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On a generalization of the Ramanujan-Nagell equation

By B. BRINDZA (Debrecen)

Abstract. Inthe paper a new method is given to derive a reasonable upper bound
for the number of solutions of the generalized Ramanujan-Nagell equation.

1. Introduction

There are several possibilities to generalize the classical diophantine
equation 2 +7 = 27. For results related to the number of solutions of the
equations

z?+D=p*, ptD,
:L'Q—I—D:plfl-...-pft, pitD,i=1,...t
we refer to [Bel], [Be2], [ML1], [ML2] and [E], respectively. Let f(X) be a
polynomial of degree n and b be a rational integer with |b| > 1 and let M

denote the Mahler height of f and s the number of distinct prime divisors
of b. Then we have

Theorem. If f has at least two distinct zeros and one of them is not
rational then the equation

(1) flz)=0b"inx,z€Z, z>1
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has at most
2n%(s 4 2) + 6n%(s + 1)(ns +n + 2)

solutions provided that |b| > c¢M®", where c is an effectively computable
constant depending only on n.

Remarks. For a given z the equation (1) can be considered as a su-
perelliptic equation, however, b is not necessarily bounded by a constant
depending only on f since the tuple

{(z,zﬁ)"" ’ (z,Zm) }

where r1,... ,r, are the multiplicities of the zeros of f may have special
shapes like

(2,2,1,1,...,1) or (m,1,1,...,1)

(cf. [L], [B]) and then the equation (1) may possess infinitely many solu-
tions. We point out that there is no assumption imposed on the g.c.d. of b
and the semi-discriminant of f that is there seems to be no way to apply
standard arguments (the bound for the number of solutions should not de-
pend on the number of the distinct prime divisors of the semi-discriminant
of f). In the special case when b is a prime the condition on the rational-
ity of the zeros can be omitted. Indeed, if every zero of f is rational (b is
prime) then a quite simple argument shows that (1) leads to the equation

Ap" + Bp" =C,

where A, B,C' are non-zero integers uniquely determined by f. It has
certainly at most one solution in positive integers (u,v).

2. Auxiliary results

Let K be an algebraic number field and let dk, rk, Dk, Rk, hx denote
the degree, the unit rank, the discriminant, the regulator and the ideal
class number of K, respectively. Denote by S a finite set of absolute values
of K including all its archimedian (infinite) values; let ¢ be its cardinality.
Furhermore, let pq,...,p; be the prime ideals of K corresponding to the
nonarchimedian (finite) values of S.
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Lemma 1. There are S-units 7y,... , 741 satisfying
t
((g—1)1)?
h(ﬂ—l) Ce h(ﬂ'q_l) < WhKRKEIOgNK/Q(pZ)’

where h( ) denotes the absolute logarithmic height and each v € Ug can
be written as a product

_ k1 kq—1
V=PI T

with p a root of unity and

((q— 1)) [ 643 \" .
Juax  [kif < 10g§K h(v)hKRKglogNK/@(Pi)-

PROOF. This is a consequence of Lemmas 1,3 in [B&Gy] and the
proof of the main result of [B1].

Lemma 2. Let o be a non-zero element in K with Nk q(ca) = N. |
denotes the maximum of the absolute values of the conjugates of a. There
exists a unit € such that

r— L 67“Kd]12< " TK
< N4 — Rk ¢ .
jae] < N eXp{(logdK 2 K

PROOF. See |Gy, Lemma 3|.

Lemma 3. Let a be a zero of the polynomial f(X) and set K = Q(«).
Then
|Dx| < n"M?" 2, hgRg < n*"M*"=10.056 < Rg.

PROOF. See MAHLER [M], SIEGEL [S] and ZIMMERT [Z], noting that
Dy divides the discriminant of f(X).

Lemma 4. If f has at least two distinct zeros then all the solutions
to the equation (1) satisfy
z < e M3,

where ¢y is an effectively computable constant depending only on n.

PROOF. This result is a special case of the Theorem in [BBH].
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Lemma 5 ([BPPW]). Suppose that X, no,

are nonzero complex numbers (t > 1) and that the equation

y ht—1, M, 1/}07 v 7wt71
ki ke
)\ngo .. .fr’till +/‘“7Z}§O .. "I;Z)till = ]_
has t + 2 solutions k; = (ko j,... ,ki—1,;) € Z',j = 1,...t + 2. For com-
pactness, write
K= max
and

0<i<t—1,1<j<t+1

{2, ki j+1 — ki g1}
. k j ki— J ; k J ky— J

nkJ — 7’00' PN 771‘,—11 and wk] — /lzz)(]o P t—ll
If

M =6, ftee R > 0t + 1)2 K, (5

then

1,...,t+1)

G DK > [k,
Remark. Actually, the proof is based upon Siegel’s lemma or one can
use BOMBIERI and VAALER [B&V].

