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(C, &) means of d-dimensional trigonometric-Fourier
series

By FERENC WEISZ (Budapest)

Dedicated to the 60th birthday of
Professors Zoltdn Dardczy and Imre Kdtai

Abstract. The d-dimensional classical Hardy spaces H,(T?) are introduced and
it is shown that the maximal operator of the (C, ) (o = (a1,...,aq4)) means of a
distribution is bounded from Hp(T9) to Ly(T?) (d/(d + 1),1/(ar + 1) < p < o)
provided that the supremum in the maximal operator is taken over a positive cone.
Moreover, we prove that the (C, o) means are uniformly bounded on the spaces Hy(T%)
whenever d/(d+1),1/(ar + 1) < p < co. Thus, in case f € Hp(T), the Cesaro means
converge to f in Hy(T%) norm (d/(d 4+ 1),1/(as + 1) < p < o0). The same results are
proved for the conjugate (C, a) means, too.

1. Introduction

The Hardy-Lorentz spaces H, ,(T%) of distributions are introduced
with the L, ,(T%) Lorentz norms of the non-tangential maximal function.
Of course, H,(T?) = H, ,(T?) are the usual Hardy spaces (0 < p < o).

For multi-dimensional trigonometric-Fourier series MARCINKIEVICZ
and ZYGMUND [7] proved that the Fejér means ol f of a function f €
L1 (T4) converge a.e. to f as min(ni,...,ny) — oo provided that n is in
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a positive cone, i.e., provided that 277 < ng/n; < 27 for every k,j =
1,...,d and for some 7 > 0 (n = (ny,...,nq) € N9).

Recently the author [15] obtained the same convergence result for the
(C, ) means o2 by proving the weak type inequality

suppA(clf > p) < Clflln  (f € Li(T?)
p>0

where o = SUPs-7<pn, /n, <> |O7], @ = (Q1,...,0q) and 0 < o < 1.

k,j=1,....,d

Moreover, for the Fejér means (if ax = 1) the author [15] verified that
ol is bounded from H, ,(T9) to L, ,(T%) if (2d +1)/(2d +2) < p <
and 0 < ¢ < oco. Under some conditions on o we proved also a similar
result for the (C, a) means. The one-dimensional results are described in
WEISz [14].

In this paper we sharpen and generalize these results for arbitrary
0 < a < 1. We will show that the maximal operator ¢¢ is bounded from
H, ,(T%) to L, 4(T?) whenever d/(d+1),1/(ax+1) < p < 00,0 < g < 0.
We introduce the conjugate distributions (or Riesz transforms) f () = R, f,

the conjugate (C,«) means 5’55);06 and the conjugate maximal operators

&,(f);a where ¢ = 0,1,...,d. We obtain that the operator &Sf);“ is also of
type (Hp,q(T%), Ly o(T9)) if d/(d+ 1), 1/(a +1) <p < o00,0< g < 00
and of weak type (1,1).

A usual density argument implies then that, besides the convergence
results mentioned above, the conjugate (C, a) means &,(Z')?“ f converge a.e.
to f() asn — co and 277 < nk/n; < 27, provided that f € L (T%). Note
that f (1) is not necessarily integrable whenever f is.

We will prove also that the operators ;' and 553);& (n € N) are uni-
formly bounded from H, ,(T?) to H, ,(T%) ifd/(d+1), 1/(cx+1) <p <
00, 0 < ¢ < oco. From this it follows that o0 f — f and &T(f);af — f@ in
H, ,(T%) norm as n — oo, 277 < ny/n; < 27, whenever f € H, ,(T) and

d/(d+1), 1/(ex +1) <p <00, 0 < g < oo

2. Hardy spaces and Riesz transforms

For a set X # ) let X% be its Cartesian product taken with itself d
times (d € N), moreover, let T := [—7,7) and A\ be the d-dimensional
Lebesgue measure. We also use the notation |I| for the Lebesgue measure
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of the set I. We briefly write L, instead of the real L,(T%, \) space while
the norm (or quasinorm) of this space is defined by || f||, := ([ | [P dA)/P
(0 < p < ). For simplicity, we assume that for a function f € L; we
have [, fdA=0.

