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On quasi-slant submanifolds
of an almost Hermitian manifold

By FERNANDO ETAYO (Santander)

Abstract. Quasi-slant submanifolds of an almost Hermitian manifold are defined
in this paper as a generalization of slant submanifolds introduced by B. Y. Chen. We
prove their basic properties, obtain sufficient conditions for such a manifold to be a
slant submanifold and show examples.

B. Y. Chen [C] defined a slant submanifold M of an almost Hermitian
manifold (M, J, g) as a real submanifold verifying that the Wirtinger angle,
i.e., the angle between J(X) and TxM , is constant for every vector X ∈
TxM and x ∈ M . Geometry of slant submanifolds has been studied in
several papers after [C]. In [P], N. Papaghiuc gave a first generalization of
this notion defining semi-slant submanifolds, obtaining slant and Cauchy-
Riemann submanifolds as particular cases.

In this work we study submanifolds such that the Wirtinger angle is
pointwise constant, but it is not globally constant. We call them quasi-
slant submanifolds. The organization of the paper is as follows: in Sec-
tion 1 we give the basic definitions and in Section 2 we show the results.
In particular, we prove that surfaces are always quasi-slant and that odd-
dimensional quasi-slant submanifolds are totally real. Finally, we prove
that quasi-slant totally geodesic submanifolds of a Kähler manifold are
slant submanifolds.

All the manifolds considered are real, connected and of class C∞.
The author whishes to thank to his wife Ujué R. Tŕıas for their valuable
suggestions.
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1. Basic definitions

Let (M, J, g) be an almost Hermitian manifold and let M be a real
submanifold of M . Then M is said holomorphic (resp. totally real) if
J(TxM) ⊂ TxM , ∀x ∈ M (resp. J(TxM) ⊂ T⊥x M , ∀x ∈ M), where TxM
and T⊥x M denote the tangent and the normal space to M at the point x.
Many results have been obtained for these kinds of submanifolds. The
above definitions have been generalized in several ways:

(1) The submanifold M is said a Cauchy-Riemann submanifold
(cfr. [B]) if there exists a differentiable distribution D : x → Dx ⊂ TxM
such that D is J-invariant and the complementary orthogonal distribution
D⊥ is anti-invariant, i.e., J(D⊥

x ) ⊂ T⊥x M , ∀x ∈ M .
(2) The submanifold M is said slant (cfr. [C]) if for all non-zero vector

X tangent to M the angle ϑ(X) between J(X) and TxM is a constant,
i.e., it does not depend on the choice of x ∈ M and X ∈ TxM .

(3) The submanifold M is said semi-slant (cfr. [P]) if it is endowed
with two orthogonal distributions D and D⊥, where D is J-invariant and
D⊥ is slant, i.e., the angle ϑ(X) between J(X) and D⊥

x is a constant.
(4) The submanifold M is said generic (cfr. [C]) if the maximal holo-

morphic subspace Hx = TxM ∩ J(TxM) is of constant dimension.
One can easily check that holomorphic and totally real submanifolds

are Cauchy-Riemann and slant submanifolds; these are semi-slant subman-
ifolds and all of them are generic submanifolds.

In this work we give the following natural definition:

Definition 1.1. A submanifold M of an almost Hermitian manifold
(M, J, g) is said quasi-slant if, for each x ∈ M , the angle ϑ(X) between
J(X) and TxM is a constant, for all non-zero vector X ∈ TxM , i.e., it
does not depend on the choice of X ∈ TxM , but it depends on the choice
of the point x ∈ M .

Then, the angle function can be defined on the submanifold M and it
will be denoted as ϑ : M → [0, π

2 ], ϑ(x) = ϑx.
Obviously, a slant submanifold is a quasi-slant submanifold. Observe

that, for each x ∈ M , M being a quasi-slant manifold, the maximal holo-
morphic subspace Hx = TxM ∩ J(TxM) is Hx = TxM or Hx = {0}, thus
proving that quasi-slant submanifolds may be no generic submanifolds.

On the other hand, one can consider the unit tangent bundle of M ,
T 1M → M , and define the angle function ϑ : T 1M → [0, π

2 ], where ϑ(X) is
the angle between J(X) and TxM , when X ∈ TxM . If M is a quasi-slant
submanifold the function ϑ is constant along the fibres of the unit tangent
bundle of M .
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Definition 1.2. Let M be a quasi-slant submanifold of an almost Her-
mitian manifold (M, J, g). The tensor field F of type (1, 1) on M given
by Fx = π ◦ π|TxM : TxM → TxM , where π (resp. π) denotes the orthogo-
nal projection over TxM (resp. J(TxM)) is said the canonical tensor field
of M .

