R→ R is monotone.

1. Introduction

Let X be a linear space and D be a convex subset of X. A function
f : D → R is said to be a Jensen function (or a midpoint-affine function)
if it satisfies the Jensen functional equation

(1) f

(
x + y

2

)
=

f(x) + f(y)
2

(x, y ∈ D).
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Clearly, if f is a Jensen function, then

(2) min(f(x), f(y)) ≤ f

(
x + y

2

)
≤ max(f(x), f(y)) (x, y ∈ D).

Functions f : D → R satisfying (2) will be called midpoint-quasiaffine (or
internal , cf. [2], [3], [6]) functions. Let us observe that, if X = R, then
every monotone function f : R→ R also satisfies (2). Moreover, it is easy
to see that functions of the form

(3) f = g ◦ α,

where α : X → R is an additive function and g : R → R is a monotone
function, are also solutions of (2). The aim of this paper is to show that
solutions of the form (3) are typical. However, as it is shown by the
examples below, without any additional assumptions it cannot be obtained
that any solution of (2) admits the decomposition (3).

The next example shows that the domain D of f plays an essential
role, namely, if D 6= X, then the representation (3) fails.

Example 1. Let

f(x1, x2) =
x2

x1
if (x1, x2) ∈ D := {(x1, x2) ∈ R2 | x1 > 0}.

First we show that f satisfies (2). For, let x = (x1, x2), y = (y1, y2) ∈ D.
Then

f

(
x+y

2

)
=f

(
x1 + y1

2
,
x2 + y2

2

)
=

x2 + y2

x1 + y1

=
x1

x1+y1
· x2

x1
+

y1

x1+y1
· y2

y1
=

x1

x1 + y1
· f(x)+

y1

x1+y1
· f(y).

The right hand side is a convex combination of f(x) and f(y), hence (2)
is valid. Now assume that f can be represented in the form (3). Then

g(α(x)) = f(x) =
x2

x1
=

rx2

rx1
= f(rx) = g(α(rx)) = g(rα(x)),

if x ∈ D and r > 0 is a rational number. The function f is nonconstant,
therefore g is nonconstant and α is not identically zero. Assume that there
exists x ∈ D such that α(x) > 0. By the above equality, we have that g
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is constant on the set {rα(x) | r > 0, r ∈ Q} which is a dense subset of
the interval ]0,∞[. The function g being monotone, it must be constant
on ]0,∞[. Similarly, if there exists y ∈ D such that α(y) < 0, then g is
constant on the interval ] −∞, 0[. Thus the function g ◦ α takes at most
three values over D, which means a contradiction, since the range of f is
equal to R.

The next example shows that if we want to obtain the representation
(3) for f , then also some regularity conditions on f are essential.

Example 2. Let X = R and H = {hγ | γ ∈ Γ} be a Hamel base for R
over the field Q. Let the relation ¿ be a well-ordering on Γ. Let

V :=
{ n∑

i=1

rγihγi

∣∣∣ n ∈ N, rγ1 , . . . , rγn ∈ Q, rγn > 0,

γi ¿ γn (i = 1, . . . , n− 1)
}

.

It is immediate to see that V and R\V are midpoint convex sets. Therefore
the characteristic function f = χV satisfies (2).

Let us observe now that every additive function α : R → R which is
bounded below (or above) on V must be identically zero (cf. Kuczma [5,
Theorem IX.3.4, p. 213] and Ger [4]). Indeed, if α is not identically
zero, then there is γ0 ∈ Γ such that α(hγ0) 6= 0. Let γ1 À γ0. Then
rhγ0 + hγ1 ∈ V for all r ∈ Q. However,

α(rhγ0 + hγ1) = rα(hγ0) + α(hγ1)

which is not a bounded function of r ∈ Q. Hence α is also not bounded
below and above on V .

Suppose now that f is of the form (3). The function f takes only the
values 0 and 1, thus the sets

A := {x ∈ R | g(x) = 0} and B := {x ∈ R | g(x) = 1}

cover the range of α. The function g is monotone, hence A and B are
convex subsets of R. They are also nonempty and disjoint sets, therefore
there exists a constant c0 ∈ R such that either supA ≤ c0 ≤ inf B or
inf A ≥ c0 ≥ supB. In the first and in the second case, we get

inf
x∈V

α(x) ≥ c0 and sup
x∈V

α(x) ≤ c0,
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respectively. Therefore, α is bounded below or above on V . Hence α must
be identically zero and f must be constant. The contradiction obtained
shows the impossibility of the decomposition of f in the form (3).

