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On a generalization of the Ramanujan-Nagell equation

By B. BRINDZA (Debrecen)

Abstract. In the paper a new method is given to derive a reasonable upper bound
for the number of solutions of the generalized Ramanujan-Nagell equation.

1. Introduction

There are several possibilities to generalize the classical diophantine
equation x2 +7 = 2z. For results related to the number of solutions of the
equations

x2 + D = pz, p - D,

x2 + D = pk1
1 · . . . · pkt

t , pi - D, i = 1, . . . , t

we refer to [Be1], [Be2], [ML1], [ML2] and [E], respectively. Let f(X) be a
polynomial of degree n and b be a rational integer with |b| > 1 and let M

denote the Mahler height of f and s the number of distinct prime divisors
of b. Then we have

Theorem. If f has at least two distinct zeros and one of them is not

rational then the equation

(1) f(x) = bz in x, z ∈ Z, z > 1

Mathematics Subject Classification: 11D41.
Key words and phrases: Diophantine equations, gap principle.
Research supported in part by Grant D23992 from the Hungarian National Foundation

for Scientific Research.



226 B. Brindza

has at most

2n2(s + 2) + 6n2(s + 1)(ns + n + 2)

solutions provided that |b| > cM5n, where c is an effectively computable

constant depending only on n.

Remarks. For a given z the equation (1) can be considered as a su-
perelliptic equation, however, b is not necessarily bounded by a constant
depending only on f since the tuple

{
z

(z, r1)
, . . . ,

z

(z, rk)

}
,

where r1, . . . , rk are the multiplicities of the zeros of f may have special
shapes like

(2, 2, 1, 1, . . . , 1) or (m, 1, 1, . . . , 1)

(cf. [L], [B]) and then the equation (1) may possess infinitely many solu-
tions. We point out that there is no assumption imposed on the g.c.d. of b

and the semi-discriminant of f that is there seems to be no way to apply
standard arguments (the bound for the number of solutions should not de-
pend on the number of the distinct prime divisors of the semi-discriminant
of f). In the special case when b is a prime the condition on the rational-
ity of the zeros can be omitted. Indeed, if every zero of f is rational (b is
prime) then a quite simple argument shows that (1) leads to the equation

Apu + Bpv = C,

where A, B,C are non-zero integers uniquely determined by f . It has
certainly at most one solution in positive integers (u, v).

2. Auxiliary results

Let K be an algebraic number field and let dK, rK, DK, RK, hK denote
the degree, the unit rank, the discriminant, the regulator and the ideal
class number of K, respectively. Denote by S a finite set of absolute values
of K including all its archimedian (infinite) values; let q be its cardinality.
Furhermore, let p1, . . . , pt be the prime ideals of K corresponding to the
nonarchimedian (finite) values of S.
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Lemma 1. There are S-units π1, . . . , πq−1 satisfying

h(π1) · · ·h(πq−1) <
((q − 1)!)2

2q−2dq−1
K

hKRK

t∏

i=1

log NK/Q(pi),

where h( ) denotes the absolute logarithmic height and each γ ∈ US can
be written as a product

γ = ρπk1
1 · · ·πkq−1

q−1

with ρ a root of unity and

max
1≤i≤q−1

|ki| ≤ ((q − 1)!)3

2q−2

(
6d3
K

log dK

)q−1

h(γ)hKRK

t∏

i=1

log NK/Q(pi).

Proof. This is a consequence of Lemmas 1,3 in [B&Gy] and the
proof of the main result of [B1].

Lemma 2. Let α be a non-zero element in K with NK/Q(α) = N . |α|
denotes the maximum of the absolute values of the conjugates of α. There
exists a unit ε such that

|αε| ≤ N
1

dK exp
{(

6rKd2
K

log dK

)rK rK
2

RK

}
.

Proof. See [Gy, Lemma 3].

Lemma 3. Let α be a zero of the polynomial f(X) and set K = Q(α).
Then

|DK| ≤ nnM2n−2, hKRK < n4nM2(n−1), 0.056 < RK.

Proof. See Mahler [M], Siegel [S] and Zimmert [Z], noting that
DK divides the discriminant of f(X).

Lemma 4. If f has at least two distinct zeros then all the solutions
to the equation (1) satisfy

z < c1M
3n,

where c1 is an effectively computable constant depending only on n.

