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On associative algebras which are sum of two
almost commutative subalgebras

By A. PETRAVCHUK (Kiev)

Abstract. The following theorem is proved: if an associative algebra A over an
arbitrary field can be decomposed into a sum A = B + C with almost commutative
subalgebras B and C (an algebra is called here almost commutative if it has a commu-
tative ideal of finite codimension) then the algebra A possesses a nilpotent ideal I such
that the quotient algebra A/I is almost commutative.

1. Introduction

In the paper of K.I. Beidar and A.V. Mikhalev [4] the following
problem was stated: whether a sum R = A+B of two associative PI-rings
A and B is a PI-ring? There are positive answers to this question for some
classes of rings A and B which are near to commutative [4], [5] (every sum
of two commutative rings is a PI-ring [2]).

Any associative algebra over an arbitrary field which has a commuta-
tive ideal of finite codimension (we will call a such algebra almost commu-
tative) is a PI-algebra and the question about the structure of a sum of
two such algebras is of interest. In this paper, the following result is ob-
tained: every sum of two almost commutative algebras contains a nilpotent
ideal such that the quotient algebra on this ideal is almost commutative, in
particular, every such sum is a PI-algebra. Similar question in group the-
ory i.e. the question about structure of the product of two almost abelian
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(finite-by-abelian) groups is open although it was proved in some cases
that this product is almost soluble (see [7], [6] and others).

All considered algebras and rings are associative, the ground field F is
arbitrary. The centre of an algebra (or a ring) A is denoted by Z(A). For
F -subspaces X and Y of an algebra A, as usual, [X, Y ] = {xy−yx | x ∈ X,
y ∈ Y }; for a subset S of A and for a subalgebra B of A we will denote by
Annl

B(S) and Annr
B(S) the left and corresponding the right annulator of

S in the subalgebra B.
The following statement is the main result of this paper:

Theorem. Let A be an associative algebra over an arbitrary field

which is decomposable into a sum A = B + C, where B and C are almost

commutative subalgebras of A. Then the algebra A contains a nilpotent

ideal I such that the quotient algebra A/I is almost commutative.

Previously, we prove a series of lemmas, some these results can be of
interest out of this work. In particular, the Proposition 2 which is used in
the proof of the Theorem is an extension (for algebras over a field) of the
result of O.H. Kegel about sum of two nilpotent associative rings [8].

Lemma 1 (See for example [9]). Let A be an associative algebra over

an arbitrary field and B a subalgebra of A with dim A/B < ∞. Then B

contains an ideal I of algebra A such that dim A/I < ∞.

Lemma 2. Let I be an one-sided or two-sided commutative ideal of a

ring R. Then R has an ideal J such that J2 = 0 and (I +J)/J ⊆ Z(R/J).

Proof. Let I be for example a right ideal of the ring R and i, i1 ∈ I,
r ∈ R any elements. Then

i1(ir − ri) = i(i1r)− (i1r)i = 0

because i1r ∈ I and [I, I] = 0. Hence I[I,R] = 0. Let T = Annr
R(I).

Clearly, T is an ideal of the ring R and [I, R] ⊆ T . For any element t ∈ T

it holds (ir − ri)t = irt = 0 (because rt ∈ T , IT = 0) and therefore
[I,R]T = 0. Now let J = Annl

T (T ). It is obvious that J is an ideal of the
ring R and J2 = 0. As [I, R] ⊆ J , we have (I +J)/J ⊆ Z(R/J). The case
of the left ideal can be considered analogously.
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Lemma 3. Let A be an associative algebra and I an ideal of the

algebra A. If J is an ideal of the subalgebra I then it holds:

(1) if subalgebra J is nilpotent then J lies in a nilpotent ideal JI of

the algebra A and JI ⊆ I;

(2) if subalgebra J is finite dimensional then J lies in an ideal JI of

the algebra A such that JI ⊆ I and JI contains a nilpotent ideal T of the

algebra A with dim JI/T < ∞.

Proof. (1) See for example [1, Lemma 1.1.5].
(2) Let JI be the smallest ideal of the algebra A which contains J and

lies in the ideal I of A. Since J3
I ⊆ J (see [1, Lemma 1.1.5]), J3

I is a finite
dimensional ideal of the algebra A. If J3

I = 0 then we set T = JI and the
statement (2) is proved. Let J3

I 6= 0 and T = Annl
JI

(J3
I ). Clearly, T is an

ideal of the algebra A and (T ∩J3
I )2 = 0. Further, T/(T ∩J3

I ) ' T +J3
I /J3

I

is a nilpotent algebra as a subalgebra of the nilpotent algebra JI/J3
I and

therefore the ideal T is nilpotent. Since dim J3
I < ∞, we have, clearly,

dim JI/T < ∞. The statement (2) and the Lemma are proved.

