Solutions of linear recursive systems

By BÉLA ZAY*(Eger)

Peter R. J. Asveld [1], [2], furthermore Marjorie BicknellJohnson and Gerald Bergum [3] investigated sequences determined by initial values and linear recursive systems. The Problem H-351 of the Fibonacci Quarterly, proposed by V. E. Hoggatt, Jr. [4], considers a similar question: Determine the sequences $U=\left\{U_{n}\right\}_{n=1}^{\infty}, V=\left\{V_{n}\right\}_{n=1}^{\infty}$ with $U_{1}=V_{1}=F_{1}=F_{2}=1$ and

$$
\begin{gather*}
U_{n+1}-U_{n}-V_{n}-F_{n+1}=0, \quad-U_{n+1}+V_{n+1}-V_{n}=0, \\
F_{n+2}-F_{n+1}-F_{n}=0, \quad \text { for any } n \geq 1 . \tag{1}
\end{gather*}
$$

The purpose of this paper is to investigate a generalization of these problems.

For a given integer $r \geq 1$ let $X^{(j)}=\left\{x_{n}^{(j)}\right\}_{n=0}^{\infty}(1 \leq j \leq r)$ be sequences of real numbers with initial terms $x_{0}^{(j)}, x_{1}^{(j)}, \ldots, x_{m_{j}-1}^{(j)}(1 \leq j \leq$ $r)$ and let $c_{i, j, t}\left(1 \leq i, j \leq r ; 0 \leq t \leq m_{j}\right)$ be fixed real numbers. Suppose that the sequences satisfy the equation system

$$
\begin{align*}
& \sum_{t=0}^{m_{1}} c_{1,1, t} x_{n+t}^{(1)}+\sum_{t=0}^{m_{2}} c_{1,2, t} x_{n+t}^{(2)}+\cdots+\sum_{t=0}^{m_{r}} c_{1, r, t} x_{n+t}^{(r)}=0 \\
& \sum_{t=0}^{m_{1}} c_{2,1, t} x_{n+t}^{(1)}+\sum_{t=0}^{m_{2}} c_{2,2, t} x_{n+t}^{(2)}+\cdots+\sum_{t=0}^{m_{r}} c_{2, r, t} x_{n+t}^{(r)}=0 \tag{2}\\
& \quad \vdots \\
& \sum_{t=0}^{m_{1}} c_{r, 1, t} x_{n+t}^{(1)}+\sum_{t=0}^{m_{2}} c_{r, 2, t} x_{n+t}^{(2)}+\cdots+\sum_{t=0}^{m_{r}} c_{r, r, t} x_{n+t}^{(r)}=0
\end{align*}
$$

[^0]for any natural number n. We assume that
\[

$$
\begin{equation*}
\operatorname{det}\left(c_{i, j, m_{j}}\right) \neq 0 \tag{3}
\end{equation*}
$$

\]

where $\operatorname{det}\left(c_{i, j, m_{j}}\right)$ is the determinant of the $r \times r$ matrix with entries $c_{i, j, m_{j}}(0 \leq i, j \leq r)$. By (2) and (3) the sequences $X^{(j)}$ are uniquely determined since the initial terms are given. We shall show that these sequences also satisfy a linear recurrence relation.

Let M be the set of operators $A=A\left(a_{0}, a_{1}, \ldots, a_{m}\right)$,
$B=B\left(b_{0}, b_{1}, \ldots, b_{k}\right), \ldots$, defined on the set of sequences of real numbers $X=\left\{X_{n}\right\}_{n=0}^{\infty}, Y=\left\{Y_{n}\right\}_{n=0}^{\infty}, \ldots$, so that

$$
\begin{aligned}
& A(X)=X^{\prime}=\left\{x_{n}^{\prime}\right\}_{n=0}^{\infty}=\left\{\sum_{i=0}^{m} a_{i} x_{n+i}\right\}_{n=0}^{\infty} \\
& B(X)=X^{\prime \prime}=\left\{x_{n}^{\prime \prime}\right\}_{n=0}^{\infty}=\left\{\sum_{i=0}^{k} b_{i} x_{n+i}\right\}_{n=0}^{\infty}
\end{aligned}
$$

where $a_{0}, a_{1}, \ldots, a_{m} ; b_{0}, b_{1}, \ldots, b_{k}, \ldots$ are fixed real numbers. Let $X+Y=$ $\left\{x_{n}+y_{n}\right\}_{n=0}^{\infty}$ and $a X=\left\{a x_{n}\right\}_{n=0}^{\infty}$ for a real number a.

