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On indecomposable groups and
groups with hypercentral-by-finite proper subgroups

By O. D. ARTEMOVYCH (Kı̈ev)

Abstract. The properties of indecomposable nonperfect groups are investigated.
It is shown that an indecomposable solvable group is a p-group. The characterization
of minimal non-“hypercentral-by-finite” groups are obtained.

0. Introduction

A ZAF -group G is a group which is not hypercentral-by-finite, while
all proper subgroups of G are hypercentral-by-finite. The group con-
structed by Čarin [1] and the groups of Heineken–Mohamed type [2–8]
(i.e. the non-nilpotent groups with all proper subgroups nilpotent and sub-
normal) are examples of ZAF -groups. The class of ZAF -groups contains
the NF -groups (respectively the AF -groups), i.e. the groups which are
minimal non-“nilpotent-by-finite” (respectively minimal non-“abelian-by-
finite”). The AF -groups are independently described by V.V. Belyaev [9]
and B. Bruno [10]. As it is proved in [9] each locally finite AF -group G

is either an indecomposable metabelian group or the Čarin group. After
a while in [11] it was proved that the periodic indecomposable metabelian
groups are related in the some sence to the groups of Heineken–Mohamed
type and (as it is well-known [3–5]) there exist an uncountable family of
pair-wise nonisomorphic p-groups of Heineken–Mohamed type. The NF -
groups are studied in [12–14].
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Recall that a group G is called indecomposable if any two proper
subgroups of G generate a proper subgroup of G, and is called decompos-
able otherwise. The decomposable groups are related to the groups which
have a proper factorization. According to [17] we say that G has a proper
factorization if there are proper subgroups A and B such that G = AB.

Recall also one construction from [9], which is a generalization of the
construction from [1]. Let p and q be distinct primes, Zq the field with
q elements, Zq(α) will indicate the subfield of the algebraic closure of
Zq generated by α. If εi is a primitive pi-th root of 1 (i = 0, 1, 2, . . . ),
put Fi = Zq(εi) and F =

⋃∞
i=0 Fi. Let A be the additive group of F ,

B be the multiplicative group which contains the pi-th roots of 1 where
i = 0, 1, 2, . . . . The rule

bab−1 = bpm · a
where a ∈ A, b ∈ B and bpm ·a is the product of the elements bpm

and a in
the field F , m is some nonnegative integer, defines the action of B on A.
Constructed in this manner the group G = AoB is called a Čarin group.

Throughout this paper p will always denote a prime number, G′, G′′,
. . . will indicate the terms of derived series of G and by Cp∞ stands for the
quasicyclic p-group. For any group G, F (G) means the Fitting subgroup
of G, Φ(G) the Frattini subgroup of G, and Z(G) the center of G.

Most of the standard notation used comes from [18] and [19].

1. In this part we establish some properties of indecomposable groups
which we shall need in the sequel.

The following theorem gives the answer to Question 1 [17] for nonper-
fect groups.

Theorem 1.1. Let G be an infinite nonperfect nonabelian group. The

following are equivalent:

(1) G is an indecomposable group;

(2) G has no proper factorization;

(3) G is countable, the commutator subgroup G′ of G is not properly

supplemented in G and the quotient group G/G′ is a p-quasicyclic

group for some prime p.
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Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). Suppose the group G has no proper factorization, but

G = 〈A, B〉 for some proper subgroups A, B of G. Then since G′A 6= G
and G′B 6= G, we conclude that G = (G′A)(G′B), a contradiction.

(1) ⇒ (3) is immediate (see [11]).
(3) ⇒ (1). Suppose the contrary and let G be a countable group with

not properly supplemented subgroup G′ and G/G′ ' Cp∞ , but G = 〈H, T 〉
for some proper subgroups H, T of G. Then

G = G/G′ = (HG′/G′) (TG′/G′) ' Cp∞ ,

whence we conclude that

G = TG′/G′ and HG′ ≤ G′

in consequence of which G = TG′ = T , a contradiction.

Lemma 1.2. If G is an indecomposable group then [G, G′] = G′.

Indeed, if G is a noncyclic group then this follows from quasicyclity
of quotient group G/G′.

Corollary 1.3. Any nonperfect noncyclic p-group of finite exponent
is decomposable.

Lemma 1.4. An indecomposable periodic solvable group G is a count-
able (i.e. is finite or countable infinite) p-group for some prime p.