The distribution function of a Lebesgue-measurable function f is de-
fined by

AT > pp) = A{z | f(@) > p})  (p=0).
The weak L, space L, (0 < p < co) consists of all measurable functions f
for which

/1

£y = sup pA({If] > p})/P < o0
p>0

while we set L) = L.

The spaces L; are special cases of the more general Lorentz spaces
L, 4. In their definition another concept is used. For a measurable function
f the non-increasing rearrangement is defined by

F(t) = inf{p: A({If] > p}) < t}.

Lorentz space L, 4 is defined as follows: for 0 < p < 00,0 < ¢ < 00

oo q 1/q
= ([ e )

1 £llp,c0 == sup '/ f ().
t>0

while for 0 < p < o0

Let
Lpg:= Lp,q(Tdv A) = A{f [fllpq < oo}

One can show the following equalities:
Lypp=1Lyp, Lpe=0L, (0 <p<o0)

(see e.g. BENNETT, SHARPLEY [1] or BERGH, LOFSTROM [2]).

We introduce the Hp(Td) Hardy space in a similar way as in WEISZ
[15]. Let us fix d > 1. For n = (ny,... ,nq) € Z% and z = (z1,... ,74) €
T set n -z = ZZ:1 ngxy and |n| = (Zzzl Ing|?)Y/2. Let f be a distri-
bution on C>(T?) (briefly f € D'(T?) = D’). The nth Fourier coefficient
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is defined by f(n) := f(e="%) where 1+ = /—1 and n € Z%. In special
case, if f is an integrable function then

1
(27T)d Td

f(n) = (z)e™ "% d.
For simplicity, we assume that, for a distribution f € D’, we have f (0) = 0.

For f € D’ and t > 0 define the harmonic function u by

u(x,t) = (f * P)(x)
where * denotes the convolution and

Pi(x) := Z ekl gtk (x € T
keZd

is the Poisson kernel. Let I' := {(z,?) : |z| < t}, a cone whose vertex is the
origin. We denote by I'(z) (x € T?) the translate of T' so that its vertex
is x. Set
I'(z) = U I'((z; + k;2m)) N T
kezd

The non-tangential maximal function is defined by

u () =  sup |u(z/,t)] (a>0).
(z/,t)el(x)

For 0 < p,q < oo the Hardy-Lorentz space H, ,(T%) = H, , consists
of all distributions f for which u* € L, , and set

1z, , = 1],

Note that in case p = ¢ the usual definition of Hardy spaces H, , = H,
are obtained. It is known that if f € H, (0 < p < o0) then f(z) =
lim; .o u(x,t) in the sense of distributions (see FEFFERMAN, STEIN [6]).
Recall that L1 C Hj o, more exactly,

(1) 1ty =suppA(u” > p) < Cfllh (f € La).
p>0

Moreover, H, , ~ Ly, for 1 < p < 00, 0 < ¢ < 0o (see FEFFERMAN,
STEIN [6], STEIN [10], FEFFERMAN, RIVIERE, SAGHER [5]).

The following interpolation result concerning Hardy-Lorentz spaces
will be used several times in this paper (see FEFFERMAN, RIVIERE, SAG-
HER [5] and also WEISZ [16]).
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Theorem A. If a sublinear (resp. linear) operator T' is bounded from
H,, to Ly, (resp. to Hp,) and from L,, to Ly, (po <1 < p1 < o00) then
it is also bounded from H,, to L, , (resp. to H,,) if po < p < p1 and
0<q<o0.

For a distribution

Fo SO fmpen

neZd

the Riesz transforms or the conjugate distributions are defined by

fO=Rif~ Y fyens (i=1,...,d).

neZd ‘n‘

We use the notation f(o) = f.