It can easily be checked that

$$
\begin{equation*}
A(a X+b Y)=a A(X)+b A(Y) \tag{4}
\end{equation*}
$$

for any operator A of M and for any real numbers a and b, that is each element of M is a linear operator. We define the addition and multiplication of operators by

$$
\begin{equation*}
(A+B)(X)=A(X)+B(X) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(A \cdot B)(X)=A(B(X)) \tag{6}
\end{equation*}
$$

for any sequence X of real numbers.
Let T be the mapping of the set M of operators onto the set $R[x]$ of polynomials with real coefficients defined by

$$
T(A)=\sum_{i=0}^{m} a_{i} x^{i}
$$

where the operator A is determined by the real numbers $a_{0}, a_{1}, \ldots, a_{m}$. The following auxiliary result will be proved at the and of the paper.

Lemma. The mapping T is an isomorphism between the structures $(M,+, \cdot)$ and $(R[x],+, \cdot)$.

Using the notation of operators, equation system (2) can be written in the form

$$
\begin{align*}
& C_{1,1}\left(x^{(1)}\right)+C_{1,2}\left(x^{(2)}\right)+\cdots+C_{1, r}\left(x^{(r)}\right)=0^{*} \\
& C_{2,1}\left(x^{(1)}\right)+C_{2,2}\left(x^{(2)}\right)+\cdots+C_{2, r}\left(x^{(r)}\right)=0^{*} \tag{7}\\
& \vdots \\
& C_{r, 1}\left(x^{(1)}\right)+C_{r, 2}\left(x^{(2)}\right)+\cdots+C_{r, r}\left(x^{(r)}\right)=0^{*}
\end{align*}
$$

where $C_{i, j} \in M(1 \leq i, j \leq r)$ is an operator determined by the constants $c_{i, j, 1}, c_{i, j, 2}, \ldots, c_{i, j, m_{j}}$ and 0^{*} is the sequence of zeros.

Let Z be the zero element of the $\operatorname{ring}(M,+, \cdot)$, i.e. $Z(X)=0^{*}$ for any sequence X (Z is determined by zeros).

Using the above notation our main result is as follows:
Theorem. Let $X^{(j)}(1 \leq j \leq r)$ be sequences determined uniquely by their initial terms and by (2) and (3). Then these sequences satisfy the recursive relation

$$
\begin{equation*}
\left(\operatorname{det}\left(C_{i, k}\right)\right)\left(X^{(j)}\right)=0^{*} \quad(1 \leq j \leq r) \tag{8}
\end{equation*}
$$

furthermore

$$
\begin{equation*}
\left(\operatorname{det}\left(C_{i, k}\right)\right) \neq Z, \tag{9}
\end{equation*}
$$

where $\operatorname{det}\left(C_{i, k}\right) \in M$ is the determinant of the $r \times r$ matrix with entries $C_{i, k} \in M,(1 \leq i, k \leq r)$.

Before proving the Theorem we show some consequences and applications of our result.

If $A=A\left(a_{0}, \ldots, a_{m}\right)$ is an operator and $A(X)=0^{*}$ for a sequence X of real numbers, then X is a linear recursive sequence of order m since

$$
a_{m} X_{n+m}+a_{m-1} X_{n+m-1}+\cdots+a_{0} X_{n}=0
$$

for any $n \geq 0$, furthermore the characteristic polynomial of this sequence is

$$
a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}=T(A),
$$

where T is the isomorphism defined in the Lemma. So, as a consequence of our theorem we have

Corollary. Let $X^{(j)}(1 \leq j \leq r)$ be sequences such as in the Theorem. Then these are linear recursive sequences of order maximum

$$
m=m_{1}+m_{2}+\cdots+m_{r}
$$

and their common characteristic polynomial is

$$
T\left(\operatorname{det}\left(C_{i, j}\right)\right)=\operatorname{det}\left(T\left(C_{i, j}\right)\right) .
$$