In order to motivate the additional assumptions on f , observe that
Jensen functions satisfy a stronger version of the inequality (2). Namely,
for x, y ∈ D,

min(f(x), f(y)) < f

(
x + y

2

)
< max(f(x), f(y)) if f(x) 6= f(y).

A midpoint-quasiaffine function that also satisfies (4) will be called strictly
midpoint-quasiaffine. It is well known (cf. [5]) that Jensen functions also
satisfy the equation

(5) f(rx + (1− r)y) = rf(x) + (1− r)f(y) x, y ∈ D, r ∈ [0, 1] ∩Q.

Therefore, Jensen functions have the following radial continuity property

lim
r→0+

r∈Q

f(rx + (1− r)y) = f(y).

If a function f : D → R satisfies the apparently weaker condition

lim sup
r→0+

r∈Q

f(rx + (1− r)y) ≤ f(y)

for all x, y ∈ D, then we say that f is Q-radially upper semicontinuous
on D.

In the main results of the paper, we will show that strictly midpoint-
quasiaffine and Q-radially upper semicontinuous functions can be repre-
sented in the form (3) and this representation is unique up to a natural
transformation.

In order to accomplish the above aim, we study the relationship be-
tween (strictly) midpoint-quasiaffine functions and (strictly) Q-quasiaffine
functions in the next section. As we have noted above, (5) is equivalent
to (1). Therefore the functional inequality

(6)
min(f(x), f(y)) ≤ f(rx + (1− r)y) ≤ max(f(x), f(y))

x, y ∈ D, r ∈ [0, 1] ∩Q
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is closely related to (2). Solutions of (6) will be called Q-quasiaffine func-
tions. If f(x) 6= f(y) and (6) holds with strict inequalities for r 6= 0, 1,
then f is called a strictly Q-quasiaffine function. In the next section,
we show that if D = X, then (strict) midpoint-quasiaffinity and (strict)
Q-quasiaffinity are equivalent properties.

The main results of the paper will be obtained in Section 3 using a
version of the Hahn–Banach separation theorem due to Páles [8], [10] that
was originally developed for the characterization of quasideviation means.
The structure theorem obtained for strictly midpoint-quasiaffine and Q-
radially upper semicontinuous functions gives some explanation for the
irregularity properties in the nonmonotone case discussed by Császár [2],
[3] and Marcus [6].

As application, we consider quasi-additive functions in the sense of
Tabor [11], [12], (see also Baran [1]) and we obtain some information
on the structure of such functions. This structure theorem explains the
irregularity properties of noncontinuous quasi-additive functions. In the
last section we consider Jensen-convex functions and prove that, under a
weak condition, they can be represented as the composition of a continuous
convex function and an additive function.

2. Midpoint-quasiaffine and Q-quasiaffine functions

If f : D ⊂ X → R then we define the upper and lower level sets of f
by

Ac = A(f, c) = {x ∈ D | f(x) < c},
Ac = A(f, c) = {x ∈ D | f(x) ≤ c},

and

Bc = B(f, c) = {x ∈ D | f(x) > c},
Bc = B(f, c) = {x ∈ D | f(x) ≥ c}.

The midpoint-convexity property of these sets is related to the func-
tional inequality (2) by the following lemma.

Lemma 1. Let D be a convex subset of the linear space X. Then
f : D → R is a midpoint-quasiaffine function if and only if, for all c ∈ R,
the level sets Ac, Ac, Bc, and Bc are midpoint-convex.

The proof of this lemma is elementary, therefore, it is omitted.
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Analogously, we have

Lemma 2. Let D be a convex subset of the linear space X. Then
f : D → R is a Q-quasiaffine function if and only if, for all c ∈ R, the level
sets Ac, Ac, Bc, and Bc are Q-convex.

In order to obtain the equivalence of the functional inequalities (2)
and (6), we shall need the following result on the equivalence of midpoint-
convexity and Q-convexity.

Lemma 3 (Páles [7, Lemma]). If A ⊂ X is a midpoint-convex set
such that its complement X \ A is also midpoint-convex, then A is also
Q-convex.

Theorem 1. Let f : X → R be a midpoint-quasiaffine function. Then
it is also Q-quasiaffine. Moreover, if f is a strictly midpoint-quasiaffine
function, then it is also strictly Q-quasiaffine.

Proof. If f is midpoint-quasiaffine, then, by Lemma 1, all the level
sets Ac, Ac, Bc, and Bc are midpoint-convex. However, X \ Ac = Bc.
Therefore, the complement of Ac is also midpoint-convex. Thus, by Lem-
ma 3, Ac is Q-convex, too. Analogously, Ac, Bc, and Bc are Q-convex for
all c ∈ R. Therefore, due to Lemma 2, f is Q-quasiaffine.