Lemma 4. Let R be an associative ring and I any commutative ideal

of R. If the quotient ring R/I is commutative or nilpotent then the ring R

contains some nilpotent ideal with the commutative quotient ring.

Proof. We may restrict ourselves by Lemma 2 only to the case I ⊆
Z(R). First, let the quotient ring R/I be commutative. For any elements
i ∈ I, r1, r2 ∈ R we have

ir1r2 − r2ir1 = 0 = i[r1, r2]

(because ir1 ∈ I ⊆ Z(R)) and therefore I[R, R] = 0. Let J denote the an-
nulator of the ideal I in I. Then J is an ideal of the ring R with J2 = 0 and
[R, R] ⊆ J (because [R, R] ⊆ I). Thus the quotient ring R/J is commu-
tative and and the proof is complete in the case of commutative quotient
ring R/I. Now let the quotient ring R/I be nilpotent. If (R/I)2=0 then
this case follows from the above considered case. Let the statement of
Lemma be true for an arbitrary ring R with (R/I)n = 0, n ≥ 2, prove it
for a ring R with condition (R/I)n+1 = 0. Denote N = R2 + I. Clearly,
N/I is an ideal of the quotient ring R/I and (N/I)n = 0. By inductive
assumption the subring N contains some nilpotent ideal T such that the
quotient ring N/T is commutative. By Lemma 3 T lies in some nilpotent
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ideal S of the ring R with S ⊆ N . Then the quotient ring R = R/S

contains a commutative ideal N = N/S such that (R/N)2 = 0. As was
proved above the ring R contains some nilpotent ideal J = J/S such that
R/J is commutative. It is obvious that J is a nilpotent ideal of the ring R

and the quotient ring R/J is commutative. The proof is complete.

Lemma 5. Let A be an almost commutative associative algebra and

I a commutative ideal of A with dimA/I < ∞. Then:

(1) [A,A]I lies in some nilpotent ideal of the algebra A;

(2) for some nilpotent ideal J the quotient algebra A/J contains a

finite dimensional ideal T/J such that the quotient algebra A/T is com-

mutative.

Proof. (1) If I ⊆ Z(A) then we have for any elements a1, a2 ∈ A

and i ∈ I

(a1a2 − a2a1)i = (a1i)a2 − a2(a1i) = 0,

because a1i ∈ I ⊆ Z(A) and therefore [A, A]I = 0. Now if I * Z(A)
then going to the quotient algebra A/J on some nilpotent ideal J with
I ⊆ Z(A/J) (it exists by Lemma 2) we get [A,A]I ⊆ J .

(2) We can assume, without loss of generality, by Lemma 2 that I ⊆
Z(R). Clearly, T = AnnA(I) is an ideal of the algebra A and by part 1
of this Lemma T ⊇ [A,A]. Let denote J = T ∩ I. Obviously, J2 = 0 and
T/J is a finite dimensional ideal of the algebra A/J . At that the quotient
algebra (A/J)/(T/J) ' A/T is commutative.

For convenience and shortness we introduce the following:

Definition 1. An associative algebra A over an arbitrary field will be
called an NCF-algebra if it contains a nilpotent ideal with almost commu-
tative quotient algebra.

An ideal of an associative algebra will be called an NCF-ideal if it is
an NCF-algebra.

In particular, every nilpotent, commutative and finite dimensional
algebras are NCF-algebras by this definition.

Proposition 1. The following statements hold:

(1) every subalgebra and every quotient algebra of an NCF-algebra

are NCF-algebras;
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(2) if A and B are NCF-algebras then the direct product A×B is an
NCF-algebra;

(3) every extension of an NCF-algebra by other NCF-algebra is an
NCF-algebra.

Proof. The statements (1) and (2) of the Proposition are obvious.
Prove the statement (3), i.e. show that an algebra A is an NCF-algebra if it
contains an NCF-ideal B such that A/B is also an NCF-algebra. Consider
some cases previously:

(a) The quotient algebra A/B is finite dimensional.
Let I be a nilpotent ideal of the NCF-algebra B such that B/I is

almost commutative. By part 1 of Lemma 3 I lies in some nilpotent ideal
of the algebra A and the latest lies in B. Then we can assume, without
loss of generality, I = 0 i.e. B is commutative. Since dim A/B < ∞,
the algebra A is almost commutative by Lemma 1 and therefore it is an
NCF-algebra.

(b) The ideal B is finite dimensional.
The right annulator C = Annr

A(B) is an ideal of the algebra A, and
since C/(B ∩ C) ' C + B/B is an NCF-algebra, the ideal C is an NCF-
algebra in view of equality (B ∩ C)2 = 0. It follows from the inequality
dim A/C < ∞ and part (a) of this proof that A is an NCF-algebra.

