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(C, α) means of d-dimensional trigonometric-Fourier
series
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Professors Zoltán Daróczy and Imre Kátai

Abstract. The d-dimensional classical Hardy spaces Hp(Td) are introduced and
it is shown that the maximal operator of the (C, α) (α = (α1, . . . , αd)) means of a
distribution is bounded from Hp(Td) to Lp(Td) (d/(d + 1), 1/(αk + 1) < p < ∞)
provided that the supremum in the maximal operator is taken over a positive cone.
Moreover, we prove that the (C, α) means are uniformly bounded on the spaces Hp(Td)
whenever d/(d + 1), 1/(αk + 1) < p < ∞. Thus, in case f ∈ Hp(T), the Cesàro means

converge to f in Hp(Td) norm (d/(d + 1), 1/(αk + 1) < p < ∞). The same results are
proved for the conjugate (C, α) means, too.

1. Introduction

The Hardy–Lorentz spaces Hp,q(Td) of distributions are introduced
with the Lp,q(Td) Lorentz norms of the non-tangential maximal function.
Of course, Hp(Td) = Hp,p(Td) are the usual Hardy spaces (0 < p ≤ ∞).

For multi-dimensional trigonometric-Fourier series Marcinkievicz

and Zygmund [7] proved that the Fejér means σ1
nf of a function f ∈

L1(Td) converge a.e. to f as min(n1, . . . , nd) → ∞ provided that n is in
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a positive cone, i.e., provided that 2−τ ≤ nk/nj ≤ 2τ for every k, j =
1, . . . , d and for some τ ≥ 0 (n = (n1, . . . , nd) ∈ Nd).

Recently the author [15] obtained the same convergence result for the
(C,α) means σα

n by proving the weak type inequality

sup
ρ>0

ρλ(σα
∗ f > ρ) ≤ C‖f‖1 (f ∈ L1(Td))

where σα
∗ := sup 2−τ≤nk/nj≤2τ

k,j=1,... ,d

|σα
n |, α = (α1, . . . , αd) and 0 < αk ≤ 1.

Moreover, for the Fejér means (if αk = 1) the author [15] verified that
σ1
∗ is bounded from Hp,q(Td) to Lp,q(Td) if (2d + 1)/(2d + 2) < p ≤ ∞

and 0 < q ≤ ∞. Under some conditions on α we proved also a similar
result for the (C,α) means. The one-dimensional results are described in
Weisz [14].

In this paper we sharpen and generalize these results for arbitrary
0 < αk ≤ 1. We will show that the maximal operator σα

∗ is bounded from
Hp,q(Td) to Lp,q(Td) whenever d/(d+1), 1/(αk +1) < p ≤ ∞, 0 < q ≤ ∞.
We introduce the conjugate distributions (or Riesz transforms) f̃ (i) = Rif ,
the conjugate (C,α) means σ̃

(i);α
n and the conjugate maximal operators

σ̃
(i);α
∗ where i = 0, 1, . . . , d. We obtain that the operator σ̃

(i);α
∗ is also of

type (Hp,q(Td), Lp,q(Td)) if d/(d + 1), 1/(αk + 1) < p ≤ ∞, 0 < q ≤ ∞
and of weak type (1, 1).

A usual density argument implies then that, besides the convergence
results mentioned above, the conjugate (C,α) means σ̃

(i);α
n f converge a.e.

to f̃ (i) as n →∞ and 2−τ ≤ nk/nj ≤ 2τ , provided that f ∈ L1(Td). Note
that f̃ (i) is not necessarily integrable whenever f is.

We will prove also that the operators σα
n and σ̃

(i);α
n (n ∈ N) are uni-

formly bounded from Hp,q(Td) to Hp,q(Td) if d/(d + 1), 1/(αk + 1) < p ≤
∞, 0 < q ≤ ∞. From this it follows that σα

nf → f and σ̃
(i);α
n f → f̃ (i) in

Hp,q(Td) norm as n →∞, 2−τ ≤ nk/nj ≤ 2τ , whenever f ∈ Hp,q(T) and
d/(d + 1), 1/(αk + 1) < p ≤ ∞, 0 < q ≤ ∞.