Proof. If G is cyclic then the result follows from [11]. Thus, sup-
pose that G is noncyclic group satisfying the conditions of lemma. Then
G/G′ ' Cp∞ for some prime p. If, further, G is not p-group there is a posi-
tive integer m such that the quotient groups G(m)/G(m+1) = P1×Q1 with
the Sylow p-subgroup P1 and a p′-subgroup Q1 and therefore G/G(m+1) =
Q1 o P for some p-subgroup P . We have a contradiction with indecom-
posability of G. It follows that all factors G(i)/G(i+1) of the derived series
of G are p-groups; this completes the proof.

Lemma 1.5. Let G be an indocomposable locally finite group. If every
proper subgroup of G is almost locally solvable, then G is nonsimple.

Proof. Let G be a group satisfies the assumptions. If, further, G is
simple then by Corollary A1 [20] G must be linear. Since the locally finite
simple groups which are linear must be of Lie type (see [21]), the group G
must be decomposable, a contradiction. Hence G is nonsimple and lemma
is proved.
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Lemma 1.6. Let G be an indecomposable group. Then the following

statement are equivalent.

(1) G is nonperfect p-group with every proper subgroup nilpotent;

(2) G is a non-nilpotent group with all subgroups subnormal and the

commutator subgroup G′ of G is nilpotent.

Proof. (1) ⇒ (2). If G is an indecomposable nonperfect group whose
proper subgroups are nilpotent and K is any proper subgroup of G then by
Theorem 1.1 G′K is also a proper subgroup of G. Hence K is a subnormal
subgroup of G.

(2) ⇒ (1). Suppose that G is an indecomposable non-nilpotent group
with all subgroups subnormal and the commutator subgroup G′ of G is
nilpotent. Then G/G′ ' Cp∞ and, further, G is a p-group by Lemma 1.4.
Note that

K/K ∩G′ ' G′K/G′

is an abelian group of finite exponent for every proper subgroup K of G

and so by Proposition 1.2 [22] the subgroups G′K and K are nilpotent.

Relative to Corollary 1 [2] we argue

Lemma 1.7. Any torsion-free (and consequently non-periodic) group

G with every proper subgroup nilpotent (respectively hypercentral) is also

nilpotent (respectively hypercentral).

Proof. Since nilpotence and hypercentrality are properties of count-
able character [19, p. 355], we have that G with a noncountable group G

with all subgroups nilpotent (respectively hypercentral) is nilpotent (re-
spectively hypercentral). Therefore suppose that G is countable. If G is
torsion-free then by Lemma 2 [23] G coincides with the isolator

IG(K) = {x ∈ G | ∃n ∈ N : xn ∈ K}

of some proper subgroup K of G and so (see [24]) G is nilpotent (respec-
tively hypercentral).

Suppose now that G is not torsion-free. Then as stated above the
quotient group G = G/τG of G (here τG is the periodic part of G) is
nilpotent (respectively hypercentral). Further, if G is indecomposable then
G/G

′ ' Cp∞ and consequently the isolator IG(G
′
) of G

′
coinsides with G,

a contradiction. Thus, G = 〈A,B〉 for some proper subgroups A, B of G.
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Moreover, the image A of A (respectively B of B) in G is contained in
a proper normal subgroup A1 (respectively B1) of G. Then if A1 and
B1 are the inverse images of A1 and B1 in G, respectively, G = A1B1 is
a product of two nilpotent (respectively hypercentral) normal subgroups
and consequently G is nilpotent (respectively hypercentral).

We consider the question on linearity of indecomposable groups. In
wiev of well-known theorem of Zassenhaus [19, Th. 15.1.3] any group of
matrices (over field) with subnormal (respectively hypercentral) proper
subgroups is solvable. From the results of Mal’cev [25], Kargapo-

lov [26–27] and Theorem 8 [23], Lemmas 1.4, 1.6, 1.7 we conclude the
following

Corollary 1.8. Let G be an indecomposable locally solvable periodic

group of matrices (over field). Then G is either the cyclic p-group Cpn

or Cp∞ .

Thus, neither the groups of Heineken–Mohamed type nor the minimal
non-hypercentral groups are not linear (over field).

Proposition 1.9. Let G be a countable group with the hypercentral

commutator subgroup G′ and the quasicyclic quotient group G/G′. Then

the group G that satisfies the normalizer condition is an indecomposable

p-group.

Proof. Without restricting generality, suppose G is a metabelian
group. Suppose the assertion is false and G is decomposable. Then clearly
G = G′V for some proper subgroup V of G, whence

G = G/G′ ∩ V = G
′ o V .