(c) The ideal B is commutative.
In the NCF-algebra A/B there exists a nilpotent ideal N/B such that

quotient algebra (A/B)/(N/B) ' A/N is almost commutative. With-
out loss of generality one can assume in view of Lemma 4 and part 1 of
Lemma 3 that the ideal N is commutative. Denote by S/N any commu-
tative ideal of finite codimension in algebra A/N . By Lemma 4 and part 1
of Lemma 3 we can assume also S is commutative. Since dim A/S < ∞,
we obtain that A is an NCF-algebra.

Now prove the statement (3) in general case. Let N be any nilpotent
ideal of the subalgebra B such that the quotient algebra B/N is almost
commutative. By part 1 of Lemma 3 one can assume without loss of gen-
erality N = 0 i.e. the ideal B is almost commutative. Analogously, by
part 2 of Lemma 5 and part 1 of Lemma 3 we can consider the subalge-
bra B has a finite dimensional ideal T with commutative quotient algebra
B/T . Similarly, one can assume the subalgebra T of A lies in some finite
dimensional ideal TB of algebra A such that TB ⊆ B and B/TB is com-
mutative. Then A/TB is an NCF-algebra in view of part (c) of this proof.
Since dim TB < ∞, the algebra A is an NCF-algebra by part (b) of this
proof. The proof is complete.

It follows from Lemma 1 and Proposition 1 the next statement:
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Corollary 1. If an associative algebra A has an NCF-subalgebra B

and dim A/B < ∞ then A is an NCF-algebra.

Lemma 6 ([2], [3, Th. 2.2]). Let R be an associative ring which is

decomposable into a sum R = A + B of two commutative subrings A

and B. Then R has an ideal I with I2 = 0 and commutative quotient

ring R/I.

Lemma 7. Let A be an associative algebra over an arbitrary field F ,

B and C commutative subalgebras of A and let I be an ideal of A which

lies in the F -subspace B + C. Then I is an NCF-ideal.

Proof. Let IB = {b ∈ B | there exists i ∈ I of the form i = b + c,
c ∈ C} i.e. IB is a projection of the ideal I into subalgebra B. Analogously,
define the projection IC of I on subalgebra C. Obviously, it holds for
elements i1, i2 ∈ I, i1 = b1 + c1, i2 = b2 + c2, where bi ∈ B, ci ∈ C, i = 1, 2
the equality

i1i2 = (b1 + c1)(b2 + c2) = i1c2 + c1i2 + b1b2 − c1c2.

Thus b1b2 − c1c2 ∈ I, and hence IB , IC are subalgebras of B and cor-
responding C. It is easy to see that IB + IC is a subalgebra of A, and
since the subalgebras IB and IC are both commutative, IB + IC is an
NCF-algebra by Lemma 6. Then the ideal I which lies in IB + IC is an
NCF-algebra. The proof is complete.

For convenience we give the following definition:

Definition 2. An associative algebra A over an arbitrary field F de-
composable into a sum A = B+C of two almost commutative subalgebras
B and C will be called a minimal BM -counter-example if A satisfies the
following conditions:

(1) A is not an NCF-algebra;
(2) the subalgebras B and C have commutative ideals B0 and cor-

responding C0 such that dim B/B0 + dim C/C0 < ∞ and the number
dim A/(B0 + C0) is the smallest;

(3) the algebra A has not nonzero ideals which lie in the F -subspace
B0 + C0 from the condition (2).
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Lemma 8. Let A = B +C be a minimal BM -counter-example. Then

for every nonzero ideal I of A the quotient algebra A/I is an NCF-algebra.

Besides, the algebra A has not nonzero NCF-ideals.

Proof. Let dim A/(B0 + C0) = n where B0 and C0 are the commu-
tative ideals of subalgebra B and corresponding C from Definition 2. If
n = 0 then the algebra A is a sum of two commutative subalgebras B0

and C0 and hence it is an NCF-algebra by Lemma 6. This contradicts to
the choice of the algebra A and therefore n ≥ 1. Let I be a nonzero ideal
of the algebra A such that A/I is not an NCF-algebra. Denote

A = A + I/I, B = B + I/I, C = C + I/I,

B0 = B0 + I/I, C0 = C0 + I/I.

Let m = dim A/(B0 + C0). By the Definition 2 it holds I 6⊆ B0 + C0 and
hence m < n. Denote by T the sum of all ideals of the algebra A which
lie in the F -subspace B0 + C0. The ideal T is an NCF-algebra by Lemma
7 and therefore the quotient algebra A/T is not an NCF-algebra in view
of the choice of A and Proposition 1.

Since the F -subspace (B0 + C0)/T does not contain nonzero ideals
of the algebra A/T and its codimension in A/T is equal to m, m < n,
it contradicts to the choice of A. The obtained contradiction proves that
A/I is an NCF-algebra.