Proof. This result is a special case of the Theorem in [BBH].
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Lemma 5 ([BPPW]). Suppose that λ, η0, . . . , ηt−1, µ, ψ0, . . . , ψt−1

are nonzero complex numbers (t ≥ 1) and that the equation

ληk0
0 · · · ηkt−1

t−1 + µψk0
0 · · ·ψkt−1

t−1 = 1

has t + 2 solutions kj = (k0,j , . . . , kt−1,j) ∈ Zt, j = 1, . . . t + 2. For com-
pactness, write

K = max
0≤i≤t−1,1≤j≤t+1

{2, |ki,j+1 − ki,j |}.
and

ηkj = η
k0,j

0 · · · ηkt−1,j

t−1 and ψkj = ψ
k0,j

0 · · ·ψkt−1,j

t−1 .

If

|ληk1 | ≥ 6; |ηkj+1/ηkj | ≥ 9(t + 1)
t
2 Kt, (j = 1, . . . , t + 1)

then
1
4
(t + 1)

t
2 Kt ≥ |ληk1 |.

Remark. Actually, the proof is based upon Siegel’s lemma or one can
use Bombieri and Vaaler [B&V].

Proof. From the conditions we immediately have

1
6
≥ |ληk1 |−1 > |ληk2 |−1 > . . . > |ληkt+2 |−1,

∣∣∣∣
ηkj+1

ηkj

∣∣∣∣ ≥ 9Kt ≥ 18, j = 1, . . . , t + 1,

∣∣∣∣
ψkj

ψkj+1

∣∣∣∣ =

∣∣∣∣∣
1− 1

ληkj

ηkj+1−kj − 1

ληkj

∣∣∣∣∣ ≤
1 + 1

6

18− 1
6

<
1
15

,

and

1− 1
15

<

∣∣∣∣1−
ψkj

ψkj+1

∣∣∣∣ < 1 +
1
15

.

For x ∈ C with |z| ≤ 1
4 the simple inequality

5
6
|z| ≤ | log(1± z)| ≤ 7

6
|z|
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(log denotes the principal branch) and

1− ηkj+1−kj /ψkj+1−kj = λ−1η−kj (1− ψkj−kj+1)

imply

5
6

(
1− 1

15

)
|ληkj |−1 ≤ | log

(
1− (1− ηkj+1−kj /ψkj+1−kj )

) |

≤ 7
6

(
1 +

1
15

)
|ληkj |−1.

Hence there are rational integers h1, . . . , ht+1 for which

5
6

(
1− 1

15

)
|ληkj |−1 ≤

∣∣∣2πihj +
t−1∑

j=0

(ki,j+1 − ki,j) log(ηi/ψi)
∣∣∣

≤ 7
6

(
1 +

1
15

)
|ληkj |−1.

From Siegel’s lemma there exist rational integers z1, . . . , zt+1 not all zero,
so that

t+1∑

j=1

zj(ki,j+1 − ki,j) = 0; i = 0, . . . , t− 1

and

max
1≤j≤t+1

|zj | ≤ (t + 1)t/2Kt.

Put

Λj = 2πihj +
t−1∑

i=0

(ki,j+1 − ki,j) log(ηi/ψi), j = 1, . . . , t + 1,

Z = max
1≤j≤t+1

|zj |, K1 =
45
8

(t + 1)t/2Kt.

Then Λj 6= 0 and
t+1∑

j=1

zjΛj = 2πi

t+1∑

j=1

zjhj ,
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furthermore,

|Λj |
|Λj+1| >

5
6 (1− 1

15 )
7
6 (1 + 1

15 )

∣∣∣∣
ηkj+1

ηkj

∣∣∣∣ =
5
8

∣∣∣∣
ηkj+1

ηkj

∣∣∣∣ ≥ K1 > 15,

for j = 1, . . . , t+1. Let l be the smallest positive integer for which zl 6= 0.
Then

∣∣∣
t+1∑

j=1

zjΛj

∣∣∣ =
∣∣∣
t+1∑

j=l

zjΛj

∣∣∣ ≥ |zl||Λl| − Z
(|Λl+1|+ . . . + |Λt+1|

)

≥ |Λl| − (t + 1)
t
2 Kt|Λl|

(
1

K1
+

1
K2

1

+ . . .

)

= |Λl|
(
1− (t + 1)

t
2 Kt(K1 − 1)−1

)
> 0,

therefore,

2π ≤
∣∣∣
t+1∑

j=l

zjΛj

∣∣∣ ≤ Z
(|Λl+1|+ . . . + |Λt+1|

)

≤ Z|Λ1|
(

1
K1

+
1

K2
1

+ . . .

)
≤ |Λ1| − |Λ1| Z

1− 1
15

≤ 7
6

(
1 +

1
15

)
|ληkj |−1(t + 1)

t
2 Kt 15

14
,

which proves Lemma 4.
(The absolute constants certainly can be improved a bit, however it

makes no difference in the proof of the Theorem).