As is well known, if f is an integrable function then the conjugate
functions f () (t=1,...,d) do exist almost everywhere, but they are not
integrable in general.

FEFFERMAN and STEIN [6] and UCHIYAMA [13] verified that if f € H,
(0 < p < 00) then all conjugate distributions are also in H, and

(2) 1F O, < Gl flm,  G=1,....d).

Furthermore, if (d — 1)/d < p < oo then the following equivalence holds:

d
(3) 1 ez, ~ 1l + D 17D
=1

3. (C,a) summability of d-dimensional
trigonometric-Fourier series

Denote by s, f and §£f) f the nth partial sum and conjugate partial
sum of the Fourier series of a distribution f, respectively, namely,

d
saf@)i=3_ 3, flkjer

and
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Let a = (a1,...,0q) E N® with 0 < ap, <1 (k=1,...,d) and let

—0(") (EN,0<<1)

A <j+'v> _ D) +2).. . (v +)
! J J!
(see ZYGMUND [17]). The (C,«) means of a distribution f are defined by

d d g

onf =] g S AL ses

i=1 "™ =1 k;=0

where the KJ kernel satisfies the conditions

(4) KXW < i (0<]t <)

and

(5) KB < -1 (0<l<m)
J - j'Y’t”YJrl

for j € N and 0 < v < 1. From this it follows that

Cﬂ{jnﬂ(n*l)

Y
©) K70 < Py

(0 < |t| < )

where 0 < n <1 is arbitrary. We have similar estimates for the derivative
of the kernel:

(7) (KB <G (0<]t <)

and

(®) KY (0 < — <<
DOl G

for j € N and 0 < v <1 (see ZyGMUND [17], Vol. I, p. 60). Thus, for
0<6<1,

, O, joF 1=
9) [(K])' ()] < ENCE=o (0 < [t] <m).
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It is easy to see that (4) and (5) imply
(10) / KldA<C,  (jeN).
T

The conjugate (C, ) means of a distribution f are introduced by

6,7gi);af H Y Z Z Aazfl Z( )f

i =1 k;=0

d n; o
H AalZ SooAn (- ,kk‘,)f(k)e””
= M i=1 ki=—n,

:f<>*(K;§; X .ox KO,

For a fixed 7 > 0 the restricted mazimal and restricted maximal con-
Jugate (C, «) operators are defined by

off=sup oy f]
2_T§nk/nj§27
k,j=1,....,d
and
gl = sup |5 gl
27T <ny /n;<2T
k,j=1,....d
Obviously,

(11)  Wef =gofO and s f =g fO  (i=0,1,...,d).

4. The boundedness of the maximal (C, «) operator

A generalized interval on T is either an interval I C T or I = [—m, z)U
[y,7). A generalized cube on T? is the Cartesian product I; x ... x Iy
of d generalized intervals with |I;| = ... = |I4]. A bounded measurable

function a is a p-atom if there exists a generalized cube R such that
(i) [ra(z)z? dz = 0 for all multi-indices 8 = (B1,... ,84) € N¢
with 3| < [d(1/p — 1)], the integer part of d(1/p — 1),
(i) [lall <|RI7V7,
(iii) {a #0} C R.
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If I is a generalized interval then let 41 be the generalized interval
with the same center as I and with lenght 4|I|. For a generalized cube
R=I x...x1Ijlet AR =411 x ... x 41,.

An operator T which maps the set of distributions into the collection of
measurable functions, will be called p-quasi-local if there exists a constant

Cp > 0 such that
/ |Tal? d)\ < C,
Td\4R

for every p-atom a where R is the support of the atom. The following
result can be found in WEISz [15]:

Theorem B. Suppose that the operator T is sublinear and p-quasi-
local for some 0 < p < 1. If T is bounded from L,, to L,, for a fixed
1 < p1 < oo then

ITfllp < Coll Az, (f € Hy).

Now we can formulate our main result.

