A note on multiplicative functions with regularity properties

By BUI MINH PHONG (Budapest)

J.L. Mauclaire and L. Murata [8] have shown that a multiplicative function $g(n)$ with properties

$$
\begin{equation*}
|g(n)|=1 \quad(n=1,2, \ldots) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x}|g(n+1)-g(n)|=o(x) \quad \text { as } \quad x \rightarrow \infty \tag{2}
\end{equation*}
$$

has to be completely multiplicative. It is obvious that (1) and (2) hold for functions of the type

$$
g(n)=n^{i \tau}
$$

where τ is a real number. I. KÁtai [6] conjectured that $g(n)=n^{i \tau}$ are the only multiplicative functions that satisfy the conditions (1) and (2). This conjecture remains open, some partial results are known. For such results we refer to A. Hildebrand [4], [5] and I. Kátai [7].

Our purpose in this note is to prove the following
Theorem. Let A, B be positive integers and let C be a non-zero complex number. Assume that a complex-valued completely multiplicative function $g(n)$ satisfies the conditions

$$
\begin{equation*}
|g(n)|=1 \quad(n=1,2, \ldots) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x}|g(A n+B)-C g(n)|=o(x) \quad \text { as } \quad x \rightarrow \infty \tag{4}
\end{equation*}
$$

If there is a positive integer k for which

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} x^{-1}\left|\sum_{n \leq x}(g(n))^{k}\right|>0 \tag{5}
\end{equation*}
$$

then there are a real constant τ and a completely multiplicative function $G(n)$ such that

$$
\begin{equation*}
g(n)=n^{i \tau} \cdot G(n) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
[G(n)]^{k}=1 \tag{7}
\end{equation*}
$$

hold for all positive integers n, moreover

$$
\begin{equation*}
\sum_{n \leq x}|G(n+1)-G(n)|=o(x) \quad \text { as } \quad x \rightarrow \infty \tag{8}
\end{equation*}
$$

Remarks. (i) In the special case when $A=B=C=k=1$, our theorem can be deduced directly from Theorem 2 of A. Hildebrand [3]. In this case, by using Halász' theorem, it follows by (5) that for some real number τ

$$
\begin{equation*}
\operatorname{Re} \sum_{P} \frac{1-g(p) p^{-i \tau}}{p}<\infty \tag{9}
\end{equation*}
$$

the series being taken over all primes p. A. Hildebrand [3] proved that (9) implies

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} \frac{g(n)}{g(n+1)} \rightarrow \prod_{p} F_{p} \tag{10}
\end{equation*}
$$

where

$$
\mathbf{F}_{p}=1-\frac{2}{p}+2\left(1-\frac{1}{p}\right) \operatorname{Re} \frac{g(p) p^{-i \tau}}{p-g(p) p^{-i \tau}}
$$

Thus, (3), (4), and (10) jointly imply that $\mathbf{F}_{p}=1$ holds for each prime p , i.e.

$$
g(p)=p^{i \tau}
$$

This shows that (6) holds with $G(n) \equiv 1$.
(ii) We hope that the conditions (3) and (4) imply (5), but we are unable to prove it presently. If we write a multiplicative function g satisfying (3) in the form $g=e^{2 i \pi f}$, where f is an additive function, then it
is known from Chapter 8 of [1] that there are two possibilities: Either (5) holds for some positive integer k or $f(n)$ is uniformly distributed $(\bmod 1)$.

We shall use some lemmas in the proof of our theorem.
For a given multiplicative function $g(n)$ we denote by $\mathbf{J}=\mathbf{J}(g)$ the set of those pairs (Q, R) of positive integers for which

$$
\begin{equation*}
\sum_{n \leq x}|g(Q n+R)-g(Q n)|=o(x) \quad \text { as } \quad x \rightarrow \infty \tag{11}
\end{equation*}
$$

Lemma 1. Assume that a completely multiplicative function $g(n)$ satisfies the conditions (3) and (4). Then $(Q, R) \in \mathbf{J}(g)$ for all fixed integers Q and R which satisfy the condition

$$
\begin{equation*}
0<R<Q \tag{12}
\end{equation*}
$$

Proof. We shall prove this lemma by the same method that was used in the proof of Lemma 2 in [10].