2. Hardy spaces and Riesz transforms

For a set X 6= ∅ let Xd be its Cartesian product taken with itself d

times (d ∈ N), moreover, let T := [−π, π) and λ be the d-dimensional
Lebesgue measure. We also use the notation |I| for the Lebesgue measure
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of the set I. We briefly write Lp instead of the real Lp(Td, λ) space while
the norm (or quasinorm) of this space is defined by ‖f‖p := (

∫
Td |f |p dλ)1/p

(0 < p ≤ ∞). For simplicity, we assume that for a function f ∈ L1 we
have

∫
Td f dλ = 0.

The distribution function of a Lebesgue-measurable function f is de-
fined by

λ({|f | > ρ}) := λ({x : |f(x)| > ρ}) (ρ ≥ 0).

The weak Lp space L∗p (0 < p < ∞) consists of all measurable functions f

for which
‖f‖L∗p := sup

ρ>0
ρλ({|f | > ρ})1/p < ∞

while we set L∗∞ = L∞.
The spaces L∗p are special cases of the more general Lorentz spaces

Lp,q. In their definition another concept is used. For a measurable function
f the non-increasing rearrangement is defined by

f̌(t) := inf{ρ : λ({|f | > ρ}) ≤ t}.

Lorentz space Lp,q is defined as follows: for 0 < p < ∞, 0 < q < ∞

‖f‖p,q :=
(∫ ∞

0

f̌(t)
q
tq/p dt

t

)1/q

while for 0 < p ≤ ∞
‖f‖p,∞ := sup

t>0
t1/pf̌(t).

Let
Lp,q := Lp,q(Td, λ) := {f : ‖f‖p,q < ∞}.

One can show the following equalities:

Lp,p = Lp, Lp,∞ = L∗p (0 < p ≤ ∞)

(see e.g. Bennett, Sharpley [1] or Bergh, Löfström [2]).
We introduce the Hp(Td) Hardy space in a similar way as in Weisz

[15]. Let us fix d ≥ 1. For n = (n1, . . . , nd) ∈ Zd and x = (x1, . . . , xd) ∈
Td set n · x :=

∑d
k=1 nkxk and |n| := (

∑d
k=1 |nk|2)1/2. Let f be a distri-

bution on C∞(Td) (briefly f ∈ D′(Td) = D′). The nth Fourier coefficient
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is defined by f̂(n) := f(e−ın·x) where ı =
√−1 and n ∈ Zd. In special

case, if f is an integrable function then

f̂(n) =
1

(2π)d

∫

Td

f(x)e−ın·x dx.

For simplicity, we assume that, for a distribution f ∈ D′, we have f̂(0) = 0.
For f ∈ D′ and t > 0 define the harmonic function u by

u(x, t) := (f ∗ Pt)(x)

where ∗ denotes the convolution and

Pt(x) :=
∑

k∈Zd

e−t|k|eık·x (x ∈ Td)

is the Poisson kernel. Let Γ := {(x, t) : |x| < t}, a cone whose vertex is the
origin. We denote by Γ′(x) (x ∈ Td) the translate of Γ so that its vertex
is x. Set

Γ(x) =
⋃

k∈Zd

Γ′
(
(xi + ki2π)

) ∩Td.

The non-tangential maximal function is defined by

u∗(x) := sup
(x′,t)∈Γ(x)

|u(x′, t)| (α > 0).

For 0 < p, q ≤ ∞ the Hardy-Lorentz space Hp,q(Td) = Hp,q consists
of all distributions f for which u∗ ∈ Lp,q and set

‖f‖Hp,q
:= ‖u∗‖p,q.

Note that in case p = q the usual definition of Hardy spaces Hp,p = Hp

are obtained. It is known that if f ∈ Hp (0 < p < ∞) then f(x) =
limt→0 u(x, t) in the sense of distributions (see Fefferman, Stein [6]).
Recall that L1 ⊂ H1,∞, more exactly,

(1) ‖f‖H1,∞ = sup
ρ>0

ρλ(u∗ > ρ) ≤ C‖f‖1 (f ∈ L1).

Moreover, Hp,q ∼ Lp,q for 1 < p < ∞, 0 < q ≤ ∞ (see Fefferman,
Stein [6], Stein [10], Fefferman, Riviere, Sagher [5]).

The following interpolation result concerning Hardy-Lorentz spaces
will be used several times in this paper (see Fefferman, Riviere, Sag-
her [5] and also Weisz [16]).