It is easy to see that V ' Cp∞ , 1 6= NG′(V ) ≤ Z(G) and every proper
homomorphic image of G has a nontrivial centre. This means [19, Exam-
ple 12.2.2] that G is hypercentral. But then by Lemma 1.18 [18, p. 63] the
group G is abelian, a contradiction. Thus G is indecomposable. Further,
it is easy to see that G is a p-group.

Corollary 1.10. The quotient group G/G′ of a nonabelian countable

hypercentral group G is not quasicyclic.
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Proposition 1.11. If the commutator subgroup G′ of nonabelian inde-
composable p-group G is abelian (respectively nilpotent of finite exponent)
then G satisfies the normalizer condition.

Proof. Pick an arbitrary proper subgroup K of G. Clearly without
loss generality we may assume that G′ * K and K * G′. Obviously G′K
is a proper subgroup of G and there is an element a of G such that G′K =
G′〈a〉. Then the subgroup G′〈a〉 is hypercentral (see [18, Proposition 1.7]
and [28], respectively) and NG(K) ≥ NG′K(K) 6= K, as desired.

The following lemma is obvious.

Lemma 1.12. Let G be a group in which every proper subgroup sat-
isfies the normalizer condition. Then the one of the following statements
holds.

(1) G satisfies the normalizer condition.

(2) G is a finitely generated group with the simple quotient group G/N
for some normal subgroup N of G.

2. In this section we establish some properties of groups without a proper
factorization (see [17, Question 1]).

It is well-known that there are finite nonsolvable groups without prop-
er factorization. The following lemma is due to [29].

Lemma 2.1. Let G be a nonabelian finite group. The following state-
ments are equivalent.

(1) G has no proper factorization.

(2) F (G) = Φ(G) = Z(G) and the quotient group G/Z(G) is a simple
group without proper factorization.

Proof is immediate.

Lemma 2.2. Let G be a nonabelian finitely generated group. If G is
a decomposable group without proper factorization then G has a simple
quotient group. Further, if Φ(G) = 1 then G is simple.

Proof. Suppose G = 〈A,B〉 for some proper subgroups A and B
of G. Without restricting generality, let A and B be maximal subgroups
of G. Then it is easy to see that H / G implies H ≤ A ∩ B. If F is a
subgroup of G generated by all normal subgroups of G then the quotient
group G/F is simple, and this completes the proof.

Obviously, any non-finitely generated group with a proper subgroup
of finite index has a proper factorization. Then we state the following
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Corollary 2.3. Let G be a non-finitely generated group. If G contains

a nontrivial normal finite subgroup then either G has a proper factorization

or the centre Z(G) of G is nontrivial.

Corollary 2.4. (i) An abelian group G has no proper factorization if

and only if either G is a cyclic p-group or G is a quasicyclic p-group.

(ii) A nonperfect nonabelian finite group has a proper factorization.

We shall prove the following theorem.

Theorem 2.5. An indecomposable solvable group G is a locally finite

p-group.

For the proof of 2.5 we need the following lemma.

Lemma 2.6. Let G be a locally finite group and M 6= {0} be a ZG-

module which is torsion-free as a group. Then for any finite set π of primes,

there is a ZG-submodule N of M such that the quotient module M/N is

periodic as a group and, for all p in π, contains an element of order p.

Proof of 2.6 is analogous with proof of Lemma 2.3 [14]. We notice
only that the group ring QG is a (Von Neymann) regular ring by Theo-
rem 1.5 [30, p. 68].

Proof of Theorem 2.5. Suppose that G is a solvable group with
derived lenght n + 1, the quotient group G/G(n) is periodic and G(n)

has an element of infinite order. Let T be the torsion subgroup of G(n).
Put H = G/T . Obviously H/H ′ ' Cp∞ for some prime p. Now H(n)

and H/H(n) satisfy the hypotheses of Lemma 2.6 (with M = H(n) and
G = H/H(n)); hence there exist N normal in H, N ≤ H(n) such that the
quotient group H(n)/N is periodic and contains the elements of order r

and q for two distinct primes r and q different from p. Clearly, H/N is an
indecomposable periodic solvable p-group by Lemma 1.4, a contradiction.
The proof of Theorem 2.5 is complete.

Corollary 2.7. Any non-periodic solvable group has a proper factor-

ization.
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3. This section contains several characterizations of ZAF -groups.

Remark 3.1. An abelian-by-(periodic abelian) R-group is abelian.