As an application of the theorem we show the way of solving the system (1). From $U_{1}=V_{1}=F_{1}=F_{2}=1$, by (1), the initial terms of the sequences are $U_{0}=V_{0}=F_{0}=0, U_{1}=1, U_{2}=3, U_{3}=9 ; V_{1}=1, V_{2}=4$, $V_{3}=13$ and $F_{1}=F_{2}=1, F_{3}=2$. In our case $r=3, X^{(1)}=U, X^{(2)}=V$, $X^{(3)}=F ; m_{1}=m_{2}=1, m_{3}=2$ and

$$
\operatorname{det}\left(c_{i, j, m_{j}}\right)=\left|\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=1 \neq 0
$$

The operators $C_{i, j}(1 \leq i, j \leq 3)$ are $C_{1,1}(-1,1), C_{1,2}(-1,0), C_{1,3}(0,-1,0)$, $C_{2,1}(0,-1), C_{2,2}(-1,-1), C_{2,3}(0,0,0)=C_{3,1}(0,0)=C_{3,2}(0,0)=0^{*}$, $C_{3,3}(-1,-1,1)$ and so, by the Corollary, U,V,F are linear recursive sequences of order maximum 4 with characteristic polynomial

$$
\begin{aligned}
f(x) & =\operatorname{det}\left(T\left(C_{i, j}\right)\right)=\left|\begin{array}{ccc}
x-1 & -1 & -1 \\
-x & x-1 & 0 \\
0 & 0 & x^{2}-x-1
\end{array}\right|= \\
& =\left(x^{2}-3 x+1\right) \cdot\left(x^{2}-x-1\right)
\end{aligned}
$$

The roots of $f(x)$ are

$$
\alpha_{1}=\frac{1+\sqrt{5}}{2}, \alpha_{2}=\frac{1-\sqrt{5}}{2}, \alpha_{3}=\frac{3+\sqrt{5}}{2}, \text { and } \alpha_{4}=\frac{3-\sqrt{5}}{2}
$$

and so, as it is well-known, the terms of the sequences can be expressed as

$$
x_{n}^{(j)}=a_{j} \alpha_{1}^{n}+b_{j} \alpha_{2}^{n}+c_{j} \alpha_{3}^{n}+d_{j} \alpha_{4}^{n} \quad(j=1,2,3)
$$

where $a_{j}, b_{j}, c_{j}, d_{j}$ are fixed real numbers, depending on the initial terms, and they can be calculated by solving a linear equation system generated for $n=0,1,2$ and 3 . This way for the sequence V we get

$$
a_{2}=-\frac{5+2 \sqrt{5}}{10}, b_{2}=\frac{2 \sqrt{5}-5}{10}, c_{2}=\frac{2 \sqrt{5}+5}{10}, d_{2}=\frac{5-2 \sqrt{5}}{10}
$$

and for the sequence F we obtain

$$
a_{3}=\frac{\sqrt{5}}{5}, \quad b_{3}=-\frac{\sqrt{5}}{5}, \quad c_{3}=d_{3}=0
$$

Thus F satisfies also a second order linear recursive relation with characteristic polynomial

$$
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)=x^{2}-x-1
$$

hence F is really the Fibonacci sequence.
Another example shows a common generalization of the problems investigated in [1], [2] and [3].

Let $X^{(1)}$ be a sequence of real numbers defined by the initial terms $X_{0}^{(1)}, X_{1}^{(1)}, \ldots, X_{m-1}^{(1)}$ and by the formula

$$
\begin{equation*}
\sum_{i=0}^{m} a_{i} x_{n+i}^{(1)}+\sum_{i=1}^{k} q_{i}(n) \alpha_{i}^{n}=0 \quad(n \geq 0) \tag{10}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{m}\left(a_{m} \neq 0\right)$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are fixed real numbers, and $q_{i}(x)$ are given polynomials with real coefficients of degree $\left(r_{i}-1\right) \geq 0$ for $i=1,2, \ldots, k$. It is known that the sequence