If M is a holomorphic (resp. totally real) submanifold, its canonical
tensor field is the identity (resp. the null tensor field). We shall show the
important rôle of the canonical tensor field in the following section.

2. The results

First of all, we show that surfaces are quasi-slant submanifolds and
we obtain a restricion to the embedding of a non-orientable surface into
an almost Hermitian manifold.

Proposition 2.1. Let M be a submanifold of an almost Hermitian

manifold (M, J, g). If M is a surface, then M is a quasi-slant submanifold.

Moreover, if M is non- orientable, then there exists a point x ∈ M such

that ϑx = π
2 .

Proof. Let x ∈ M . If Hx = TxM , then Fx is the identity and
ϑx = 0, for all X ∈ TxM . Let us assume that Hx = {0} and let {X, Y }
be an orthonormal basis of Tx. Then {JX, JY } is an orthonormal basis
of J(TxM) and {X, Y, JX, JY } is a basis of Ex = TxM ⊕ J(TxM). Then,
the matrix of πx|Ex is

M(π|Ex) =




1 0 a c

0 1 b d

0 0 0 0
0 0 0 0


 .

Taking into account that (JX−π(JX)) ⊥ TxM and (JY −π(JY )) ⊥ TxM ,
one obtains:

M(π|Ex) =




1 0 0 −αx

0 1 αx 0
0 0 0 0
0 0 0 0




where αx = g(JX, Y ) = −g(X, JY ). Then, | cos ϑ(X)|=|g(JX, π(JX))| =
|αx| and | cos ϑ(Y )| = |g(JY, π(JY ))| = | − αx| = |αx|, and one easily
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check that for all Z ∈ TxM , | cosϑ(Z)| = |αx| thus proving that M is
quasi-slant.

For the last part of the theorem, let us consider that M is a surface
verifying ϑx < π

2 , for all x ∈ M . Given two orthonormal basis {X, Y }
and {Z, W} of TxM , one easily checks that g(JX, Y ) = g(JZ, W ) if both
basis define the same orientation and g(JX, Y ) = −g(JZ, W ) if their ori-
entations are mutually inverse. Then, taking into account that cosϑx 6= 0,
for all x ∈ M , and choosing an orthonormal basis on a point x ∈ M , one
can define a global orientation on M , thus showing that such a surface is
orientable. ¤

Remarks. (1) We have obtained the matrix expression of π|Ex . In a
similar way one obtains:

M(π|Ex) =




0 0 0 0
0 0 0 0
0 αx 1 0

−αx 0 0 1




and then Fx is a homothety of ratio α2
x. This result will be generalized in

Theorem 2.3.

(2) In the case ϑx < π
2 , for all x ∈ M , one can choose a continuous

determination of αx and define an almost complex structure J on M given
by Jx(Z) = 1

αx
πx(JZ), when Z ∈ TxM .

(3) Generalizing the proof of the above proposition one has the fol-
lowing: let us assume that M is a quasi-slant submanifold of dimension
r, x ∈ M is a point such that Hx = {0}, {X1, . . . , Xr} is an orthonor-
mal basis of TxM , {J(X1), . . . , J(Xr)} is the induced orthonormal basis
of J(TxM), and {X1, . . . , Xr, J(X1), . . . , J(Xr)} is the induced basis of
Ex = TxM ⊕ J(TxM). Then,

M(π|Ex) =
(

I B

0 0

)
; M(π|Ex) =

(
0 0
−B I

)

where I is the identity matrix and B = (bij), where bij = g(JXi, Xj); thus
B is an anti- symmetric matrix, i.e., Bt = −B. Then, the matrix of the
canonical tensor field Fx respect to the orthonormal basis {X1, . . . , Xr} is
−B2 = −BB = BtB, which is symmetric, thus proving that the canonical
tensor field is a self-adjoint endomorphism.
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Moreover, the matrix of g|Ex is

M(g|Ex) =
(

I B

−B I

)

The following result generalizes one obtained for slant submanifolds:

Proposition 2.2. Let M be a quasi-slant submanifold of an almost

Hermitian manifold (M, J, g). If M has odd dimension, then M is a totally

real submanifold.

Proof. First of all, observe that 0 is an eigenvalue of Fx, for all
x ∈ M , because dimension of M odd implies Hx = {0} and, using the
above Remark (3), det(Fx)=det(−B2)=det(−B) det B= det(Bt) det B=
det(B2), which is null, rank of B being odd.