Remark 3.2. If G is a ZAF -group then the one of the following holds:

(1) G is a finitely generated group with a normal subgroup N such that
the quotient group G/N is simple.

(2) G is a locally graded group.

Indeed, if each homomorphic image of a finitely generated ZAF -group
G is nonsimple then the group G is hypercentral-by-finite, a contradiction.
On the other hand, if G is not finitely generated then it is readily verified
that G is locally nilpotent-by-finite.

Lemma 3.3. Let G be a ZAF -group. Then each normal subgroup

of G is an extension of a hypercentral group, which is normal in G, by a

finite abelian group. If, further, the group G is nonperfect and indecom-

posable then every subgroup of G is hypercentral-by-(finite abelian).

Proof. Pick an arbitrary normal subgroup N of G. It is now easy
to verify that there is a hypercentral subgroup H of N that is a normal
subgroup of G with |N : H| < ∞. Put G = G/H. Then N = N/H is a
finite normal subgroup of G and consequently

|G : CG(N)| = |NG(N) : CG(N)| < ∞.

Further, since G contains no proper subgroup of finite index, we have
G = CG(N) and N is abelian.

Suppose now that the group G is indecomposable and nonperfect.
Then G′K is a proper subgroup of G for each subgroup K of G and
consequently G′K contains a hypercentral subgroup F of finite index which
is normal in G. Moreover,

K/K ∩ F ' KF/F ≤ G′K/F

and as stated above G′K/F is abelian; this completes the proof.
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Lemma 3.4. If G is a nonperfect ZAF -group then the commutator
subgroup G′ of G is hypercentral and G/G′ ' Cp∞ .

Proof. Since G is a nonperfect ZAF -group, the quotient group G/G′

is obviously indecomposable and so G/G′ ' Cp∞ (see [11]).
Suppose now that the commutator subgroup G′ of G is non-hypercen-

tral. Then G′ contains a subgroup F of finite index which is normal
in G. Put G = G/F . Clearly, |G′| < ∞ and G/G′ ' Cp∞ , whence
by Lemma 1.15 [18] G is abelian, a contradiction.

Corollary 3.5. Any nonperfect ZAF − p-group G is indecomposable.

Indeed, it is easy to see that the quotient group G/G′′ is an AF -group
and hence (see [9] or [10]) it is indecomposable.

Corollary 3.6. Any nonperfect ZAF − p-group G is a minimal non-
hypercentral group if and only if G satisfies the normalizer condition.

Proof. Part “if ” follows from Remark 3.2 and Lemma 1.12.
“Only if ”. Let K be an arbitrary proper subgroup of G. Then K is

hypercentral by Lemma 3.3 and Lemma 2 [31, p. 396], as desired.

Lemma 3.7. Let G = K o Q be a ZAF -group, Q ' Cp∞ and K a
hypercentral subgroup. Then Z(K) = K ′ = Φ(K) and K is a q-group for
a prime q different from p.

Proof. Let A be a arbitrary proper G-invariant subgroup of K.
Then AQ contains a normal hypercentral subgroup F of finite index and
as follows from |Q : Q ∩ F | < ∞ we conclude Q ≤ F and AQ = AF is
hypercentral. Thus, Q ≤ CG(A). Since G is nonabelian, the subgroup T
generated by all proper G-invariant subgroups of K is a proper G-invariant
subgroup of K.

Suppose, first, that a subgroup K is abelian. If, further, K is nonpe-
riodic then without loss of generality we can assume that K is torsion-free.
Since by Theorem of Zăıtsev [32] K/T is an abelian q-group of exponent q
for some prime q. From [a, t] = b with some 1 6= b, a ∈ K and t ∈ Q
we conclude that 1 = [aq, t] = bq, a contradiction. Hence K is a peri-
odic group and so K is an abelian q-group of exponent q. Consequently
Φ(K) = 1. Moreover, Corollary 3.5 implies that p and q are distinct. Since
K = [K,Q] × CK(Q), we have CK(Q) = 1 and so T = 1. Therefore K is
a minimal G-invariant subgroup of G.

Suppose next that K is nonabelian. Since obviously K ′ ≤ T and
as proved before K/K ′ is minimal G-invariant abelian subgroup of expo-
nent q, we have T = K ′ = Φ(K) = Z(K). The proof is completed.

The following lemma is due to [14].
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Lemma 3.8. Any nonperfect ZAF -group G is periodic.