Now let J be a nonzero NCF-ideal of the algebra A. As has just
been proved A/J is an NCF-algebra, and then A is an NCF-algebra by
Proposition 1. The latest is impossible and hence A has not nonzero NCF-
ideals. The proof is complete.

Lemma 9. Let R be an associative ring which is decomposable into

a sum R = A + B of two subrings A and B and let R0 be a subring of R

with R0 ⊇ B. If R0 contains an ideal A0 of the subring A then R0 contains

some ideal J of the ring R such that J ⊇ A0.

Proof. Consider the subring J = A0 + BA0 + A0B + BA0B of the
ring R. Clearly, J ⊆ R0 and A0 ⊆ J . As A0 is an ideal of the subring A,
J obviously, is an ideal of the ring R.
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Lemma 10. Let A = B+C be a minimal BM -counter-example where

subalgebras B and C satisfy all conditions of the Definition 2 and let

A1 = B +C1 (C1 ⊆ C) be a subalgebra of A. If A1 is not an NCF-algebra

then for some NCF-ideal J of subalgebra A1 the quotient algebra A1/J is

a minimal BM -counter-example.

Proof. Let B0 ⊆ B and C0 ⊆ C be commutative ideals of the
sublagebra B and corresponding C from the Definition 2 and let n =
dim A/(B0 + C0). Denote by C ′1 the subalgebra in C which is generated
by C1 and C ∩B. Clearly,

B + C1 = B + C ′1, C ′1 ∩B = C ∩B,

and therefore one can assume, without loss of generality, that C ′1 = C1

and hence C1 ∩ B = C ∩ B. It follows from the latest equality that
C0∩A1 = C0∩C1. Indeed, let x ∈ C0∩A1. Then x = c0, c0 ∈ C0, x = b+c1

for some c1 ∈ C1, b ∈ B. Hence b = c0− c1 ∈ B ∩C = B ∩C1 and x ∈ C1.
But then x ∈ C0 ∩ C1 and C ∩ A1 ⊆ C0 ∩ C1, because the element x has
been chosen in any way. The inclusion C0 ∩ C1 ⊆ C0 ∩A1 is obvious.

Since A1 ∩ (B0 + C0) ⊇ B0, it holds A1 ∩ (B0 + C0) = B0 + (C0 ∩A1)
and therefore as proved above

A1 ∩ (B0 + C0) = B0 + (C0 ∩ C1).

Now denote by J the sum of all ideals of the algebra A1 which lie in
B0 + (C0 ∩ C1). By Lemma 7 J is an NCF-ideal of the algebra A1 and
A1/J is not an NCF-algebra (because A1 is not an NCF-algebra). It is
easy to see that A/J is a minimal BM -counter-example (in particular,
dim A1/((B0 + C0) ∩A1) = n). The proof is complete.

Lemma 11. If I is an one-sided finite dimensional ideal of an asso-

ciative algebra A then A has a nilpotent ideal J such that (I + J)/J lies

in some finite dimensional (two-sided) ideal of the quotient algebra A/J .

Proof. Let I be for example a right ideal of the algebra A and
S = Annr

A(I). Clearly, S is an ideal of A and dim A/S < ∞. Further,
T = Annl

A(S) is also an ideal of A, T ⊇ I and J = T ∩ S is an ideal
of the algebra A with J2 = 0. It is easy to see that dim T/J < ∞ and
I+J/J ⊆ T/J . The case of a left ideal of A can be considered analogously.
The Lemma is proved.
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Lemma 12. Let A be an associative algebra over an arbitrary field F

and a is an element in A such that dim A/ Annr
A(a) < ∞ (dimA/ Annl

A

(a) < ∞). Then the element a belongs to a finite dimensional right (cor-

responding left) ideal of the algebra A.

Proof. Denote by C the right annulator Annr
A(a) and let dim A/C <

∞. Choose a complete system of representatives {h1, . . . , hn} of the con-
gruence classes of A by C. We will show that F -subspace
I = 〈a, ah1, . . . , ahn〉 is a right ideal of the algebra A. If g is any ele-
ment in A then g is of the form g = c +

∑n
i=1 αihi where c ∈ C, αi ∈ F ,

i = 1, . . . , n. Hence

ag = a

(
c +

n∑

i=1

αihi

)
=

n∑

i=1

αiahi ∈ I,

because ac = 0. Further, denote hig = ci +
∑n

j=1 βijhj where ci ∈ C,
βij ∈ F , i, j = 1, . . . , n. Then we obtain

(ahi)g = a(hig) = a

(
ci +

n∑

j=1

βijhj

)
=

n∑

j=1

βijahj ∈ I.