$$
X^{(2)}=\left\{x_{n}^{(2)}\right\}_{n=0}^{\infty}=\left\{\sum_{i=1}^{k} q_{i}(n) \alpha_{i}^{n}\right\}_{n=0}^{\infty}
$$

is a linear recursive sequence of order $r_{1}+r_{2}+\cdots+r_{k}$ with characteristic polynomial

$$
q(x)=\prod_{i=1}^{k}\left(x-\alpha_{i}\right)^{r_{i}}
$$

So there is an operator $B \in M$ such that $B\left(X^{(2)}\right)=0^{*}$ and $T(B)=q(x)$. Let $A=A\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ be an operator of M and let E and Z be the unit operator, i.e. $E=E(1)$, and the zero operator, respectively. Then (10) can be written in the form

$$
\begin{aligned}
& A\left(X^{(1)}\right)+E\left(X^{(2)}\right)=0^{*} \\
& Z\left(X^{(1)}\right)+B\left(X^{(2)}\right)=0^{*}
\end{aligned}
$$

From this, by the Theorem and the Corollary, it follows that $X^{(1)}$ is a linear recursive sequence with characteristic polynomial

$$
T\left(\left|\begin{array}{ll}
A & E \\
Z & B
\end{array}\right|\right)=T(A \cdot B)=T(A) \cdot T(B)=\left(\sum_{i=0}^{m} a_{i} x^{i}\right) \cdot \prod_{j=1}^{k}\left(x-\alpha_{j}\right)^{r_{j}}
$$

Now we prove the Lemma and the Theorem.

Proof of the Lemma. Let X be a sequence of real numbers and let $A=A\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ and $B=B\left(b_{0}, b_{1}, \ldots, b_{k}\right)$ be operators of the set M. Then

$$
A(X)=\left\{\sum_{i=0}^{m} a_{i} x_{n+i}\right\}_{n=0}^{\infty} \text { and } B(X)=\left\{\sum_{i=0}^{k} b_{i} x_{n+i}\right\}_{n=0}^{\infty}
$$

We can suppose that $m \geq k$ and $b_{i}=0$ if $k<i \leq m$. By (5) and (6) we get

$$
\begin{aligned}
(A+B)(X) & =\left\{\sum_{i=0}^{m} a_{i} x_{n+i}\right\}_{n=0}^{\infty}+\left\{\sum_{i=0}^{k} b_{i} x_{n+i}\right\}_{n=0}^{\infty}= \\
& =\left\{\sum_{i=0}^{m}\left(a_{i}+b_{i}\right) x_{n+i}\right\}_{n=0}^{\infty}
\end{aligned}
$$

and

$$
\begin{aligned}
(A \cdot B)(X) & =A\left(\left\{\sum_{t=0}^{k} b_{t} x_{n+t}\right\}_{n=0}^{\infty}\right)=\left\{\sum_{j=0}^{m} a_{j} \sum_{t=0}^{k} b_{t} x_{(n+t)+j}\right\}_{n=0}^{\infty}= \\
& =\left\{\sum_{i=0}^{m+k} \sum_{j+t=i} a_{j} \cdot b_{t} \cdot x_{n+i}\right\}_{n=0}^{\infty}
\end{aligned}
$$

Combining the above equations with the definition of the mapping T, we obtain

$$
T(A+B)=\sum_{i=0}^{m}\left(a_{i}+b_{i}\right) x^{i}=\sum_{i=0}^{m} a_{i} x^{i}+\sum_{i=0}^{k} b_{i} x^{i}=T(A)+T(B)
$$

and

$$
T(A \cdot B)=\sum_{i=0}^{m+k} \sum_{j+t=i} a_{j} b_{t} x^{i}=\left(\sum_{j=0}^{m} a_{j} x^{j}\right) \cdot\left(\sum_{t=0}^{k} b_{j} x^{t}\right)=T(A) \cdot T(B)
$$

follow which proves the Lemma since T is obviously a bijective mapping.
Proof of the Theorem. The Lemma implies that $(M,+, \cdot)$ is an Euclidean ring and the usual properties of determinants are valid if the entries are operators of M.