Assume that a completely multiplicative function $g(n)$ satisfies the conditions (3) and (4). Then, by using Theorem 1 of [9] and the complete multiplicativity of g, we have

$$
\begin{equation*}
g(A)=C . \tag{13}
\end{equation*}
$$

Thus, $(A, B) \in \mathbf{J}=\mathbf{J}(g)$, and so $(A, 1) \in \mathbf{J}$.
We prove next the following assertions:
(a) $\quad(Q, 1) \in \mathbf{J}$ if $(q, 1) \in \mathbf{J}$ and $Q \geq q$
(b) $\quad(Q, R) \in \mathbf{J}$ if $(q, 1) \in \mathbf{J}$ and $0<R<Q /(q-1)$
(c) $\quad(h, 1) \in \mathbf{J} \quad$ if $(h+1,1) \in \mathbf{J}$ and $h \geq 2$.

Assume that $(q, 1) \in \mathbf{J}$. By using the complete multiplicativity of g, we have

$$
\begin{aligned}
g[(q+1) n+1]- & g[(q+1) n]=\frac{g(q+1)}{g(q)}\{g(q n+1)-g(q n)\}- \\
& -\frac{1}{g(q)}\{g[q((q+1) n+1)+1]-g[q((q+1) n+1)]\}
\end{aligned}
$$

and so, by using (3) and the fact $(q, 1) \in \mathbf{J}$, we deduce that $(q+1,1) \in \mathbf{J}$. By using induction on q we have proved that (a) holds.

Assume again that $(q, 1) \in \mathbf{J}$. We shall prove (b) by using induction on R. From (a) it follows that (b) is satisfied for $R=1$. Assume that $(Q, R) \in \mathbf{J}$ holds for all integers Q and R satisfying $0<R<Q /(q-1)$ and $R<R_{0}$. Let Q_{0} be an integer such that

$$
\begin{equation*}
0<R_{0}<Q_{0} /(q-1) \tag{14}
\end{equation*}
$$

In order to show (b) it sufficies to prove that $\left(Q_{0}, R_{0}\right) \in \mathbf{J}$. Without loss of generality we may assume that $\left(Q_{0}, R_{0}\right)=1$.

Let Q and R be positive integers such that

$$
\begin{equation*}
R_{0} Q=Q_{0} R+1 \quad \text { and } \quad R<R_{0} \tag{15}
\end{equation*}
$$

It follows from (14) and (15) that

$$
0<R<\left(Q_{0} R+1\right) / Q_{0}=R_{0} Q / Q_{0}<Q /(q-1)
$$

Thus, by using our assumption and the fact $R<R_{0}$, we have $(Q, R) \in \mathbf{J}$. On the other hand, by (15), we get

$$
\begin{aligned}
g\left(Q_{0} n+R_{0}\right)-g\left(Q_{0} n\right)= & \frac{1}{g(Q)}\left[g\left(Q_{0} Q n+R_{0} Q\right)-g(Q) g\left(Q_{0} n\right)\right]= \\
= & \frac{g\left(Q_{0}\right)}{g(Q)}\{g(Q n+R)-g(Q n)\}+ \\
& +\frac{1}{g(Q)}\left\{g\left[Q_{0}(Q n+R)+1\right]-g\left[Q_{0}(Q n+R)\right]\right\},
\end{aligned}
$$

consequently $\left(Q_{0}, R_{0}\right) \in \mathbf{J}$, because $(Q, R) \in \mathbf{J}$ and $\left(Q_{0}, 1\right) \in \mathbf{J}$. Thus, we have proved (b).

Finally, we prove (c). Assume that $(h+1,1) \in \mathbf{J}$ and $h \geq 2$. Let

$$
T(x):=\sum_{n \leq x}|g(h n+1)-g(h n)| .
$$

For each positive integer d with $0 \leq d \leq h-1$, we can choose positive integers $Q=Q(d)$ and $R=R(d)$ such that

$$
\begin{equation*}
(h d+1) Q=h^{2} R+1 \tag{16}
\end{equation*}
$$

We have

$$
\begin{aligned}
T(x)= & \sum_{d=0}^{h-1} \sum_{h m+d \leq x}\left|g\left[h^{2} m+h d+1\right]-g[h(h m+d)]\right|= \\
= & \sum_{d=0}^{h-1} \sum_{h m+d \leq x} \left\lvert\, \frac{1}{g(Q)}\left\{g\left[h^{2}(Q m+R)+1\right]-g\left[h^{2}(Q m+R)\right]\right\}+\right. \\
& \left.+\frac{g(h)}{g(Q)}\{g[Q(h m+d)+h R-Q d]-g[Q(h m+d)]\} \right\rvert\,
\end{aligned}
$$