Let x ∈ M . As 0 is an eigenvalue of Fx, there exists a non-zero vector
X ∈ TxM such that 0 = Fx(X) = π(π(X)) and then two cases appear:

(a) If π(X) = 0, then X ⊥ J(TxM) and for all Y ∈ TxM , 0 = g(X, JY ) =
−g(JX, Y ) ⇒ JX ⊥ TxM ⇒ ϑx(X) = π

2 ⇒ ϑx = π
2 , as we wanted.

(b) If π(X) 6= 0, then there exists a non-zero vector Y ∈ TxM such that
π(X) = JY and then one obtains: 0 = Fx(X) = π(π(X)) = π(JY ) ⇒
JY ⊥ TxM ⇒ ϑx(Y ) = π

2 ⇒ ϑx = π
2 . ¤

Remarks. (1) Observe that in the last theorem we have proved the
following most general result: “If M is an odd-dimensional submanifold
of an almost Hermitian manifold (M, J, g) and x ∈ M is a point such
that Hx = {0}, then there exists a non-zero vector X ∈ TxM such that
JX ⊥ TxM”.

(2) The above two results allow us to think that a Schur-type theorem
may be true: “If dim M > 2 and M is quasi-slant, then M is slant”. Never-
theless, this is not the case, as the following example shows: for any k > 0,
the map R4 → C4 given by (u, v, w, z) → (u, v, k sin w, k sin z, kw, kz,

k cosw, k cos z) defines a slant submanifold in C4 with slant angle cos−1 k

(cfr. [C, Example 8.7]). Changing k by a non-constant positive function
(e.g., by 1+u2) one obtains a 4-dimensional quasi-slant submanifold which
is not slant.

The following result shows that quasi-slant submanifolds are charac-
terized by the canonical tensor field.
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Theorem 2.3. Let M be a submanifold of an almost Hermitian man-
ifold (M, J, g). Then M is a quasi-slant submanifold iff Fx is a homothety,
for all x ∈ M .

Proof. We use the notation and results of the Remark (3) below
Proposition 2.1. Let x ∈ M . If Hx = TxM , then Fx is the identity. Let
us assume that Hx = {0}. Then, one easily checks:

(a) cos2 ϑx = ‖JXi‖ ‖π(JXi)‖ cosϑx = g(JXi, π(JXi))=
∑r

j=1(bij)2,
thus proving that the sume of the squares of the elements of a column of
B is constant.

(b) As the matrix of Fx is −B2 = BtB, and using the above result
(a), the elements of the first diagonal of the matrix of Fx are equal to
− cos2 ϑx.

(c) M being quasi-slant, the angle between Y and J(TxM) is ϑx, for
every non-zero vector Y ∈ TxM .

(d) Let Xi a vector of the basis choosen in TxM . As ‖Xi‖ = 1, then
‖π(Xi)‖ = | cosϑx| and ‖F (Xi‖ = ‖π(πXi)‖ = cos2 ϑx. Taking account
that the basis {X1, . . . , Xr} is orthonormal and the result (b) of the present
proof, one concludes that the elements of the matrix of Fx are all of them
null, except those of the diagonal.

(e) The inverse is trivial. ¤
Finally, we show that the slant condition and the extrinsic curvature

of the submanifold are related geometric properties:

Theorem 2.4. Let M be a quasi-slant complete and totally geodesic
submanifold of a Kähler manifold (M, J, g). Then M is a slant submani-
fold.

Proof. Let x, y ∈ M . We have to prove that ϑx = ϑy. As M is
complete, there exists a geodesic γ in M joining x and y. Let X be a
non-zero vector, X ∈ TxM and let Y = τ(X) ∈ TyM be the vector ob-
tained from X by parallel transport along γ. M being totally geodesic,
the parallel transport in M along γ is the restriction of the parallel trans-
port in M along γ and then, τ(TxM) = TyM and τ(TxM) = TyM . As
(M, J, g) is a Kähler manifold, parallel transport commutes with J and
then τ(JX) = J(τX) = JY . Finally, parallel transport is an isometry,
thus proving that the angle between JX and TxM coincides with the angle
between JY and TyM , i.e., ϑx = ϑy. ¤

One can deduce from the above Theorem 2.4 and Proposition 2.1, the
following result:
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Corollary 2.5. Let M be a complete totally geodesic surface embed-

ded into a Kähler manifold (M,J, g). Then M is a slant surface.
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