Proof. Let G be a ZAF -group. Clearly G/G′ ' Cp∞ . Suppose that
it is not periodic; then G′ is not periodic. By Lemma 3.4 G′ is hypercentral
and application of [19, 12.2.6] shows that G′/G′′ is not periodic. Put
H = G/G′′ and let T/G′′ be the torsion part of H ′. Obviously, T is
properly contained in G′. Thus K = G/T is an AF -group and so by
Theorem 2.1 [14] K is periodic, a contradiction. Thus G must be periodic,
and the proof is completed.

Theorem 3.9. Let G be a decomposable nonperfect group. Then the

following statements are equivalent.

(1) G is a ZAF -group.

(2) G = MoQ, Q ' Cq∞ , M is a p-group, p and q are the distinct primes,

Z(M) = M ′ = Φ(M), Q acts trivially on the Frattini subgroup Φ(M)
and irreducibly on M/Φ(M), and, further, G/Φ(M) is a Čarin group.

(3) G is a NF -group.

Proof. The implications (2) ⇒ (3) and (3) ⇒ (1) are almost obvi-
ous. Therefore we prove only (1) ⇒ (3). Since by assumption a nonperfect
ZAF -group G is decomposable, there are two nontrivial proper subgroups
U and V of G such that G = 〈U, V 〉. Then by Lemma 3.4, for example,
G = G′V . It follows by Corollary 3.5 that G is not p-group. Since V

contains a hypercentral subgroup K of finite index then |G : G′K| < ∞
and G = G′K. By Lemma 3.8 G (and so K) is periodic and by Lemma 3.4
there is a p-subgroup K1 of K such that G = G′K1. If is easy to see that
G′ is a r-group for some prime r. An application of Lemma 3.7 completes
the proof.

Remark 3.10. The Theorem 1 of [2] implies that if p and q are the
primes from Theorem 3.9 then q 6= 2 and the order of p modulo q is an
even number.

Remark 3.11. An example of the decomposable nonperfect NF -group
(and consequently ZAF -group) which is not a AF -group is constructed
in [12].
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Lemma 3.12. Any indecomposable nonperfect ZAF -group G is a p-
group.

Proof. By Lemma 3.4 G/G′ ' Cp∞ . Put G = G/G′′. It is easy to
see that G is an indecomposable AF -group and so it is a p-group. Therefore
a hypercentral subgroup G′ (and so G) is a p-group, too.

Theorem 3.13. Let G be a nonperfect group. Then the following
statements are equivalent.

(1) G is an indecomposable ZAF -group.

(2) G is a countable p-group and has an infinite normal subgroup N not
supplemented nontrivially in G with G/N ' Cp∞ , Np 6= N and the
quotient group G/G′′ is a minimal non-hypercentral group.

Proof. (1) ⇒ (2). By Lemma 3.4 G′ is a hypercentral subgroup and
G/G′ ' Cp∞ . In view of indecomposability of G the commutator subgroup
G′ is not supplemented nontrivially in G and G is a p-group. From [9] and
[11] it follows that (G′)p 6= G′. An application of the Proposition 1.7 [18]
completes the proof of this part.

(2) ⇒ (1). By Theorem 1.1 the group G is indecomposable. If K is
an arbitrary proper subgroup of G then G′K is a proper subgroup of G.
Obviously G′K (and as consequence K) is a hypercentral-by-finite, but G
is not almost hypercentral. This completes the proof of Theorem.

Note that, it follows from what is proved before that, in particular, ev-
ery nonperfect minimal non-nilpotent group is a countable solvable p-group
of Heineken–Mohamed type.

4. In this section we are concerned with the perfect ZAF -groups.

The next result is due to [14, Proposition 3.1].

Proposition 4.1. A perfect ZAF -group G must be countable hyper-
abelian p-group. Moreover, G is the join of an ascending sequence of
hypercentral normal subgroups and all proper subgroups of G are hyper-
central and ascendant (hence G satisfies the normalizer condition).

This runs along the same lines as proof of Proposition 3.1 [14], re-
plasing “nilpotent” by “hypercentral” and “subnormal” by “ascendant”.
Moreover, by Lemma 1.5 G do not have infinite simple images. Since hy-
percentrality is a property of countable character [19, p. 355] then G is
countable. Finilly, from Lemma 1.7 follows that G is p-group.

From Proposition 4.1 it follows that a non-“locally nilpotent” ZAF -
group is not perfect. Whether or not there are perfect ZAF -groups re-
mains an open question.
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