Therefore I is a right ideal of the algebra A, a ∈ I and dim I < ∞.
Analogously, one can consider the case dim A/ Annl

A(a) < ∞. The proof
is complete.

Let A be a nilpotent algebra, A 6= 0. The number n = n(A) such
that An = 0, An−1 6= 0 will be called the index of nilpotency of A and
denoted by n(A). The index of nilpotency of the zero algebra we assume
to be equal 1.

An associative algebra A will be called almost nilpotent if it has a
nilpotent ideal of finite codimension. By n̄(A) will be denoted the smallest
nilpotency index of all nilpotent ideals of A of finite codimension in A.

Lemma 13. If I is a right (left) almost nilpotent ideal of an algebra A

then A has a nilpotent ideal J such that I + J/J is a finite dimensional

right (corresponding left) ideal of A.

Proof. Let I be, for example, a right ideal. Let B be any nilpotent
ideal of the subalgebra I with dim I/B < ∞ such that n(B) = n̄(I). If
n̄(I) = 1 then dim I < ∞, that is B = 0, and Lemma is proved. First
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consider the case dim I/ Annr
I(g) < ∞ for every element g ∈ I. Let the

statement of Lemma be true for algebras with n̄(I) < k, prove it for
algebras with n̄(I) = k. Choose a complete system of representatives
{g1, . . . , gm} of the congruence classes of I by B. Using Lemma 12 one
can easy show that there exists a finite dimensional right ideal N of the
algebra I with {g1, . . . , gm} ⊆ N . Obviously, I = B + N . Then T =
Annr

B(N) is a nilpotent ideal of the subalgebra I and dim I/T < ∞.
Analogously, I0 = Annr

I(I) is a nilpotent right ideal of the algebra A and
I0 ⊇ T ∩Bk−1. Then as is well known (see for example [1, Lemma 1.1.2])
I0 lies in some nilpotent ideal S of the algebra A. At that the quotient
algebra A = A/S has the right almost nilpotent ideal I = I + S/S. Since
T ∩ Bk−1 ⊆ S then the ideal T = T + S/S of the subalgebra I has
the nilpotency index ≤ k − 1 and therefore n̄(I) ≤ k − 1. By inductive
assumption there exists in A some nilpotent ideal J = J/S such that
I +J/J is a finite dimensional right ideal of the algebra A/J . Then J is a
nilpotent ideal of the algebra A and I + J/J is a finite dimensional right
ideal of the quotient algebra A/J .

Now let I1 = {i ∈ I | dim I/ Annr
I(i) < ∞}. It is easy to see that

I1 is a right ideal of the algebra A, I1 ∩ B is a nilpotent ideal in I1 and
dim I1/(I1 ∩ B) < ∞. Besides, Bk−1 ⊆ I1, because Bk−1B = 0 and
dim I/B < ∞. As has just been proved there exists in A a nilpotent
ideal U such that I1 + U/U is a finite dimensional right ideal of the al-
gebra A/U . One can assume without loss of generality (by Lemma 11)
that the algebra A has a finite dimensional ideal M such that M ⊇ Bk−1.
By inductive assumption (induction on n(I))the quotient algebra A/M

contains a nilpotent ideal V/M such that (I + V/M)/(V/M) is a finite di-
mensional right ideal of the algebra (A/M)/(V/M). Let V1 = Annr

V (M).
It is easy to see that V1 is a nilpotent ideal of the algebra A and I +V1/V1

is a finite dimensional right ideal of the algebra A/V1.
The case of the left ideal I can be considered analogously. The Lemma

is proved.

The statements below follow from Lemmas 11 and 13.

Corollary 2. Let A be an associative algebra and I a right (left) al-

most nilpotent ideal of the algebra A. Then I lies in some almost nilpotent

ideal of the algebra A.
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Corollary 3. If an associative algebra A has an almost nilpotent

ideal I with almost nilpotent quotient algebra A/I then the algebra A

is almost nilpotent.

Proof. One can assume, without loss of generality, that dim I < ∞
(in view of Lemma 3). Let J/I be a nilpotent ideal of the quotient algebra
A/I such that dim A/J < ∞ and let C = Annr

J(I). Obviously, C is an
ideal of the algebra A and dim J/C < ∞ (and hence dim A/C < ∞). Since
(C ∩ I)2 = 0 and C/(C ∩ I) ' C + I/I is a nilpotent algebra then the
ideal C is nilpotent. The proof is complete.

Proposition 2. If an associative algebra A over an arbitrary field is

decomposable into a sum A = B +C with almost nilpotent subalgebras B

and C of A then the algebra A is almost nilpotent.