Theorem 1. Suppose that max{d/(d+1),1/(ar+1),k=1,... ,d} =:
po<p<oo,0<g<oocand 0<ar<1(k=1,...,d). Then

(12) 102 Fllp.g < Cogllfllm,, (f € Hpq)-

PROOF. For simplicity we prove the result for d = 2, only. For d > 2
the verification is very similar. Now we denote the elements of N? by
(n,m) and we write («, 3) instead of (aq, ).

By Theorems A and B the proof of Theorem 1 will be complete if we
show that the operator oy B s p-quasi-local for each pg < p < 1 and is
bounded from Lo, to L.

The boundedness follows from (10). Let a be an arbitrary p-atom
with support R =1 x J and 2= 51 < |I|/7 = |J|/m < 27K (K € N). We
can suppose that the center of R is zero. In this case

[—m2 K2 q2 K2 c [ Jc [-m2~ KL p2= K1,

Choose 7 € N such that r — 1 < 7 < r. It is easy to see that if n > k or
m > k for a fixed k € N then we have n,m > k27". Indeed, since (n,m)
is in a cone, n > k implies

m>2""n>k27".
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To prove the quasi-locality of the operator oy # we have to integrate

|02 PalP over T2\ 4R. We do this in three steps.

Step 1. Integrating over (T \ 47) x 4.J. Obviously,

(13) / / 0Bz, y)|P da dy
T\4I J4J
2K _1

m(i+1)27 K
< Z/ / o Pa(x, y)|P dx dy
4J

li|=1 mi2— K

21 r(i+1)27 K
< Z/ / sup  |opma(z,y)|P dedy
s 4

li|=1 i2— K Jnm>r;2="
251 r(it1)27K
Y | sw lonfalay)r dsdy
=1 /w2 47 nm<r;
=(4)+(B)

where r; := [%] (1 € N) with § > 0 chosen later. We can suppose that
1> 0.

The term (A) was estimated for « = § = 1 in WEISz [15]. For the
sake of the completeness we give the details in the general case. Using (5),

(10) and the definition of the atom we conclude

%8 a(x = 1 a(t,u) K (x — By —u U
rhae )] = Goal [ [ et oK@ 0K )i

1
< 92K/ / N
- F 7 n%lx —tjott

If v € [mi2 %, 7(i +1)27%) (i > 1) and t € I then

1 1 C2Kv
|lx —t|y = (mi2=K — g2-K-Lyp — v

(14) (v > 0).

Hence
1

K K
ol y)| < CpEPR/PHe
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Since n > r;27", we obtain

2K 1 1 2K 1
—2Ko2K+Kap
1= 1=

which is a convergent series if

(a+1)p—1
ap ’

(15) d <
Now we consider (B). Let

Ay (z,u) = /I a(t,u)dt (z,ueT)

—T

and y

Alz,y) := Ai(z,u)du (z,y € T).
Observe that
(16) |Ar(z,u)] < [I]'727 Az, y)| < 12727

Integrating by parts we can see that
(17) /a(t, uw) Ky (z—t)dt
I
- [trze-0])" ~ [ 4w e
—p I

= A KR =10 = [ A (2 (@ 1) i

where I = J = [—u, p]. By (4), (5), (16) and (14),

/J Ay () K2 (@ — p) KL (y — ) du

9K (a+1)

2K /p—K o—K
= Cp2 2 jatl

-m < Cp22K/p72Knlfo¢
n®le — p|*t

1

- 2K /p+Ka—K 11—«
= ()2 n o
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whenever z € [ri2~5 7(i + 1)27K).
On the other hand, by (5), (10), (16) and (14),