Assume now that f is strictly midpoint-quasiaffine. Then, by induc-
tion, we can get that

(7) min(f(x), f(y)) < f(dx + (1− d)y) < max(f(x), f(y))

if f(x) 6= f(y) and d ∈ ]0, 1[ is a diadic rational number, that is d = k/2n,
where k, n ∈ N, 0 < k < 2n. Let r ∈ ]0, 1[∩Q be arbitrary and f(x) 6= f(y).
There exists diadic rational numbers d′, d′′ such that 0 < d′ < r < d′′ < 1.
Then the element rx+(1−r)y is a Q-convex combination of d′x+(1−d′)y
and d′′x + (1− d′′)y. Therefore, by the Q-quasiaffinity of f , we have

min(f(d′x + (1− d′)y), f(d′′x + (1− d′′)y))

≤ f(rx + (1− r)y) ≤ max(f(d′x + (1− d′)y), f(d′′x + (1− d′′)y)).

On the other hand, we have (7) with d = d′ and d = d′′. These inequalities
together with the previous one yield

min(f(x), f(y)) ≤ f(rx + (1− r)y) ≤ max(f(x), f(y)).

Hence f is strictly Q-quasiaffine. ¤
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3. Main results

In this section we derive the desired decomposition (3) of strictly
midpoint-quasiaffine and Q-radially upper semicontinuous functions de-
fined on the whole of X. In order to accomplish this aim, we investigate
first the connection between the additional regularity assumptions and the
corresponding properties of the level sets of the given function.

Lemma 4. Let D ⊂ X be a convex set, f : D → R be a strictly

Q-quasiaffine function. Then, for all c ∈ R,

(8) rAc + (1− r)Ac ⊂ Ac and rBc + (1− r)Bc ⊂ Bc

if r ∈ ]0, 1[ ∩Q.

Proof. To prove the first inclusion in (8), let c ∈ R. The function f is
Q-quasiaffine, hence, by Lemma 2, Ac is Q-convex, i.e. rAc+(1−r)Ac ⊂ Ac

for all r ∈ [0, 1] ∩ Q. In order to prove the statement, it suffices to show
that if 0 < r < 1, x ∈ Ac, and y ∈ Ac \ Ac, then rx + (1 − r)y ∈ Ac.
Indeed, in this case f(x) < c and f(y) = c. By the strict Q-quasiaffinity
of f , we have

f(rx + (1− r)y) < max(f(x), f(y)) = f(y) = c.

Hence rx + (1 − r)y ∈ Ac. The proof of the second inclusion in (8) is
analogous. ¤

A subset A ⊂ D will be called Q-algebraically open in D if, for all
x ∈ D and y ∈ A there exists ρ ∈ ]0, 1[ ∩ Q such that rx + (1 − r)y ∈ A

whenever r ∈ [0, ρ] ∩ Q. If A is Q-convex, then it is Q-algebraically open
if and only if, for all x ∈ D, y ∈ A, there exists ρ ∈ ]0, 1[ ∩ Q such that
ρx + (1− ρ)y ∈ A.

Lemma 5. Let D ⊂ X be a convex set and f : D → R be Q-radially

upper semicontinuous on D. Then, for all c ∈ R, Ac is Q-algebraically

open in D.

Proof. Let x ∈ D and y ∈ Ac. Then f(y) < c. By the Q-radial
upper semicontinuity of f on D, we have

lim sup
r→0+

r∈Q

f(rx + (1− r)y) ≤ f(y) < c.
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Therefore, there exists ρ ∈ ]0, 1[ ∩Q such that

f(rx + (1− r)y) < c if r ∈ ]0, ρ] ∩Q,

that is,

rx + (1− r)y ∈ Ac if r ∈ ]0, ρ] ∩Q.

¤

Remark 1. If f : D → R is a Q-quasiaffine function, then it is easy
to check that the Q-radial upper semicontinuity of f is equivalent to the
following weaker property: for all x, y ∈ D,

lim inf
r→0+

r∈Q

f(rx + (1− r)y) ≤ f(y).

Therefore, this property also yields the Q-algebraic openness of the level
sets Ac if f is Q-quasiaffine.

Our next result is a version of the Hahn–Banach separation theorem
in vector spaces over the field Q.

Lemma 6. Let A and B be nonempty disjoint Q-convex subsets of X

such that A is Q-algebraically open in X. Then there exists an additive

function α : X → R and a constant γ ∈ R such that

α(a) < γ (a ∈ A) and γ ≤ α(b) (b ∈ B).

Proof. The main idea to prove this separation theorem is to de-
duce it from a separation theorem for disjoint subsemigroups of abelian
semigroups developed by Páles [8].