Let $A^{i, j}$ be the determinant of the $(r-1) \times(r-1)$ matrix that we get from $C_{i, k}(1 \leq i, k \leq r)$ by omitting the $i^{t h}$ row and the $j^{\text {th }}$ column. Further, let

$$
A_{i, j}=(-E)^{i+j} A^{i, j} \quad(1 \leq i, j \leq r)
$$

where E is the unit element of M. Similarly as in the proof of Cramer's rule, from (7) with some $j(1 \leq j \leq r)$

$$
\begin{aligned}
& A_{1, j}\left(C_{1,1}\left(X^{(1)}\right)+C_{1,2}\left(X^{(2)}\right)+\cdots+C_{1, r}\left(X^{(r)}\right)\right)=A_{1, j}\left(0^{*}\right) \\
& A_{2, j}\left(C_{2,1}\left(X^{(1)}\right)+C_{2,2}\left(X^{(2)}\right)+\cdots+C_{2, r}\left(X^{(r)}\right)\right)=A_{2, j}\left(0^{*}\right)
\end{aligned}
$$

$$
A_{r, j}\left(C_{r, 1}\left(X^{(1)}\right)+C_{r, 2}\left(X^{(2)}\right)+\cdots+C_{r, r}\left(X^{(r)}\right)\right)=A_{r, j}\left(0^{*}\right)
$$

follows. From this system, using (4) and the fact that the multiplication in the ring of operators is commutative, we get

$$
\begin{aligned}
& C_{1,1} A_{1, j}\left(X^{(1)}\right)+C_{1,2} A_{1, j}\left(X^{(2)}\right)+\cdots+C_{1, r} A_{1, j}\left(X^{(r)}\right)=0^{*} \\
& C_{2,1} A_{2, j}\left(X^{(1)}\right)+C_{2,2} A_{2, j}\left(X^{(2)}\right)+\cdots+C_{2, r} A_{2, j}\left(X^{(r)}\right)=0^{*} \\
& \vdots \\
& C_{r, 1} A_{r, j}\left(X^{(1)}\right)+C_{r, 2} A_{2, j}\left(X^{(2)}\right)+\cdots+C_{r, r} A_{r, j}\left(X^{(r)}\right)=0^{*}
\end{aligned}
$$

since $A\left(0^{*}\right)=0^{*}$ for any $A \in M$. Adding the equations of this system by (5) we obtain the equation

$$
\begin{equation*}
\sum_{t=1}^{r}\left(C_{1, t} A_{1, j}+C_{2, t} A_{2, j}+\cdots+C_{r, t} A_{r, j}\right)\left(X^{(t)}\right)=0^{*} \tag{11}
\end{equation*}
$$

But

$$
\sum_{i=1}^{r} C_{i, t} A_{i, j}= \begin{cases}Z & \text { if } t \neq j \\ \operatorname{det}\left(C_{i, j}\right) & \text { if } t=j\end{cases}
$$

and so (11) implies (8).
By the Lemma (9) is equivalent to the inequality

$$
\begin{equation*}
\operatorname{det}\left(T\left(C_{i, j}\right)\right) \neq 0 \tag{12}
\end{equation*}
$$

where 0 is the identically zero polynomial. But the leading coefficient of the polynomial $\operatorname{det}\left(T\left(C_{i, j}\right)\right)$ is equal to $\operatorname{det}\left(c_{i, j, m_{j}}\right)$ and so (12) follows from (3). This completes the proof of the theorem.

References

[1] Peter R. J. Asveld, A Family of Fibonacci-Like sequences, Fibonacci Quart. 25 (1987), 81-83.
[2] Peter R. J. Asveld, Another Family of Fibonacci-Like sequences, Fibonacci Quart. 25 (1987), 361-364.
[3] Marjorie Bicknell-Johnson and Gerald E. Bergum, The generalized Fibonacci numbers, Applications of Fibonacci numbers (ed. by A.N. Philipou et al), Kluwer Acad, Publ. (1988), 193-205.
[4] V.E. Hoggatt, Fibonacci Quart., Problem H-351 21, 1983, 75.

```
BÉLA ZAY
```

COLLEGE KÁROLY ESZTERHÁZY
3301 EGER
HUNGARY
(Received June 5, 1991)

[^0]: *Research (partially) supported by Hungarian National Foundation for Scientific Research grant No. 1641.