Proof. Let the statement of the Proposition be false. Choose among
all counter-examples to the Proposition an algebra A = B + C with the
smallest sum n̄(B) + n̄(C). Clearly, n̄(B) ≥ 2 and n̄(C) ≥ 2 (if, for
example, n̄(B) = 1 then dim B < ∞ and therefore the algebra A is almost
nilpotent in contradiction to the our assumption). Denote by B0 and
C0 some nilpotent ideals of the subalgebra B and corresponding of the
subalgebra C such that dim B/B0 + dim C/C0 < ∞ and n(B0) = n̄(B),
n(C0) = n̄(C). Let I = B

n̄(B)−1
0 . It is easy to see that IB0 = B0I = 0

and A0 = B + IC is a subalgebra from A of the form A0 = B + C1 where
C1 = C ∩A0. Note that B0 is a right nilpotent ideal of the subalgebra A0.
Then the right ideal B0 lies as is well known in some (two-sided) nilpotent
ideal S of the subalgebra A0. The almost nilpotent subalgebra C1 +S/S is
of finite codimension in A0/S and by Lemma 1 the quotient algebra A0/S

is almost nilpotent. Then the algebra A0 is almost nilpotent.
It is eeasy to see that I + IC is a right ideal of the algebra A, and

since I + IC ⊆ A0, the subalgebra I + IC is almost nilpotent. Further,
I + IC lies by Corollary 2 in some almost nilpotent ideal T of the algebra
A. The quotient algebra A = A/T is decomposable into a sum A = B +C

where B = B + T/T, C = C + T/T . Since I ⊆ T , we have n̄(B) < n̄(B)
and therefore the quotient algebra A/T is almost nilpotent by choice of
the algebra A. In view of Corollary 3 the algebra A is almost nilpotent. It
contradicts to the choice of A and the proof is complete.
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Lemma 14. Let A be an associative algebra without nonzero NCF-

ideals decomposable into a sum A = B +C of subalgebras B and C which

contain commutative ideals B0 ⊆ B and C0 ⊆ C such that dim B/B0 +
dim C/C0 < ∞. If A1 = B + B0C is an NCF-subalgebra of A then the

subalgebra C1 = C ∩A1 is almost nilpotent.

Proof. Since B0 is an ideal of subalgebra B, the subspaces B0C

and A1 are obvius subalgebras of A. Let g = b + c be any element in
the F -subspace B0C ∩ (B0 + C0) where b ∈ B0, c ∈ C0. It is easy to see
that C0c = cC0 is a two-sided ideal of the algebra C and cC0 lies in the
subalgebra A1 = B + B0C = B + C1 Then there exists by Lemma 9 an
ideal S of algebra A such that cC0 ⊆ S and S ⊆ A1. Let A1 be an NCF-
subalgebra. Then S is an NCF-ideal of the algebra A and by conditions of
Lemma S = 0. Hence cC0 = C0c = 0, that is, c ∈ AnnC0(C0). In view of
choice of the element g = b+ c this means (B0 +B0C)∩C0 ⊆ AnnC0(C0).
Further, it is easy to see that dim C1/(A1 ∩C0) < ∞ because dim C/C0 <

∞, and since dim B/B0 < ∞, we have

dim C1/((B0 + B0C) ∩ C0) < ∞.

Obviously, (AnnC0(C0))2 = 0, hence ((B0 + B0C) ∩ C0)2 = 0 and there-
fore C1 is an almost nilpotent subalgebra of the algebra C. The proof is
complete.

Lemma 15. Let A = B+C be a minimal BM -counter-example where

subalgebras B and C satisfy conditions of Definition 2. Then both subal-

gebras B and C are not almost nilpotent.

Proof. Let the statement of Lemma be false. Then there exist min-
imal BM -counter-examples of the form A = B + C such that one of the
subalgebras B or C is almost nilpotent (by Proposition 2 both subalgebras
B and C can not be almost nilpotent simultaneously). Choose among all
such counter-examples an algebra A = B + C with almost nilpotent sub-
algebra B which has the smallest number n = n̄(B). Let B′

0 and C0 be
commutative ideals of finite codimension of the algebra B and correspond-
ing C which satisfy conditions of Definition 2. Take a nilpotent ideal N of
subalgebra B with dim B/N < ∞ and n(N) = n̄(B) and set B0 = B′

0∩N .
Obviously, B0 is a commutative nilpotent ideal of finite codimension in B

and n(B0) = n̄(B). It is easy to see that A1 = B + B0C is a subalgebra
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of A. Show that A1 is an NCF-algebra. Denote I = (B0)n̄(B)−1. Then I

is a right nilpotent ideal of the subalgebra A1 and hence I lies in certain
nilpotent ideal S of A1. The quotient algebra A1/S is decomposable into
a sum