Define two subsets of X∗ := R×X by

A∗ := {(r, ra) : a ∈ A, r > 0, r ∈ Q},
B∗ := {(r, ra) : a ∈ B, r > 0, r ∈ Q}.

Then X∗ is a group and the multiplication by rational numbers can be
defined in X∗ in a natural way. Being A and B disjoint Q-convex sets,
the sets A∗ and B∗ are disjoint subsemigroups of X∗ which are also closed
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under multiplication by positive rational numbers. Define the core of A∗

by
cor A∗ := {a∗ ∈ A∗ : ∀x∗ ∈ X∗ ∃n ∈ N na∗ + x∗ ∈ A∗}.

(C.f. [8], [10].) The set A being Q-algebraically open, we have that
cor A∗ = A∗. Indeed, if a∗ = (r, ra) ∈ A∗ and x∗ = (s, sx) ∈ X∗, then for
large n ∈ N, we get that

nr

nr + s
a +

s

nr + s
x ∈ A.

Hence

n(r, ra) + (s, sx) =
(

nr + s, (nr + s)
[

nr

nr + s
a +

s

nr + s
x

])
∈ A∗.

Now we are in the position to apply the Hahn–Banach type separation the-
orem for subsemigroups from [8]. Thus, there exists an additive function
α∗ : X∗ → R such that

α∗(a∗) < 0 (a∗ ∈ cor A∗ = A∗) and 0 ≤ α∗(b∗) (b∗ ∈ B∗).

Define α and γ by

α(x) := α∗(0, x) and γ := −α∗(1, 0).

Then, it follows from the separating property of α∗ that

α(a)−γ = α∗(1, a) < 0 (a ∈ A) and α(b)−γ = α∗(1, b) ≥ 0 (b ∈ B),

which is equivalent to the statement of the lemma. ¤

The main result of this paper is contained in the next theorem.

Theorem 2. Let f : X → R be a nonconstant function. Then f is a

strictly midpoint-quasiaffine and Q-radially upper semicontinuous function

if and only if it can be represented in the form f = g ◦ α, where α : X →
R is an additive function and g : R → R is an upper semicontinuous

strictly increasing function. Furthermore, the representation f = g ◦ α is

unique in the following sense: If f = g′ ◦α′ with an additive α′ and upper
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semicontinuous strictly increasing g′, then there exists a positive constant

q > 0 such that

α′(x) = qα(x) (x ∈ X) and g′(t) = g(t/q) (t ∈ R).

Proof. The proof of the sufficiency is elementary and omitted. For
the necessity, assume that f is a nonconstant strictly midpoint-quasiaffine
and Q-radially upper semicontinuous function. Then, by Theorem 1, it
is also strictly Q-quasiaffine. Denote by I the (nonempty) open interval
] inf f, sup f [. It follows from the strict Q-quasiaffinity that the range of
f is contained in I. To see this, let x ∈ X be arbitrary. We show that
f(x) > inf f , the proof of f(x) < sup f is analogous. On the contrary,
assume that f(x) = inf f . The function f is nonconstant, hence there
exists y ∈ X such that f(x) 6= f(y), therefore f(x) < f(y). By the
midpoint-quasiaffinity, we have

min(f(2x− y), f(y)) ≤ f(x) ≤ max(f(2x− y), f(y)).

The right hand side inequality is strict because f(x) < f(y). Hence f(2x−
y) < f(y). Thus, by the strict midpoint-quasiaffinity, f(2x − y) < f(x),
that is inf f < f(x).

Now let c∗ ∈ I be an arbitrarily fixed element. Then the level sets
Ac∗ and Bc∗ are nonempty disjoint Q-convex sets. By Lemma 5, Ac∗

is Q-algebraically open. Therefore, we are in the position to apply the
Hahn–Banach-type separation theorem of Lemma 6. Thus there exists an
additive function α : X → R and a constant γ0 ∈ R such that

(9) α(a) < γ0 (a ∈ Ac∗) and γ0 ≤ α(b) (b ∈ Bc∗).

Our first aim is to show that α separates Ac and Bc for all c ∈ I, that is

(10) sup
a∈Ac

α(a) = inf
b∈Bc

α(b).

First we prove the “≤” inequality in (10). If this inequality is not satisfied,
then there exist a ∈ Ac and b ∈ Bc such that

(11) α(a) > α(b).
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We distinguish two cases. Case I: c < c∗. Then Bc∗ ⊂ Bc. On the
other hand, by (11), there exists n ∈ N such that

α(a + n(a− b)) ≥ γ0.