/Altu Nz —t)KP (y — u) du dt
1
2K/p—K 2K/p+Ka—K,_ 1—«
< Cp2 /Ina_lla:— B o At < Cp2 T

in case z € [mi27K 7(i + 1)27K). The inequality n < r; imply

2K _1

—2Ko2K+Kap—Kp,.(1—a)p 1
(B) <Cp Z; 27772 P J(atD)p
1=
2K _1

1
=Gy Z j(a+D)p+(1—a)dp

which is independent of K if

1—(a+1)p
(1—a)p

This together with (15) yields that p > 1/(a+ 1). Hence we have proved
that

(18) / \of’ﬁa(a:,yﬂp dedy < C,)
T\4I J4J

o>

for p > 1/(ac+ 1) where C,, depends only on p, 7, « and .
Step 2. Integrating over (T \ 47) x (T \ 4J). Similarly to (13),

/ / 0B, y)|P da dy
T\4I JT\4J

2K—1 2K—1 r(i+1)27 5 r(i+1)2 5

«,
/ / sup ‘Un,ma(xayﬂpdxdy
mi2— K mj2— K n,m>r; ;277

2K—1 2K—1 r(i+1)2~ K

m(j+1)27 K
/ / sup oo a(z,y)|? dz dy
mi2— K T '

jng nm<r; j

\Il\ll

I\ L jl=1

= (C)+ (D)
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where r; ; = [Wﬁ%} with & > 0 chosen later. We suppose again that
1,7 > 0.

The term (C) was estimated in [15] for & = 3 = 1. For arbitrary «
and 3 we have by (5) and (14),

1 1
a,B 2K /p - - -
|O-n,ma’(‘7:7 y)| < sz /I na|x _ t’a+1 dt/; m,3|y — u|5+1 du

22K/p+ch+K,8
p namﬁz‘a+1jﬁ+1

whenever x € [mi2 K 7(i+1)27%) and y € [rj27 K 7(j +1)27K).
Therefore

oK _19K_1 - 92K+Kap+Kpp

- _

(C) < Cp Z Z 2 T{lp+ﬂpi(a+l)pj(ﬁ+1)l7

=1 j=1 v
o0 o0 1

< Cp Z; 21 i(a+1)p—6pj(ﬁ+1)p*5p
i=1 j=

which converges if
p—1 p—1

p

Using (17) and integrating by parts in both variables we get that

/I /J alt,u) K2 (x — O)KPB.(y — u) dt du
_ /J Al u) K2 — ) (K2 Y (y — ) du
+ /IA(t, W (E) (z =) K, (y — p) dt
- / / At ) (K2 (2 — 1)(K2) (y — u) dit du
I1JJ
= D'rlz,m(x7y) + D721,m<m7y) + D?L,m(x7y)

because A(u, —p) = A(p, ) = 0.
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Applying (6), (9), (16) and (14) we derive

| Dy (2, 9)]

+a(n—1) 0+1+8(0-1)
< Cp22K/p—2K nTre -xk m

‘q; — M|(a+1)(1*77) 2 |y — u|(ﬁ+1)(1*9)
)(a'i‘l)(l n)

<G, 92K/p=3K  n+a(n—- 1)(

0+ 1+8(0— 1)( )(ﬁ-i-l)(l 0)

i J

provided that z € [mi2 % 7(i +1)27%) and y € [rj27 K, x(j + 1)27K).
Choosing

200 — 1 q 0 28 -1
= ————— an = —_—
g 2(a+1) 2(8+1)
we obtain
D} ()| < G207
n,m (LY Z3/2 53/2°
Thus
sup m(@,y)Pdedy < C 92K 92K
[1‘\41 [r\zu n,m<ri P ; 121 i3p/2 j3p/2

and this is convergent if p > 2/3. Note that this is the best possible
result which can be obtained in this way. The analogous estimation for

|D2 ,.(x,y)| can be proved similarly.
To estimate |D} , (x,y)| use (8), (14) and (16) and observe that