A1/S = (B + S)/S + (B0C + S)/S

and B
n̄(B)−2
0 +S/S is a right nilpotent ideal in A1/S. Therefore B

n̄(B)−2
0 +

S/S lies in some nilpotent ideal S1/S of the algebra A1/S. Repeating
this considering one can show that B0 lies in some nilpotent ideal T of
the algebra A1. Since dim B/B0 < ∞, the quotient algebra A1/T is an
NCF-algebra by Corollary 1 and hence A1 is an NCF-algebra. Obviously,
A1 = B + C1 where C1 = C ∩ A1. The subalgebra C1 is almost nilpotent
(see Lemma 14) and therefore the subalgebra A1 is almost nilpotent by
Proposition 2 as a sum of two almost nilpotent subalgebras B and C1.
Then the right ideal B0 + B0C of the algebra A is almost nilpotent and
lies by Corollary 2 in some almost nilpotent ideal T1 of the algebra A. But
T1 = 0 by Lemma 8 and hence B0 = 0. It follows from this dim A/C < ∞
and A is an NCF-algebra in view of Corollary 1. This contradicts to the
choice of algebra A. The proof is complete.

Lemma 16. Let A = B + C be a minimal BM -counter-example, let

B0 and C0 be commutative ideals of the subalgebras B and corresponding

C from Definition 2. Then B + B0C and B + CB0 are subalgebras of A

and at least one of these subalgebras is not an NCF-algebra.

Proof. It is easy to see that A1 = B + B0C and A2 = B + CB0

are subalgebras of A because B0 is an ideal of the subalgebra B. One
can immediately check up that B0C, CB0 and A0 = B + B0C + CB0 +
CB2

0C are also subalgebras of the algebra A. Suppose the Lemma is false
and both subalgebras A1 and A2 are NCF-algebras. Obviously, it holds
A1 = B + C1, A2 = B + C2 where C1 = C ∩ A1 and C2 = C ∩ A2.
Denote Ni = Ci ∩ AnnC0(C0), i = 1, 2. Repeating the considerations
from the proof of Lemma 14 one can show that dim Ci/Ni < ∞, i = 1, 2.
Obviously, Ni is an ideal of Ci, N

2
i = 0, i = 1, 2. It is easy to see that

A0 = B + C3 where C3 = C ∩ A0. Show that C3 is almost nilpotent.
Since A0 = A1 + A2 + A1A2, we have A0 = B + C1 + C2 + C1C2. It
follows from this equality that C3 = C1 +C2 +C1C2. Really, the inclusion
C1 +C2 +C1C2 ⊆ C3 is obvious. Now let c ∈ C3 = C∩A0 be any element.
Then c = b + x1 + y1 +

∑k
i=2 xiyi where xi ∈ C1, yi ∈ C2, i = 1, . . . , k.
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Then b ∈ C and hence b ∈ C∩B. Since C∩B ⊆ C1 then c ∈ C1+C2+C1C2

and therefore C3 ⊆ C1 + C2 + C1C2, because the element c was chosen in
any way. Thus C3 = C1 + C2 + C1C2.

Choose a complete system of representatives {x1, . . . , xm} of the con-
gruence classes of C1 by N1 and analogous system {y1, . . . , yn} of C2

by N2. Then

N3 = N1 + N2 +
m∑

i=1

xiN2 +
n∑

j=1

yjN1 ⊆ AnnC0(C0),

and obviously dimC3/N3 < ∞. Since N2
3 = 0, the subalgebra C3 of A0 is

almost nilpotent.
Show that A0 = B + C3 is not an NCF-subalgebra. Really, let A0 be

conversely an NCF-algebra. Then J = B2
0 + CB2

0 + B2
0C + CB2

0C is an
ideal of the algebra A which lies in A0 and hence J is an NCF-ideal. By the
conditions of the present Lemma and by Lemma 8 J = 0 and hence B2

0 = 0.
As a sum of two almost nilpotent subalgebras B and C3 the subalgebra
A0 is almost nilpotent by Proposition 2. But then B0 + B0C(⊆ A0) is an
almost nilpotent right ideal of the algebra A. By Corollary 2 B0+B0C lies
in some almost nilpotent ideal of the algebra A. In view of conditions of
this Lemma and Lemma 8 the latest ideal equals zero and hence B0 = 0.
Then obviously dim A/C < ∞ and A is an NCF-algebra by Corollary 1.
This contradicts to the conditions of Lemma and hence A0 = B + C3

is not an NCF-algebra. By Lemma 10 the quotient algebra A0/J0 is a
minimal BM -counter-example for a some NCF-ideal J0. On other hand
A0/J0 = (B + J0)/J0 + (C3 + J0)/J0 where the subalgebra C3 + J0/J0 is
almost nilpotent and therefore A0/J0 is not an BM -counter-example by
Lemma 15. The obtained contradiction proves the statement of Lemma.