and so $T(x)=o(x)$ if $h R-Q d=0$, because, by using (a), $(h+1,1) \in \mathbf{J}$ and $h \geq 2$ imply that $\left(h^{2}, 1\right) \in \mathbf{J}$. If $h R-Q d \neq 0$, then we obtain from (16) that

$$
0<h R-Q d=(Q-1) / h<Q / h
$$

which, by applying (b) with $q=h+1$, implies that $(Q, h R-Q d) \in \mathbf{J}$. This, with $\left(h^{2}, 1\right) \in \mathbf{J}$ shows that $T(x)=o(x)$, i.e. $(h, 1) \in \mathbf{J}$. This completes the proof of (c).

Now we prove Lemma 1.
As we have seen above, $(A, 1) \in \mathbf{J}$. If $A=1$, then the assertion of Lemma 1 holds. If $A \geq 2$, then by using (c) one can deduce that $(2,1) \in \mathbf{J}$, and so by applying (b) with $q=2$, it follows that $(Q, R) \in \mathbf{J}$ for all integers Q and R which satisfy (12). This completes the proof of Lemma 1.

Lemma 2. Assume that a completely multiplicative function $g(n)$ satisfies the conditions (3) and (4). Then for each positive integer κ, we have

$$
\sum_{n \leq x}\left|[g(n+1)]^{\kappa}-[g(n)]^{\kappa}\right|=o(x) \quad \text { as } \quad x \rightarrow \infty
$$

Proof. We first consider the case $\kappa=1$.
Let $Q \geq 2$ be a fixed positive integer. For each integer $\gamma \geq 0$ let

$$
\mathcal{B}_{\gamma}=\left\{n \in \mathbf{N} \mid Q^{\gamma} \|(n+1)\right\}
$$

and

$$
S_{\gamma}(x):=x^{-1} \sum_{\substack{n \leq x \\ n \in \mathcal{B}_{\gamma}}}|g(n+1)-g(n)| .
$$

By using the conditions (3) and (4), one can get from Lemma 1 that

$$
\begin{equation*}
S_{0}(x)=x^{-1} \sum_{\substack{n \leq x \\ n \in \mathcal{B}_{0}}}|g(n+1)-g(n)|=o(1) \quad \text { as } \quad x \rightarrow \infty \tag{17}
\end{equation*}
$$

Thus, by using (17) and Lemma 1, it follows that

$$
\begin{align*}
S_{\gamma}(x):= & x^{-1} \sum_{\substack{n \leq x \\
n \in \mathcal{B}_{\gamma}}}|g(n+1)-g(n)|= \\
= & x^{-1} \sum_{\substack{m+1 \leq(x+1) / Q^{\gamma} \\
m \in \mathcal{B}_{0}}}\left|g\left(Q^{\gamma}\right) g(m+1)-g\left(Q^{\gamma} m+Q^{\gamma}-1\right)\right|= \\
= & x^{-1} \sum_{\substack{m+1 \leq(x+1) / Q^{\gamma} \\
m \in \mathcal{B}_{0}}} \mid g\left(Q^{\gamma}\right)[g(m+1)-g(m)]- \tag{18}\\
& -\left[g\left(Q^{\gamma} m+Q^{\gamma}-1\right)-g\left(Q^{\gamma} m\right)\right] \mid \\
= & o(1) .
\end{align*}
$$

The relations (17) and (18) together with (3) imply that for each positive integer M, we have

$$
\begin{aligned}
x^{-1} \sum_{n \leq x}|g(n+1)-g(n)| & \leq S_{0}(x)+\sum_{1 \leq j \leq M} S_{j}(x)+x^{-1} \sum_{\substack{n \leq x \\
Q^{M} \mid(n+1)}} 2 \leq \\
& \leq o(M+1)+\frac{2}{Q^{M}}
\end{aligned}
$$

and so

$$
\limsup _{x \rightarrow \infty} x^{-1} \sum_{n \leq x}|g(n+1)-g(n)| \ll Q^{-M}
$$