(C, α) means of d-dimensional trigonometric-Fourier series 709

Theorem A. If a sublinear (resp. linear) operator T is bounded from
Hp0 to Lp0 (resp. to Hp0) and from Lp1 to Lp1 (p0 ≤ 1 < p1 ≤ ∞) then
it is also bounded from Hp,q to Lp,q (resp. to Hp,q) if p0 < p < p1 and
0 < q ≤ ∞.

For a distribution
f ∼

∑

n∈Zd

f̂(n)eın·x

the Riesz transforms or the conjugate distributions are defined by

f̃ (i) := Rif ∼
∑

n∈Zd

−ı
ni

|n| f̂(n)eın·x (i = 1, . . . , d).

We use the notation f̃ (0) := f .
As is well known, if f is an integrable function then the conjugate

functions f̃ (i) (i = 1, . . . , d) do exist almost everywhere, but they are not
integrable in general.

Fefferman and Stein [6] and Uchiyama [13] verified that if f ∈ Hp

(0 < p < ∞) then all conjugate distributions are also in Hp and

(2) ‖f̃ (i)‖Hp ≤ Cp‖f‖Hp (i = 1, . . . , d).

Furthermore, if (d− 1)/d < p < ∞ then the following equivalence holds:

(3) ‖f‖Hp ∼ ‖f‖p +
d∑

i=1

‖f̃ (i)‖p.

3. (C, α) summability of d-dimensional
trigonometric-Fourier series

Denote by snf and s̃
(i)
n f the nth partial sum and conjugate partial

sum of the Fourier series of a distribution f , respectively, namely,

snf(x) :=
d∑

j=1

nj∑

kj=−nj

f̂(k)eık·x

and

s̃(i)
n f(x) :=

d∑

j=1

nj∑

kj=−nj

−ı
ki

|k| f̂(k)eık·x.
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Let α = (α1, . . . , αd) ∈ Nd with 0 < αk ≤ 1 (k = 1, . . . , d) and let

Aγ
j :=

(
j + γ

j

)
=

(γ + 1)(γ + 2) . . . (γ + j)
j!

= O(jγ) (j ∈ N, 0 < γ ≤ 1)

(see Zygmund [17]). The (C, α) means of a distribution f are defined by

σα
nf : =

d∏

i=1

1
Aαi

ni

d∑

i=1

ni∑

ki=0

Aαi−1
ni−ki

skf

=
d∏

i=1

1
Aαi

ni

d∑

i=1

ni∑

ki=−ni

Aαi

ni−|ki|f̂(k)eık·x = f ∗ (Kα1
n1
× . . .×Kαd

nd
)

where the Kγ
j kernel satisfies the conditions

(4) |Kγ
j (t)| ≤ Cγj (0 < |t| < π)

and

(5) |Kγ
j (t)| ≤ Cγ

jγ |t|γ+1
(0 < |t| < π)

for j ∈ N and 0 < γ ≤ 1. From this it follows that

(6) |Kγ
j (t)| ≤ Cγjη+γ(η−1)

|t|(γ+1)(1−η)
(0 < |t| < π)

where 0 ≤ η ≤ 1 is arbitrary. We have similar estimates for the derivative
of the kernel:

(7) |(Kγ
j )′(t)| ≤ Cγj2 (0 < |t| < π)

and

(8) |(Kγ
j )′(t)| ≤ Cγ

jγ−1|t|γ+1
(0 < |t| < π)

for j ∈ N and 0 < γ ≤ 1 (see Zygmund [17], Vol. II, p. 60). Thus, for
0 ≤ θ ≤ 1,

(9) |(Kγ
j )′(t)| ≤ Cγjθ+1+γ(θ−1)

|t|(γ+1)(1−θ)
(0 < |t| < π).
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It is easy to see that (4) and (5) imply

(10)
∫

T

|Kγ
j | dλ ≤ Cγ (j ∈ N).

The conjugate (C, α) means of a distribution f are introduced by

σ̃(i);α
n f : =

d∏

i=1

1
Aαi

ni

d∑

i=1

ni∑

ki=0

Aαi−1
ni−ki

s̃
(i)
k f

=
d∏

i=1

1
Aαi

ni

d∑

i=1

ni∑

ki=−ni

Aαi

ni−|ki|(−ı
ki

|k| )f̂(k)eık·x

= f̃ (i) ∗ (Kα1
n1
× . . .×Kαd

nd
).