Then a+n(a− b) cannot be in Ac∗ , hence a+n(a− b) ∈ Bc∗ ⊂ Bc. Thus,
applying Lemma 4, we get

a =
1

n + 1
(a + n(a− b)) +

n

n + 1
b ∈ 1

n + 1
Bc +

n

n + 1
Bc ⊂ Bc,

which contradicts a ∈ Ac.
Case II: c ≥ c∗. Then Ac∗ ⊂ Ac. By (11), there exists n ∈ N such

that
α(b + n(b− a)) < γ0.

Then b + n(b− a) cannot be in Bc∗ , hence b + n(b− a) ∈ Ac∗ ⊂ Ac. Thus,
applying Lemma 4 again, we get

b =
1

n + 1
(b + n(b− a)) +

n

n + 1
a ∈ 1

n + 1
Ac +

n

n + 1
Ac ⊂ Ac,

which contradicts b ∈ Bc.
The contradictions obtained show that (10) is valid with “≤” for all

c ∈ I. To show that this inequality is actually an equality, observe that
the sets Ac and Bc cover X, hence the sets {α(a) : a ∈ Ac} and {α(b) :
b ∈ Bc} cover the range of α. The range of a nonzero additive function is
everywhere dense in R, thus the strict inequality “<” in (10) leads to an
obvious contradiction.

Define now the function γ : I → R by

γ(c) = sup
a∈Ac

α(a).

Then (10) can be rewritten as

α(a) ≤ γ(c) if f(a) ≤ c and α(b) ≥ γ(c) if f(b) ≥ c.

Therefore, taking a = b = x, c = f(x) (and using that f(x) ∈ I), we get
that

(12) α(x) = γ(f(x)) for all x ∈ X.
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Our next aim is to show, that the function γ is continuous, increasing,
unbounded from above and below, and the function g in the statement of
the theorem can be obtained as its right inverse.

The monotonicity property of γ is obvious from its definition. The
range of the additive function α is dense, and Ac and Bc are complemen-
tary sets. Therefore,

γ(c) = sup
a∈Ac

α(a) ≥ sup
a∈Ac

α(a) ≥ inf
a∈Bc

α(a).

Due to (10), the left and right hand sides are equal. Hence we have

(13) γ(c) = sup
a∈Ac

α(a).

To prove that γ is lower semicontinuous, fix an element c0 ∈ I, t ∈ R
and assume that γ(c0) > t. Then, by (13), there exists a0 ∈ Ac0 such
that α(a0) > t. If a0 ∈ Ac0 , then f(a0) < c0. Thus, f(a0) < c if c

is taken from a small neighbourhood U of c0. Then a0 ∈ Ac and hence
γ(c) = supa∈Ac

α(a) > t for c ∈ U .
An analogous argument and the relation

(14) γ(c) = inf
a∈Bc

α(a)

show that γ is also upper semicontinuous. Thus it must be continuous.
To see the unboundedness of γ from below, let t ∈ R be fixed. Then

there exists x ∈ X such that α(x) ≤ t. Let c < f(x), c ∈ I. Then
x ∈ Bc, and by (14), γ(c) ≤ α(x) ≤ t. An analogous argument yields the
unboundedness from above.

For t ∈ R define

(15) g(t) := sup{c ∈ I : γ(c) ≤ t} = sup Gt.

This function is real valued. Indeed, if t ∈ R, then, by the unboundedness
of γ from below, the set Gt behind the supremum sign is nonempty and
thus g(t) > −∞. On the other hand, there exists c0 ∈ I such that γ(c0)>t.
Then, for c ∈ Gt, we have γ(c) < γ(c0). Hence c < c0, which means that
c0 is an upper bound for Gt. Thus g(t) < +∞.

It follows from the continuity of γ that g is strictly increasing. Indeed,
if g(t1) = g(t2) for some t1 < t2, then the function γ does not take values in
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the interval ]t1, t2]. This, together with the unboundedness and continuity
of γ, yields an obvious contradiction.

Obviously, g can be expressed in the following form:

(16) g(t) := inf{c ∈ I : γ(c) > t} = inf Ht.

Using this form, we can show that g is upper semicontinuous. For, let
g(t0) < s0 for some t0, s0. Then, due to (16), there exists c0 ∈ I such that
c0 < s0 and γ(c0) > t0. For t from a sufficiently small neighbourhood U of
t0, we have γ(c0) > t, that is c0 ∈ Ht. Thus g(t) = inf Ht < s0 for t ∈ U .
Therefore, g is upper semicontinuous.

By (15), (16) and the continuity of γ, it is also easy to see that g is
the right inverse of γ, that is, γ(g(t)) = t for all t ∈ R.