3. Proof of the Theorem

Let α /∈ Q be a zero of f and write K = Q(α), moreover, let p1, . . . , pl

be the distinct prime ideal divisors of b in K. Then we have l ≤ ns. Let A

denote the denominator of the principal ideal generated by α (if any) and
(x, z) be an arbitrary but fixed solution to (1). Then the ideal A〈x− α〉K
can be written as

A〈x− α〉K = pr1
1 · . . . · prl

l .
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In the sequel, c1, c2, . . . will denote effectively computable constants de-
pending only on n. Let τ be a generator of AhK with

|τ | < NK/Q(A)
hK
n exp

{(
6rKd2

K
log dK

)rK rK
2

RK

}
,

noting that A divides the leading coefficients of f , therefore |N(A)| ≤ Mn.
The element τ(x − α)hK can be considered as an S-unit, and the unit-
group is determined by the prime ideal divisors of b and the rank r1 of it
is bounded by ns + n− 1.

Let π1, . . . , πr1 be a generating set of this group with

h(π1) · · ·h(πr1) <
((r1)!)2

2r1−1dr1
K

hKRK

l∏

i=1

log NK/Q(pi), (cf. Lemma 1)

The element τ(x− α)hK can be written as

τ(x− α)hK = ρq0
0 · πq1

1 · . . . · πqr1
r1 ,

where ρ0 is a fixed generator of the group of roots of unity in K and
0 ≤ q0 ≤ ωK ≤ 4n log log 6n. Furthermore, using Lemma 4 we get

log |x| ≤ c2M
3n log |b|, (x 6= 0)

and by the second inequality of Lemma 1 we have

max
1≤i≤r1

|qi| ≤ ((r1)!)3

2r1−1

(
6d3
K

log dK

)r1

(h(τ) + h(x− α))hKRK

l∏

i=1

log NK/Q(pi)

≤ (n(s + 1)− 1)3(n(s+1)−1)

2
(6n3)n(s+1)−1M5n log |b|

l∏

i=1

log NK/Q(pi)

≤ (n(s + 1)− 1)3(n(s+1)−1)

2
(log |b|)n(s+1)M5n

(∑l
i=1 log NK/Q(pi)

l

)l

≤ (n(s + 1)− 1)3(n(s+1)−1)

2
(log |b|)n(s+1)M5n|b|n

e .

Let β 6= α be a fixed zero of the minimal polynomial of α (over Z)
and σ be an automorphism of C with σ(α) = β.
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Set t = r1 + 1 ≤ n(s + 1),

λ =
1

(β − α)τ
1

hK
; µ = −λ

and write

η0 = ρ, η1 = ρ
1

hK
0 , η2 = π

1
hK
1 , . . . , ηt−1 = π

1
hK
r1

and

ψ0 = σ(ρ), ψ1 = (σ(ρ0))
1

hK , ψ2 = (σ(π1))
1

hK , . . . , ψt−1 = (σ(πr1))
1

hK ,

where the hKth roots are fixed, ρ is a hKth primitive root of unity, further-
more, put

k1 = q0, k1 = q1, . . . , kt−1 = qr1 .

Then the identity
x− α

β − α
+

x− β

α− β
= 1

implies

(2) ληk0
0 · · · ηkt−1

t−1 + µψk0
0 · · ·ψkt−1

t−1 = 1

with k0 ≤ ωKhK.
Let (x1, z1), . . . , (xt+2, zt+2) be a subsequence of the solutions to (1)

with zi+1 − zi ≥ 6tn and z1 ≥ 2tn + n2 and kj = (k0,j , . . . , kt−1,j) ∈ Zt

the corresponding solution to (2), j = 1, . . . , t + 2. It is easy to see that

K = max
0≤i≤t−1,
1≤j≤t+1

{2, |ki,j+1 − ki,j |} ≤ t3t(log b)tM5n|b|n
e .

The first condition of Lemma 5 is trivial and since
∣∣∣∣
xj+1 − α

xj − α

∣∣∣∣ ≥
1
2
|b|

zi+1−zi
n

we have to prove that

|b|
zi+1−zi

n ≥ |b|5tM5n ≥ 18(t + 1)
t
2 t3t(log |b|)tM5nb

n
e
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which is obvious by |b| > c4M
5n and t ≤ c(n) log b. Then Lemma 5 yields

|b|t+n ≤ 1
2
|b| z1

n ≤ |x1 − α| ≤ 1
4
(t + 1)

t
2 Kt ≤ t4t(log b)tM5n|b|n

e ,

which is a contradiction.
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