For a fixed τ ≥ 0 the restricted maximal and restricted maximal con-
jugate (C, α) operators are defined by

σα
∗ f := sup

2−τ≤nk/nj≤2τ

k,j=1,... ,d

|σα
nf |

and
σ̃

(i);α
∗ f := sup

2−τ≤nk/nj≤2τ

k,j=1,... ,d

|σ̃(i);α
n f |.

Obviously,

(11) σ̃(i);α
n f = σα

n f̃ (i) and σ̃
(i);α
∗ f = σα

∗ f̃ (i) (i = 0, 1, . . . , d).

4. The boundedness of the maximal (C,α) operator

A generalized interval on T is either an interval I ⊂ T or I = [−π, x)∪
[y, π). A generalized cube on Td is the Cartesian product I1 × . . . × Id

of d generalized intervals with |I1| = . . . = |Id|. A bounded measurable
function a is a p-atom if there exists a generalized cube R such that

(i)
∫

R
a(x)xβ dx = 0 for all multi-indices β = (β1, . . . , βd) ∈ Nd

with |β| ≤ [d(1/p− 1)], the integer part of d(1/p− 1),
(ii) ‖a‖∞ ≤ |R|−1/p,
(iii) {a 6= 0} ⊂ R.
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If I is a generalized interval then let 4I be the generalized interval
with the same center as I and with lenght 4|I|. For a generalized cube
R = I1 × . . .× Id let 4R = 4I1 × . . .× 4Id.

An operator T which maps the set of distributions into the collection of
measurable functions, will be called p-quasi-local if there exists a constant
Cp > 0 such that ∫

Td\4R

|Ta|p dλ ≤ Cp

for every p-atom a where R is the support of the atom. The following
result can be found in Weisz [15]:

Theorem B. Suppose that the operator T is sublinear and p-quasi-
local for some 0 < p ≤ 1. If T is bounded from Lp1 to Lp1 for a fixed
1 < p1 ≤ ∞ then

‖Tf‖p ≤ Cp‖f‖Hp
(f ∈ Hp).

Now we can formulate our main result.

Theorem 1. Suppose that max{d/(d+1), 1/(αk+1), k = 1, . . . , d} =:
p0 < p < ∞, 0 < q ≤ ∞ and 0 < αk ≤ 1 (k = 1, . . . , d). Then

(12) ‖σα
∗ f‖p,q ≤ Cp,q‖f‖Hp,q (f ∈ Hp,q).

Proof. For simplicity we prove the result for d = 2, only. For d > 2
the verification is very similar. Now we denote the elements of N2 by
(n,m) and we write (α, β) instead of (α1, α2).

By Theorems A and B the proof of Theorem 1 will be complete if we
show that the operator σα,β

∗ is p-quasi-local for each p0 < p ≤ 1 and is
bounded from L∞ to L∞.

The boundedness follows from (10). Let a be an arbitrary p-atom
with support R = I × J and 2−K−1 < |I|/π = |J |/π ≤ 2−K (K ∈ N). We
can suppose that the center of R is zero. In this case

[−π2−K−2, π2−K−2] ⊂ I, J ⊂ [−π2−K−1, π2−K−1].

Choose r ∈ N such that r − 1 < τ ≤ r. It is easy to see that if n ≥ k or
m ≥ k for a fixed k ∈ N then we have n,m ≥ k2−r. Indeed, since (n,m)
is in a cone, n ≥ k implies

m ≥ 2−τn ≥ k2−r.
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To prove the quasi-locality of the operator σα,β
∗ we have to integrate

|σα,β
∗ a|p over T2 \ 4R. We do this in three steps.

Step 1. Integrating over (T \ 4I)× 4J . Obviously,

∫

T\4I

∫

4J

|σα,β
∗ a(x, y)|p dx dy(13)

≤
2K−1∑

|i|=1

∫ π(i+1)2−K

πi2−K

∫

4J

|σα,β
∗ a(x, y)|p dx dy

≤
2K−1∑

|i|=1

∫ π(i+1)2−K

πi2−K

∫

4J

sup
n,m≥ri2−r

|σα,β
n,ma(x, y)|p dx dy

+
2K−1∑

|i|=1

∫ π(i+1)2−K

πi2−K

∫

4J

sup
n,m<ri

|σα,β
n,ma(x, y)|p dx dy

= (A) + (B)

where ri :=
[

2K

|i|δ
]

(i ∈ N) with δ > 0 chosen later. We can suppose that
i > 0.