PROOF. From the conditions we immediately have

—_

2 T > DT > s e
77’”+l t
>R > 18, =1, t 1,
7’] J
1
¢kj _ 1_>\nkj 1—|—é <i
kit nki+1—k; — )\nlkj 18— % 15’
and
1 Pk 1
- —<[1—-—— —.
15<‘ ohe| S TR

For z € C with [z| < 1 the simple inequality

Jel < llog(1 & 2)] < L[|
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(log denotes the principal branch) and

1 — pkatr=hs /¢kj+1*kj =A"ly7h (1-— ¢krka‘+1)

imply
§ _ i kj|—1 (1 — pFivi—ks Jpkir1—k;
= (1= ) 1 < log (1 - (1 — g i)
7 1
< — (14 =) Mkt
=% ( - 15)| n|
Hence there are rational integers hq,... , hyyq for which
5 1 t—1
ko— .
8 (1 - 15) At |t < ’27”%‘ + Zo(ki,j—H — ki j) log(ni/vs)
]:
7 1
< — (14 =) Mkt
=6 < * 15) A
From Siegel’s lemma there exist rational integers z1, ... , zt11 not all zero,
so that
t+1
Zj(ki,j—i-l — ki,j) = 0, 1= 0, ,t —1
j=1
and
max |z;| < (t+1)1?K*.
1<j<t+1
Put
t—1
Aj = 27T’L'hj + Z(ki,j-i-l — ki,j) log(m/@/)z), j=1...,t4+1,
i=0
_ _ 45 /2 7ot
Z = 15125(“!2]!, Ki= —(t+1)77K".

Then A; # 0 and
t+1 t4+1

ZZ]'A]‘ == QTFiZZjhj,

j=1 Jj=1
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furthermore,

|A]
[Aj11]

(1-1%)
(14 )

nki+1

nki

nki+1

nki

5
=2 > K, > 15,

5
6
7
6

for j=1,...,t+1. Let [ be the smallest positive integer for which z; # 0.
Then

t+1 t+1
IS 2| =[S0 2| = alltil = Z(Aea] + .+ A
j=1 j=l

. 1 1
> A = (t+1)2 KA (K+K2+...>
1 1

= [A)(1 = (t+ 1)K (K —1)7Y) >0,
therefore,

t+1
2T S ‘ZZJ'A]" S Z(|Al+1‘ +...4+ |At+1‘)
j=l

Z
<2l (4 g ) < - Il

15
7 1 ¢ 15
< (1+ =)\ t+1)2K=
<3 (155 ) P i,

which proves Lemma 4.
(The absolute constants certainly can be improved a bit, however it
makes no difference in the proof of the Theorem).

3. Proof of the Theorem

Let a ¢ Q be a zero of f and write K = Q(«), moreover, let py,... ,p;
be the distinct prime ideal divisors of b in K. Then we have [ < ns. Let
denote the denominator of the principal ideal generated by « (if any) and
(z,z) be an arbitrary but fixed solution to (1). Then the ideal 2{x — o)k
can be written as

Wz —a)yg =pi*-...-p;".
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In the sequel, ¢, cs,... will denote effectively computable constants de-
pending only on n. Let 7 be a generator of A" with

— hg 6T’]Kd]%< e TK
N, z x
7| < Ng/o(R)™ exp { <logdK 5 Rk ¢,

noting that A divides the leading coefficients of f, therefore |[N ()| < M™.
The element 7(z — )™ can be considered as an S-unit, and the unit-
group is determined by the prime ideal divisors of b and the rank r; of it
is bounded by ns +n — 1.

Let 71,...,m,, be a generating set of this group with

1)2 ’
h(my) -+ h(m.) < mhKRK | | log Ngq(pi), (cf. Lemma 1)
K i=1

The element 7(z — o) can be written as
q1 dry

T(x — ) = plo . 7. o

where pg is a fixed generator of the group of roots of unity in K and
0 < g0 L wgk < 4nloglog6n. Furthermore, using Lemma 4 we get

log |z| < coM3™ log ||, (x #0)

and by the second inequality of Lemma 1 we have

max |g;| < ((r)t)” ( 6

T1 l
1<i<r; 27“1*1 log dK) (h(T) . h($ N a)>hKRK H lOg NK/Q(pZ)

=1
(TL(S + 1) _ 1)3(n(s+1)—1)

l
2 (6n3)n(8+1)*1M5n log ’b’ H log N]K/Q(pz)

i=1

l
St log Nijo(ps) >

<

L (s +1) = 100
- 2

(log [b])"++1) A" ( l

< (s +1) = 100D

< : (1og [b))" =+ 1" b

Let 8 # « be a fixed zero of the minimal polynomial of « (over Z)
and o be an automorphism of C with o(a) = (.
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Set t=r;1+1<n(s+1),

and write

1 1
— _ aPK _ _ —hk
o =pP, M =Py > N2=T7 ..., Th—1=Try

and

Yo = a(p), b1 = (0(p0)) "%, s = (0(m))"% ..., Yoy = (0(mr,)) ",

where the hxth roots are fixed, p is a hxth primitive root of unity, further-
more, put

ki=4qo, ki=aq,..., k-1 = qr,.
Then the identity
r—«a x—0

f-a a-p

implies
(2) Mot e g =1
with ko < wighk.

Let (x1,21),...,(Z¢42,2t+2) be a subsequence of the solutions to (1)
with z;11 — 2; > 6tn and z; > 2tn + n? and kj = (koj,... ki1,) € Z
the corresponding solution to (2), j =1,... ,t 4+ 2. It is easy to see that

K = max 1 {2, |k‘7;7j+1 - ]{37;7j|} S t3t(10g b)tM5n’b|%

0<i<t—
1<j<t+1

The first condition of Lemma 5 is trivial and since

Zi41— %4

- 1
Tit1— @ > 5|b|?

T; —«
we have to prove that

Zif1

b7 = P M > 18(¢ 4+ 1) 57 (log [b]) MP"b?
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which is obvious by |b| > ¢4M®" and t < ¢(n)logb. Then Lemma 5 yields
]. i ]_ n
b+ < §]b|71 <lay—al < S+ 1)2 K* < t*(log b)' M |b| <,

which is a contradiction.
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