This with $M \rightarrow \infty$ shows that

$$
x^{-1} \sum_{n \leq x}|g(n+1)-g(n)|=o(1)
$$

which proves Lemma 2 in the case $\kappa=1$.
Now let $\kappa>1$ be an integer. By using the relation

$$
x^{\kappa+1}-y^{\kappa+1}=x\left(x^{\kappa}-y^{\kappa}\right)+y^{\kappa}(x-y)
$$

it is easily shown that

$$
\mathbf{J}(g) \subseteq \mathbf{J}\left(g^{\kappa}\right) \quad(\kappa=1,2, \ldots)
$$

Thus, Lemma 2 is a consequence of the above relation and the fact $(1,1) \in$ $\mathbf{J}(g)$. Lemma 2 is proved.

Lemma 3. Let $f(n)$ be a multiplicative function which satisfies $|f(n)| \leq 1$. Let $1 \leq w_{0} \leq x$. Then there is a real number $t,|t|<(\log x)^{1 / 19}$, so that

$$
\sum_{n \leq x / w} f(n)=w^{-1-i t} \sum_{n \leq x} f(n)+O\left[\frac{x}{w}\left(\frac{\log 2 w_{0}}{\log x}\right)^{1 / 19}\right]
$$

uniformly for $1 \leq w \leq w_{0}$. If f is real-valued, then we may set $t=0$. The implied constant is absolute.

Proof. This is Theorem 1 of Elliott [2].
Proof of the theorem. Assume that a completely multiplicative function $g(n)$ satisfies the conditions (3), (4) and (5) for some positive integers A, B, k and a non-zero complex number C. Let

$$
f(n):=[g(n)]^{k} \quad(n=1,2, \ldots)
$$

It is obvious that $f(n)$ is a completely multiplicative function, $f(n)$ satisfies (3), furthermore by applying Lemma 2 with $\kappa=k$ it follows that $(1,1) \in$ $\mathbf{J}(f)$. This shows that $(Q, R) \in \mathbf{J}(f)$ holds for all positive integers Q and R. Let

$$
S(x):=\sum_{n \leq x} f(n)
$$

Let w_{0} be a sufficiently large real number. For each $x>w_{0}$, by applying Lemma 3 , there is a real number $t(x)$ satisfying $|t(x)| \leq(\log x)^{1 / 19}$ such that for $1 \leq Q \leq w_{0}$ we have

$$
\sum_{m \leq x / Q} f(m)=Q^{-1-i t(x)} S(x)+O\left[\frac{x}{Q}\left(\frac{\log 2 w_{0}}{\log x}\right)^{1 / 19}\right]
$$

From this, we have

$$
\begin{align*}
& \sum_{\substack{n \leq x \\
n \equiv 0(\bmod Q)}} f(n)=f(Q) \sum_{m \leq x / Q} f(m)= \tag{19}\\
= & Q^{-1-i t(x)} f(Q) S(x)+O\left[\frac{x}{Q} f(Q)\left(\frac{\log 2 w_{0}}{\log x}\right)^{1 / 19}\right] .
\end{align*}
$$

By using (19) and the fact $(Q, R) \in \mathbf{J}(f)$ for all integers Q and R, we deduce that

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
n \equiv R(\bmod Q)}} f(n) & =\sum_{\substack{n \leq x \\
n \equiv R(\bmod Q)}}[f(n)-f(n-R)]+\sum_{\substack{m \leq x-R \\
m \equiv 0(\bmod Q)}} f(m)= \\
& =Q^{-1-i t(x)} f(Q) S(x)+O\left[\frac{x}{Q} f(Q)\left(\frac{\log 2 w_{0}}{\log x}\right)^{1 / 19}\right]+o(x)
\end{aligned}
$$

holds for each $R=0, \ldots, Q-1$. Thus by adding the above relations, we get

$$
\begin{equation*}
S(x)=Q^{-i t(x)} f(Q) S(x)+O\left[x f(Q)\left(\frac{\log 2 w_{0}}{\log x}\right)^{1 / 19}\right]+o(Q x) \tag{20}
\end{equation*}
$$

By the condition (5), we can choose $D>0$ and a sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$, $x_{i} \rightarrow \infty$ such that

$$
\left|\frac{S\left(x_{i}\right)}{x_{i}}\right| \geq D>0 \quad \text { as } \quad x_{i} \rightarrow \infty
$$