The term (A) was estimated for α = β = 1 in Weisz [15]. For the
sake of the completeness we give the details in the general case. Using (5),
(10) and the definition of the atom we conclude

|σα,β
n,ma(x, y)| = 1

(2π)2
|
∫

I

∫

J

a(t, u)Kα
n (x− t)Kβ

m(y − u) dt du|

≤ Cp22K/p

∫

I

1
nα|x− t|α+1

dt.

If x ∈ [πi2−K , π(i + 1)2−K) (i ≥ 1) and t ∈ I then

(14)
1

|x− t|ν ≤
1

(πi2−K − π2−K−1)ν
≤ C2Kν

iν
(ν > 0).

Hence

|σα,β
n,ma(x, y)| ≤ Cp22K/p+Kα 1

nαiα+1
.
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Since n ≥ ri2−r, we obtain

(A) ≤ Cp

2K−1∑

i=1

2−2K22K+Kαp 1
rαp
i i(α+1)p

≤ Cp

2K−1∑

i=1

1
i(α+1)p−αδp

which is a convergent series if

(15) δ <
(α + 1)p− 1

αp
.

Now we consider (B). Let

A1(x, u) :=
∫ x

−π

a(t, u) dt (x, u ∈ T)

and

A(x, y) :=
∫ y

−π

A1(x, u) du (x, y ∈ T).

Observe that

(16) |A1(x, u)| ≤ |I|1−2/p, |A(x, y)| ≤ |I|2−2/p.

Integrating by parts we can see that

∫

I

a(t, u)Kα
n (x− t) dt(17)

=
[
A1(t, u)Kα

n (x− t)
]µ

−µ
−

∫

I

A1(t, u)(Kα
n )′(x− t) dt

= A1(µ, u)Kα
n (x− µ)−

∫

I

A1(t, u)(Kα
n )′(x− t) dt

where I = J = [−µ, µ]. By (4), (5), (16) and (14),
∣∣∣∣∣
∫

J

A1(µ, u)Kα
n (x− µ)Kβ

m(y − u) du

∣∣∣∣∣

≤ Cp22K/p−K2−K 1
nα|x− µ|α+1

m ≤ Cp22K/p−2Kn1−α 2K(α+1)

iα+1

= Cp22K/p+Kα−Kn1−α 1
iα+1
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whenever x ∈ [πi2−K , π(i + 1)2−K).
On the other hand, by (5), (10), (16) and (14),

∣∣∣∣
∫

J

∫

I

A1(t, u)(Kα
n )′(x− t)Kβ

m(y − u) du dt

∣∣∣∣

≤ Cp22K/p−K

∫

I

1
nα−1|x− t|α+1

dt ≤ Cp22K/p+Kα−Kn1−α 1
iα+1

in case x ∈ [πi2−K , π(i + 1)2−K). The inequality n < ri imply

(B) ≤ Cp

2K−1∑

i=1

2−2K22K+Kαp−Kpr
(1−α)p
i

1
i(α+1)p

≤ Cp

2K−1∑

i=1

1
i(α+1)p+(1−α)δp

which is independent of K if

δ >
1− (α + 1)p

(1− α)p
.

This together with (15) yields that p > 1/(α + 1). Hence we have proved
that

(18)
∫

T\4I

∫

4J

|σα,β
∗ a(x, y)|p dx dy ≤ Cp

for p > 1/(α + 1) where Cp depends only on p, τ , α and β.

Step 2. Integrating over (T \ 4I)× (T \ 4J). Similarly to (13),
∫

T\4I

∫

T\4J

|σα,β
∗ a(x, y)|p dx dy

≤
2K−1∑

|i|=1

2K−1∑

|j|=1

∫ π(i+1)2−K

πi2−K

∫ π(j+1)2−K

πj2−K

sup
n,m≥ri,j2−r

|σα,β
n,ma(x, y)|p dx dy

+
2K−1∑

|i|=1

2K−1∑

|j|=1

∫ π(i+1)2−K

πi2−K

∫ π(j+1)2−K

πj2−K

sup
n,m<ri,j

|σα,β
n,ma(x, y)|p dx dy

= (C) + (D)
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where ri,j :=
[

2K

|ij|δ/(α+β)

]
with δ > 0 chosen later. We suppose again that

i, j > 0.