1 1
2K /p—2K
Do) < €22 [ it |
22K/p—2K+Ka+Kﬂnl—aml—ﬁ

p ,L'a—i-ljﬁ-i-l

for z € [7i27 K 7(i +1)27 %) and y € [7j2 5, 7(j + 1)27K). So

/ / sup D2, ()P de dy
T\4I T\4J n,m<r; j

28 —12K 1 92K —2Kp+Kap+Kfp,.(2—a—F)p
—2K J
<Gy Zl 21 2 ilat)pj(B+1)p
1= J=

IN

1
C ZZ 5(2a¢1 ﬁ)p—i-(a—i-l)p 5(2 a— B)p-l-(ﬁ-l-l)p‘

i=1 j= 11
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This series converges if

1-(a+1)p 1-(G+1p
2—-a—=pp (2—a—pB)p
if a4+ #2 Incase « = =1 we have p > 1/(a+ 1). It is easy to see

that (19) and (20) imply p > 1/(a+1) and p > 1/(6+1). In this case we
have shown that

(21) / / ]af’ﬂa(:p, y)|P dzdy < C.
T\4I JT\4J

Step 3. Integrating over 41 x (T \ 4J). This case is analogous to
Step 1.

Combining (18) and (21) we proved that o*° is p-quasi-local for each
po < p < 1. Theorems A and B complete the proof of (12). O

(20) d> (a+p) and ¢ > (a+ )

Note that Theorem 1 was proved in [15] for greater py and under some
strong conditions on «.
We can state the same for the maximal conjugate (C, «) operator.

Theorem 2. Assume that i = 0,1,...,d and 0 < o < 1 (k =
1,...,d). Then

155 Fllpa < Coallflla,.,  (f € Hp)

for every pg < p < 0o and 0 < q < co. Especially, if f € Ly then

MG > p) <

> Q

£l (o> 0).

PRrOOF. By Theorem 1 for p = ¢, (2) and (11) we obtain

15 Fllp = 102 FO Ny < Col FOllm, < Collfllm, (f € Hy)

for every pp < p < oo. The first inequality of Theorem 2 follows from
Theorem A.

Let us point out this inequality for p = 1 and ¢ = oc0. If f € I
then (1) implies

1557 e = sup pA@LYf > ) < Clf 11 < CIS Il
p
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which shows the weak type inequality in Theorem 2. The proof of the
theorem is complete. O

Since the trigonometric polynomials are dense in Lq, the weak type
inequality of Theorem 2 and the usual density argument (see M ARCINKIE-
VICZ, ZYGMUND |[7]) imply

Corollary 1. Assume that i = 0,1,...,d and 0 < o < 1 (k =
1,...,d). If f € Ly then

gef o fO ae.
as min(nq,... ,ng) — oo and 277 < nyg/n; <27 (k,j=1,....,d).

Note that Theorem 2 and Corollary 1 for ¢ = 0 were proved under
some conditions on « (see [15]). For other i’s these are new results since
f® is not necessarily integrable whenever f is.

Now we consider the norm convergence of ¢ f. It follows from (12)
that o2 f — fin L, norm asn — oo if f € L, (1 < p < 00). We are going
to generalize this result.

Theorem 3. Assume that i = 0,1,...,d and 0 < o < 1 (k =
1,...,d). If n € N? is in the cone, i.e. 277 < ny/n; < 27 for all k,j =
1,...,d, then

Hf}g);afHHp,q < Coglfllm,., (f € Hpg)
whenever pg < p < oo and 0 < ¢ < oo.
PROOF. Since (62 )~ = 57(5);0“]‘, we have by Theorems 1 and 2 that
Hon )~ llp < Collfllzr, — (f € Hy)-
(3) implies that
1657 fllm, < Cpllflla, — (f € Hy).

Now Theorem A proves Theorem 3. 0

Corollary 2. Suppose thati=0,1,...,d,0<a <1 (k=1,...,d),
po<p<ooand0<q<oo. If feH,, then

&,(Li);af — f in H, , norm

asmin(ny,... ,ng) — oo and 277 <ny/n; <27 (k,j=1,...,d).

We suspect that Theorems 1, 2 and 3 for p < py are not true though
we could not find any counterexample.
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