To complete the proof of the necessity, we show that f(x) = g(α(x)).
Applying g to both sides of (12), we have

g(α(x)) = g(γ(f(x))) for all x ∈ X.

Therefore, it suffices to prove that g(γ(s)) = s if s is in the range of f .
Clearly,

g(γ(s)) = sup{c ∈ I : γ(c) ≤ γ(s)} ≥ s

for all s ∈ I and the inequality turns into an equality if and only if γ(c) >
γ(s) for all c > s. Therefore, it is enough to show that, for all x ∈ X,

γ(c) > γ(f(x)) = α(x) if c > f(x).

Let x ∈ X, c > f(x) and choose u ∈ X such that α(u) > 0. By the
Q-radial upper semicontinuity of f , there exists a rational number r > 0
such that f(x + ru) < c. Then we have x + ru ∈ Ac, and hence

γ(c) = sup
a∈Ac

α(a) ≥ α(x + ru) > α(x) = γ(f(x)).

Thus the proof of the necessity is complete.
In the last part of the proof, we prove the uniqueness of the represen-

tation as stated in the theorem.
Assume that f = g′ ◦ α′, where α′ is an additive function and g′ is

an upper semicontinuous strictly increasing function. First observe that
g ◦ α = g′ ◦ α′ implies

(17) {x ∈ X : α(x) ≤ 0} = {x ∈ X : α′(x) ≤ 0}.
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Indeed, g and g′ are strictly increasing, hence

{x : α′(x) ≤ 0} = {x : g(α(x)) ≤ g(0)} = {x : f(x) ≤ f(0)}
= {x : g′(α′(x)) ≤ g′(0)} = {x : α′(x)) ≤ 0}.

Let x0 ∈ X be fixed such that α(x0) > 0. Then, by (17), α′(x0) > 0
holds, too. We show that

(18) α′(x) =
α′(x0)
α(x0)

α(x) = qα(x) for x ∈ X.

Let x ∈ X and choose two rational sequences (rn) and (sn) such that (rn)
is monotone increasing, (sn) is monotone decreasing and

lim
n→∞

rn = lim
n→∞

sn =
α(x)
α(x0)

.

Then, we have rn ≤ α(x)/α(x0) < sn and hence

α(rnx0 − x) ≤ 0 < α(snx0 − x) for n ∈ N.

Using (17), these inequalities are equivalent to

α′(rnx0 − x) ≤ 0 < α′(snx0 − x) for n ∈ N.

Hence rn ≤ α′(x)/α′(x0) < sn. Taking the limit n →∞, we obtain

α′(x)
α′(x0)

=
α(x)
α(x0)

,

which proves (18).
Define now g∗ : R→ R by g∗(t) = g(t/q) (t ∈ R). Then

g∗(α′(x)) = g(α′(x)/q) = g(α(x)) = f(x) = g′(α′(x))

for all x ∈ X. Therefore the two functions g∗ and g′ coincide on a dense
subset of R. Being upper semicontinuous and increasing, they must coin-
cide everywhere, i.e. g′(t) = g(t/q) for t ∈ R.

Thus the proof of the theorem is complete. ¤

The following result is the lower semicontinuous counterpart of the
above theorem. It can be proved in a completely analogous way.
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Theorem 3. Let f : X → R be a nonconstant function. Then f is a

strictly midpoint-quasiaffine and Q-radially lower semicontinuous function

if and only if it can be represented in the form f = g ◦α, where α : X → R
is an additive function and g : R → R is a lower semicontinuous strictly

increasing function. Furthermore, the representation f = g ◦ α is unique

in the sense of Theorem 2.

If the function f is both Q-radially upper and lower semicontinuous
then, necessarily, the function g has stronger properties.

Theorem 4. Let f : X → R be a nonconstant function. Then f is

a strictly midpoint-quasiaffine and Q-radially continuous function if and

only if it can be represented in the form f = g ◦ α, where α : X →
R is an additive function and g : R → R is an upper semicontinuous

strictly increasing function which is continuous on the range of the additive

function α. Furthermore, the representation f = g◦α is unique in the sense

of Theorem 2.

Proof. If f has the representation f = g ◦ α then, by Theorem 2,
it is strictly midpoint-quasiaffine and Q-radially upper semicontinuous. It
is immediate, that due to the continuity of g on the range of α, it is also
Q-radially lower semicontinuous.