The term (C) was estimated in [15] for α = β = 1. For arbitrary α

and β we have by (5) and (14),

|σα,β
n,ma(x, y)| ≤ Cp22K/p

∫

I

1
nα|x− t|α+1

dt

∫

J

1
mβ |y − u|β+1

du

≤ Cp
22K/p+Kα+Kβ

nαmβiα+1jβ+1

whenever x ∈ [πi2−K , π(i + 1)2−K) and y ∈ [πj2−K , π(j + 1)2−K).
Therefore

(C) ≤ Cp

2K−1∑

i=1

2K−1∑

j=1

2−2K 22K+Kαp+Kβp

rαp+βp
ij i(α+1)pj(β+1)p

≤ Cp

∞∑

i=1

∞∑

j=1

1
i(α+1)p−δpj(β+1)p−δp

which converges if

(19) δ <
(α + 1)p− 1

p
and δ <

(β + 1)p− 1
p

.

Using (17) and integrating by parts in both variables we get that

∫

I

∫

J

a(t, u)Kα
n (x− t)Kβ

m(y − u) dt du

= −
∫

J

A(µ, u)Kα
n (x− µ)(Kβ

m)′(y − u) du

+
∫

I

A(t, µ)(Kα
n )′(x− t)Kβ

m(y − µ) dt

−
∫

I

∫

J

A(t, u)(Kα
n )′(x− t)(Kβ

m)′(y − u) dt du

=: D1
n,m(x, y) + D2

n,m(x, y) + D3
n,m(x, y)

because A(µ,−µ) = A(µ, µ) = 0.
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Applying (6), (9), (16) and (14) we derive

|D1
n,m(x, y)|

≤ Cp22K/p−2K nη+α(η−1)

|x− µ|(α+1)(1−η)
2−K mθ+1+β(θ−1)

|y − u|(β+1)(1−θ)

≤ Cp22K/p−3Knη+α(η−1)
(2K

i

)(α+1)(1−η)

mθ+1+β(θ−1)
(2K

j

)(β+1)(1−θ)

provided that x ∈ [πi2−K , π(i + 1)2−K) and y ∈ [πj2−K , π(j + 1)2−K).
Choosing

η :=
2α− 1

2(α + 1)
and θ :=

2β − 1
2(β + 1)

we obtain
|D1

n,m(x, y)| ≤ Cp22K/p 1
i3/2

1
j3/2

.

Thus
∫

T\4I

∫

T\4J

sup
n,m<ri,j

|D1
n,m(x, y)|p dx dy ≤ Cp

∞∑

i=1

∞∑

j=1

2−2K22K 1
i3p/2

1
j3p/2

and this is convergent if p > 2/3. Note that this is the best possible
result which can be obtained in this way. The analogous estimation for
|D2

n,m(x, y)| can be proved similarly.
To estimate |D3

n,m(x, y)| use (8), (14) and (16) and observe that

|D3
n,m(x, y)| ≤ Cp22K/p−2K

∫

I

1
nα−1|x− t|α+1

dt

∫

J

1
mβ−1|y − u|β+1

du

≤ Cp
22K/p−2K+Kα+Kβn1−αm1−β

iα+1jβ+1

for x ∈ [πi2−K , π(i + 1)2−K) and y ∈ [πj2−K , π(j + 1)2−K). So
∫

T\4I

∫

T\4J

sup
n,m<ri,j

|D3
n,m(x, y)|p dx dy

≤ Cp

2K−1∑

i=1

2K−1∑

j=1

2−2K
22K−2Kp+Kαp+Kβpr

(2−α−β)p
ij

i(α+1)pj(β+1)p

≤ Cp

∞∑

i=1

∞∑

j=1

1

i
δ(2−α−β)p

α+β +(α+1)p

1

j
δ(2−α−β)p

α+β +(β+1)p
.
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This series converges if

(20) δ > (α + β)
1− (α + 1)p
(2− α− β)p

and δ > (α + β)
1− (β + 1)p
(2− α− β)p

if α + β 6= 2. In case α = β = 1 we have p > 1/(α + 1). It is easy to see
that (19) and (20) imply p > 1/(α + 1) and p > 1/(β + 1). In this case we
have shown that

(21)
∫

T\4I

∫

T\4J

|σα,β
∗ a(x, y)|p dx dy ≤ Cp.