Proof of the Theorem. Let the statement of the Theorem be false.
Choose among all counter-examples to the Theorem a such associative
algebra A = B + C over a field F which is not NCF-algebra and its F -
subspace B0 + C0 is of the smallest codimension in A where B0 and C0

are commutative ideals of subalgebras B and corresponding C. Denote by
J0 the sum of all ideals of the algebra A which lie in B0 + C0. Then J0 is
an NCF-ideal by Lemma 7 and A/J0 is obviously a BM -counter-example.
Thus one can assume, without loss of generality, that J = 0 and A is a
minimal BM -counter-example.
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Note that A1 = B + B0C and A2 = B + CB0 are subalgebras of A,
and by Lemma 16 at least one of these subalgebras is not an NCF-algebra.
Let A1, for example, be not an NCF-algebra. Then the quotient algebra
A1/J1 for some NCF-ideal J1 of A1 is a minimal BM -counter-example by
Lemma 10. Denote I1 = AnnB0(B0). Obviously, I1 is a right nilpotent
ideal of the subalgebra A1 = B+B0C. Then I1 lies in some nilpotent ideal
S1 of this algebra, and since the quotient algebra A1/J1 has not nonzero
NCF-ideals (see Lemma 8), S1 ⊆ J1 and hence I1 ⊆ J1. We have [B0, B] ⊆
B0 (B0 is a commutative ideal in B) and repeating the consideration from
the proof of Lemma 2 one can show that [B0, B] ⊆ AnnB0(B0) = I1.
But then A1/J1 is a sum of almost commutative subalgebra C1 + J1/J1

and finite dimensional over its center subalgebra B + J1/J1. Therefore we
can assume, without loss of generality, that in the initial minimal BM -
counter-example A = B + C holds the inclusion B0 ⊆ Z(B) (otherwise we
can replace A by A1/J1).

Now consider the right ideal D0 = AnnB(B0) of the subalgebra A1 =
B + B0C (which is not an NCF-algebra by our choice). It is easy to see
that T0 = D0 + A1D0 is an ideal of the algebra A1 and T0 ⊆ Annl

A1
(B0).

Further, denote I0 = Annr
A1

(T0). Obviously, I0 is an ideal of the subalge-
bra A1, I0 ⊇ B0 and (I0 ∩ T0)2 = 0. The quotient algebra A1/(I0 ∩ T0) is
not an NCF-algebra, because in the contrary case the algebra A1 were also
an NCF-algebra (in view of nilpotency of the ideal I0 ∩ T0). The latest is
impossible. The quotient algebra A1/I0 contains an almost commutative
subalgebra C1 + I0/I0 of finite codimension in A1/I0 (because I0 ⊇ B0)
and therefore by Corollary 1 A1/I0 is an NCF-algebra. Then the quotient
algebra A1 = A1/T0 is not an NCF-algebra, because in the contrary case
the algebra A1/(I0 ∩ T0) were also an NCF-algebra in view of embedding
A1/(I0 ∩ T0) into the product (A1/I0) × (A1/T0) and by Proposition 1.
Note that [B, B] ⊆ D0 ⊆ T0. Really, we have for any elements b1, b2 ∈ B

and b0 ∈ B0

(b1b2 − b2b1)b0 = b1b2b0 − b2b1b0 = b1(b2b0)− (b2b0)b1 = 0

because b2b0 ∈ B0 ⊆ Z(B). Hence the quotient algebra A1 = A1/T0 is a
sum of the commutative subalgebra B = B + T0/T0 and almost commu-
tative subalgebra C1 = C1 + T0/T0 where C1 = C ∩ A1. It easy to see
that certain quotient algebra A1/S1 is a minimal BM -counter-example
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for some NCF-ideal S1 from A1. We can assume, without loss of general-
ity, that the subalgebra B in original BM -counter-example A = B + C is
commutative. Repeating the above considerations in respect to one of the
subalgebras C + C0B or C + BC0 we can show that there exist minimal
BM -counter-examples of the form A = B + C with commutative subalge-
bras B and C. It is impossible in view of [2] (see Lemma 6). The obtained
contradiction proves the Theorem.

Remark. Let A = B + C be the associative algebra from the main
theorem and B0 ⊆ B, C0 ⊆ C be some commutative ideals of B and re-
spectively C of finite codimensions p = dim B/B0, q = dim C/C0. By this
theorem the algebra A contains a nilpotent ideal I with almost commu-
tative quotient algebra A/I. Let K/I be any commutative ideal of A/I
of finite codimension. Then using the main theorem and Lemma 6 one
can show that there exist two functions f(x, y) and g(x, y) such that the
nilpotency index n(I) ≤ f(p, q) and dim A/K ≤ g(p, q).

The author is grateful to the referee of this paper for his outpointing
at the existence of the estimations from the Remark.
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