Conversely, if f is strictly midpoint-quasiaffine and Q-radially contin-
uous then, by Theorem 2, it can be represented in the form f = g ◦ α,
where α is additive, and g is strictly increasing and upper semicontinuous.
To prove the continuity of g on the range of α, let t = α(x) be an arbitrary
element, where x ∈ X. Choose y ∈ X such that α(y) < α(x) and denote
xn := (1/n)y + (1 − 1/n)x. Then, by the Q-radial continuity of f , f(xn)
tends to f(x), that is g(α(xn)) → g(t) as n →∞. By the choice of y, the
sequence tn = α(xn) is strictly monotone increasing and g is monotone,
hence

g(t) = lim
n→∞

g(tn) = lim
s→t−0

g(s) = lim inf
s→t

g(s).

Thus g is lower semicontinuous at t.
The statement concerning the uniqueness is a consequence of Theo-

rem 2. ¤

The following result shows that strictly midpoint-quasiaffine functions
are either regular or very irregular. This result gives an insight into the
irregularity results of Császár [2], [3] and Marcus [6].
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Corollary 1. Let f : R → R be a nonconstant function. If f is

a strictly midpoint-quasiaffine and Q-radially continuous function, then

either f is monotone, or the restriction of f to any measurable set of

positive Lebesgue measure, is not measurable.

Proof. By Theorem 2, f = g◦α, where α is an additive function and
g is strictly monotone. Assume that f is not monotone, then α cannot be
of the form α(x) = cx. Hence α is noncontinuous additive function. Taking
the inverse γ of g, we have α = γ ◦f . Therefore, if f is measurable on a set
of positive Lebesgue measure, then α is also measurable and, therefore, it
is continuous. The contradiction shows that f cannot be regular.

4. Quasi-additive functions

In some recent papers Tabor [11], [12] has introduced the notion of
quasi-additive function. If X and Y are normed spaces, then a function
f : X → Y is called quasi-additive if there exists 0 ≤ ε < 1 such that

(19)
‖f(x + y)− f(x)− f(y)‖ ≤ εmin{‖f(x + y)‖, ‖f(x) + f(y)‖}

for x, y ∈ X.

The main results of the papers [11], [12], [1] show that quasi-additive func-
tions have regularity properties very similar to that of additive functions.

Our next result gives an explanation for this fact by showing that
real-valued quasi-additive functions on X can always be decomposed into
the form g ◦α, where g is a continuous quasi-additive function and α is an
additive function.

Theorem 5. A function f : X → R is quasi-additive if and only if

there exist an additive function α : X → R and a continuous, strictly

increasing quasi-additive function g : R→ R such that f = g ◦ α.

Proof. It is easy to see the sufficiency of the condition. It remains
to prove its necessity.

Assume that f : X → R is quasi-additive. We may assume that f is
non identically zero. Then it is nonconstant (since f(0) = 0). It follows
from (19) that, for all x, y ∈ X,

(20) f(y)− ε|f(y)| ≤ f(x + y)− f(x) ≤ f(y) + ε|f(y)|.
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Since 0 ≤ ε < 1 hence the sign of both sides coincide with that of f(y),
that is sign f(y) = sign(f(x + y)− f(x)). Hence

sign
(

f

(
x+y

2

)
−f(x)

)
= sign f

(
y−x

2

)
=sign

(
f(y)−f

(
x+y

2

))
.

Therefore, f is strictly midpoint-quasiaffine. (Cf. Baran [1, Lemma 1].)
It follows from (20) that

|f(x + y)− f(x)| ≤ (1 + ε)|f(y)| (x, y ∈ X).

On the other hand, by [12, Lemma 3], we also have

∣∣∣f
( z

2n

)∣∣∣ ≤
(

1 + ε

2

)n

|f(z)| (z ∈ X, n ∈ N).

Thus, combining these two inequalities,

∣∣∣f
(
x +

z

2n

)
− f(x)

∣∣∣ ≤ 2
(

1 + ε

2

)n+1

|f(z)| (x, z ∈ X, n ∈ N).

It follows from this inequality that f satisfies the following radial continuity
property

lim
n→∞

f

((
1− 1

2n

)
x +

1
2n

y

)
= f(x) (x, y ∈ X).

This, together with the Q-quasiaffinity of f , means that f is Q-radially
continuous. Therefore, we can apply Theorem 4 to obtain that f = g ◦ α,
where g is an upper semicontinuous strictly monotone function, α is an
additive function and g is continuous on the range of α.