Step 3. Integrating over 4I × (T \ 4J). This case is analogous to
Step 1.

Combining (18) and (21) we proved that σα,β
∗ is p-quasi-local for each

p0 < p ≤ 1. Theorems A and B complete the proof of (12). ¤
Note that Theorem 1 was proved in [15] for greater p0 and under some

strong conditions on α.
We can state the same for the maximal conjugate (C, α) operator.

Theorem 2. Assume that i = 0, 1, . . . , d and 0 < αk ≤ 1 (k =
1, . . . , d). Then

‖σ̃(i);α
∗ f‖p,q ≤ Cp,q‖f‖Hp,q (f ∈ Hp,q)

for every p0 < p < ∞ and 0 < q ≤ ∞. Especially, if f ∈ L1 then

λ(σ̃(i);α
∗ f > ρ) ≤ C

ρ
‖f‖1 (ρ > 0).

Proof. By Theorem 1 for p = q, (2) and (11) we obtain

‖σ̃(i);α
∗ f‖p = ‖σα

∗ f̃ (i)‖p ≤ Cp‖f̃ (i)‖Hp ≤ Cp‖f‖Hp (f ∈ Hp)

for every p0 < p < ∞. The first inequality of Theorem 2 follows from
Theorem A.

Let us point out this inequality for p = 1 and q = ∞. If f ∈ L1

then (1) implies

‖σ̃(i);α
∗ f‖1,∞ = sup

ρ>0
ρλ(σ(i);α

∗ f > ρ) ≤ C‖f‖H1,∞ ≤ C‖f‖1
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which shows the weak type inequality in Theorem 2. The proof of the
theorem is complete. ¤

Since the trigonometric polynomials are dense in L1, the weak type
inequality of Theorem 2 and the usual density argument (see Marcinkie-
vicz, Zygmund [7]) imply

Corollary 1. Assume that i = 0, 1, . . . , d and 0 < αk ≤ 1 (k =
1, . . . , d). If f ∈ L1 then

σ̃(i);α
n f → f̃ (i) a.e.

as min(n1, . . . , nd) →∞ and 2−τ ≤ nk/nj ≤ 2τ (k, j = 1, . . . , d).

Note that Theorem 2 and Corollary 1 for i = 0 were proved under
some conditions on α (see [15]). For other i’s these are new results since
f̃ (i) is not necessarily integrable whenever f is.

Now we consider the norm convergence of σα
nf . It follows from (12)

that σα
nf → f in Lp norm as n →∞ if f ∈ Lp (1 < p < ∞). We are going

to generalize this result.

Theorem 3. Assume that i = 0, 1, . . . , d and 0 < αk ≤ 1 (k =
1, . . . , d). If n ∈ Nd is in the cone, i.e. 2−τ ≤ nk/nj ≤ 2τ for all k, j =
1, . . . , d, then

‖σ̃(i);α
n f‖Hp,q ≤ Cp,q‖f‖Hp,q (f ∈ Hp,q)

whenever p0 < p < ∞ and 0 < q ≤ ∞.

Proof. Since (σα
nf)∼(i) = σ̃

(i);α
n f , we have by Theorems 1 and 2 that

‖(σα
nf)∼(i)‖p ≤ Cp‖f‖Hp (f ∈ Hp).

(3) implies that

‖σ̃(i);α
n f‖Hp ≤ Cp‖f‖Hp (f ∈ Hp).

Now Theorem A proves Theorem 3. ¤
Corollary 2. Suppose that i = 0, 1, . . . , d, 0 < αk ≤ 1 (k = 1, . . . , d),

p0 < p < ∞ and 0 < q ≤ ∞. If f ∈ Hp,q then

σ̃(i);α
n f → f̃ in Hp,q norm

as min(n1, . . . , nd) →∞ and 2−τ ≤ nk/nj ≤ 2τ (k, j = 1, . . . , d).

We suspect that Theorems 1, 2 and 3 for p ≤ p0 are not true though
we could not find any counterexample.
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