Then (20) gives

$$
D\left|1-\frac{f(Q)}{Q^{i t\left(x_{i}\right)}}\right| \leq\left|1-\frac{f(Q)}{Q^{i t\left(x_{i}\right)}}\right| \cdot\left|\frac{S\left(x_{i}\right)}{x_{i}}\right|=o(1)
$$

and so

$$
\begin{equation*}
Q^{i t\left(x_{i}\right)} \rightarrow f(Q) \quad \text { as } \quad x_{i} \rightarrow \infty \tag{21}
\end{equation*}
$$

Since (21) holds for all integers Q for which $1 \leq Q \leq w_{0}$, and for each Q we get from (21) that

$$
\begin{equation*}
t\left(x_{i}\right) \rightarrow t \quad \text { as } \quad x_{i} \rightarrow \infty \tag{22}
\end{equation*}
$$

thus (21) and (22) imply

$$
\begin{equation*}
f(Q)=Q^{i t} \tag{23}
\end{equation*}
$$

for all $1 \leq Q \leq w_{0}$. This with $w_{0} \rightarrow \infty$ shows that (23) holds for all positive integers Q.

Since

$$
f(n)=[g(n)]^{k} \quad \text { and } \quad f(n)=n^{i t} \quad(n=1,2, \ldots),
$$

it follows that for each positive integer n there exists a complex number $G(n)$ such that

$$
\begin{equation*}
g(n)=n^{i t / k} \cdot G(n) \tag{24}
\end{equation*}
$$

It is obvious that $G(n)$ is a completely multiplicative function and

$$
[G(n)]^{k}=1 \quad(n=1,2, \ldots)
$$

Let $\tau:=t / k$. By (24) we have

$$
\begin{aligned}
G(A n+B)-G(A n)= & \frac{g(A n+B)-g(A n)}{(A n)^{i \tau}}- \\
& -G(A n+B) \frac{(A n+B)^{i \tau}-(A n)^{i \tau}}{(A n)^{i \tau}}
\end{aligned}
$$

which with (4) implies that

$$
\sum_{n \leq x}|G(A n+B)-G(A n)|=o(x) \quad \text { as } \quad x \rightarrow \infty
$$

By using Lemma 2 with $g(n)$ replaced by $G(n)$, the last relation implies (8). This completes the proof of our theorem.

Acknowledgements. I would like to thank Professor I. Kátai for his valuable help and remarks. In the proof of Lemma 2 I followed ideas due to I. Kátai.

References

[1] P.D.T.A. Elliott, Probabilistic Number Theory I: Mean-value Theorem, Grund. der Math. Wiss. 239, Springer-Verlag, New York, Berlin, 1979.
[2] P.D.T.A. Elliott, Extrapolating the mean-values of multiplicative functions, Indagationes Math. 51 (1989), 409-420.
[3] A. Hildebrand, An Erdős-Wintner theorem for differences of additive functions, Trans. Amer. Math. Soc. 310 (1988), 257-276.
[4] A. Hildebrand, Multiplicative functions at consecutive integers I., Math. Proc. Camb. Phil. Soc. 100 (1986), 229-236.
[5] A. Hildebrand, Multiplicative functions at consecutive integers II, Math. Proc. Camb. Phil. Soc 103 (1988), 389-398.
[6] I. KÁtai, Some problems in number theory, Studia Sci. Math. Hungar. 16 (1981), 289-295.
[7] I. KÁtai, Multiplicative functions with regularity properties VI, Acta Math. Acad. Hungar., (to appear).
[8] J.L. Mauclaire and L. Murata, On the regularity of arthmetic multiplicative functions I, Proc. Japan Acad. Ser. A. Math. Sci. 56 (1980), 438-440.
[9] B.M. Phong, A characterization of some arithmetical multiplicative functions, Acta Math. Acad. Sci. Hungar., (to appear).
[10] B.M. Phong, On a theorem of Kátai-Wirsing, Acta Sci. Math. Szeged, (to appear).

```
BUI MINH PHONG
EÖTVÖS LORÁND UNIVERSITY
COMPUTER CENTER
BOGDÁNFY U. 10/B.
H--1117 BUDAPEST
HUNGARY
```

(Received May 20, 1991)