Substituting this form of f into (19), we obtain that

(21) ‖g(s + t)− g(s)− g(t)‖ ≤ εmin{‖g(s + t)‖, ‖g(s) + g(t)‖}

for all s, t form the range of α. The range of α is dense in R, hence, for all
s, t ∈ R, we can find decreasing sequences sn → s and tn → t in the range
of α. Substituting sn, tn into (21), taking the limit n →∞ and using the
upper semicontinuity (which is equivalent to the right continuity) of g, we
obtain that (21) is also valid for all s, t ∈ R. That is, g is quasi-additive
on R.
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The function g is continuous at zero (since zero is in the range of α).
Therefore, by [12, Theorem 1] it is continuous everywhere. Thus the proof
of the theorem is complete. ¤

It follows from this result, exactly in the same way as Corollary 1 in
Section 3, that noncontinuous quasi-additive functions have irregularity
properties as noncontinuous additive functions (see the results in [1, 11,
12, 13]).

5. Jensen-convex functions

Let X be a linear space and D be a convex subset of X. A function
f : D → R is said to be a Jensen-convex function (or a midpoint-convex
function) if it satisfies the Jensen functional inequality

f

(
x + y

2

)
≤ f(x) + f(y)

2
(x, y ∈ D).

It is obvious that convex functions are Jensen-convex functions, moreover,
if g is a convex function and α is an additive function, then f = g ◦ α

is Jensen-convex. However, the converse of this statement is not valid
without any further assumptions. (Cf. [5, Example V.3.2, p. 127].) In our
next result we show that this is the case if D = X and, in addition, f is
strictly midpoint-quasiconcave, that is

min(f(x), f(y)) ≤ f

(
x + y

2

)

for all x, y ∈ X and if f(x) 6= f(y) then

min(f(x), f(y)) < f

(
x + y

2

)
.

Theorem 6. Let f : X → R. Then f is a strictly midpoint-quasicon-

cave and Jensen-convex function if and only if there exist a strictly in-

creasing continuous convex function g : R → R and an additive function

α : X → R such that f = g ◦ α.

Proof. The sufficiency of the condition is obvious. To prove the
necessity, assume that f is a strictly midpoint-quasiconcave and Jensen-
convex function. The Jensen-convexity of f implies that f is also strictly



A characterization of midpoint-quasiaffine functions 593

midpoint-quasiconvex, since

f

(
x + y

2

)
≤ f(x) + f(y)

2
≤ max(f(x), f(y)) (x, y ∈ X)

and there is strict inequality at the second place if f(x) 6= f(y).
On the other hand, the Jensen-convexity also yields that

f (rx + (1− r)y) ≤ rf(x) + (1− r)f(y)

for all x, y ∈ X and rational number r ∈ [0, 1]. Taking the limsup with
respect r → 0, we obtain

lim sup
r→0+

r∈Q

f (rx + (1− r)y) ≤ f(y),

that is, f is Q-radially upper semicontinuous.
Now, we can apply Theorem 2. Therefore, there exist a strictly in-

creasing upper semicontinuous g and an additive α such that f = g ◦ α.
Substituting this representation of f into the Jensen-convexity inequality,
we obtain that

g

(
s + t

2

)
≤ g(s) + g(t)

2

for all s, t in the range of α. Using the same argument as in the proof
Theorem 5, we obtain that this inequality is valid for all s, t ∈ R. There-
fore, g is an upper semicontinuous Jensen-convex function. Then, by the
Berstein–Doetsch theorem [5, Theorem VI.4.2, p. 145], it follows that g is
continuous, which completes the proof. ¤

In our next result we consider functions that satisfy a stronger in-
equality than that of the midpoint-quasiaffinity. Namely, we replace the
means min and max by quasiarithmetic means.

Let I ⊂ R be an open interval and φ, ψ : I → R are continuous strictly
increasing functions. We consider functions f : X → I satisfying

φ−1

(
φ(f(x)) + φ(f(y))

2

)
≤ f

(
x + y

2

)
≤ ψ−1

(
ψ(f(x)) + ψ(f(y))

2

)

(x, y ∈ X).(23)
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Theorem 7. Let φ and ψ as above. A function f : X → I satisfies

(23) if and only if there exists an additive function α : X → R and a

strictly increasing and continuous function g : R→ I such that f = g ◦ α,

furthermore, φ ◦ g is concave and ψ ◦ g is convex.

Proof. The sufficiency of the stated conditions is immediate. It
remains to prove the necessity. It follows from (23) that f is strictly
midpoint-quasiaffine. Furthermore, (23) also implies that φ ◦ f is Jensen-
concave and ψ ◦ f is Jensen-convex. Hence, for all rational r ∈ [0, 1], for
all x, y ∈ X,

φ−1 (rφ(f(x)) + (1− r)φ(f(y))) ≤ f (rx + (1− r)y)

≤ ψ−1 (rψ(f(x)) + (1− r)ψ(f(y)))

Therefore, f is Q-radially continuous. The proof now can be completed
exactly in the same way as that of Theorem 6. ¤
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