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On the Ramanujan differences

By ZOLTÁN DARÓCZY (Debrecen) and GABRIELLA HAJDU (Debrecen)

Abstract. We consider functional equation

f(a + b + c) + f(b + c + d) + f(a− d) = f(a + b + d) + f(a + c + d) + f(b− c),

where f : R → G, a, b, c, d ∈ R satisfying ad = bc. The solutions are known for
G = R = R and R = Z, G = R. The main result of the paper (Theorem 7) determines
the solutions in the case when R is a field of characteristic zero and G is a linear space
over Q. Then f : R → G satisfies the equation if and only if there are additive functions
a1, a2 : R → G and a0 ∈ G such that f(x) = a2(x4) + a1(x2) + a0 for all x ∈ R.

1. Introduction

Let R(+, ·) be a commutative ring with identity. If

A =
(

a b

c d

)
∈ Mat(2, R)

then let

detA := ad− bc, Ao :=
(

b a

d c

)
.

Denote by Mat∗(2, R) the set of the matrices A ∈ Mat(2, R) for which
detA = 0. Let G(+) be an Abelian group. If f : R → G is a function then
let

(1) Cf (A) := f(a + b + c) + f(b + c + d) + f(a− d)
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for any A =
(

a b

c d

)
∈ Mat(2, R). Obviously, Cf : Mat(2, R) → G. In

this case the Ramanujan difference of the generating function f : R → G
is defined by the equation

Df (A) := Cf (A)− Cf (Ao)

for any A ∈ Mat(2, R) (Daróczy [3]). Denote by S(R, G) the set of all
the functions f : R → G for which the functional equation

(2) Df (A) = 0 if A ∈ Mat∗(2, R)

holds. The functional equation (2) means the following in detail. If

A =
(

a b

c d

)
and ad = bc

(a, b, c, d ∈ R) then

f(a + b + c) + f(b + c + d) + f(a− d)(3)
= f(a + b + d) + f(a + c + d) + f(b− c).

Our aim is to determine the set S(R,G) of the solutions in the case of
certain structures R and G.

2. General investigations

In any commutative ring R(+, ·) an elementary identity of Ramanu-
jan ([5], p. 385) implies the following assertion. If pk(x) := xk (x ∈ R,
k ∈ N) then p2 and p4 belong to S(R, R), that is, f = pk (k = 2, 4) fulfils
the functional equation (3). If

ai : R → G (i = 1, 2)

are additive functions (i.e., ai(x + y) = ai(x) + ai(y) for any (x, y ∈ R))
and a0 ∈ G then the function

(4) f(x) := a2(x4) + a1(x2) + a0 (x ∈ R)

(f : R → G) is an element of S(R, G).
The converse is not generally true, for example in the case of R = Z

and G = R there exist solutions that cannot be written in the form (4)
(Daróczy–Hajdu [4]).
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Theorem 1. Let R(+, ·) be a commutative ring with identity (e := 1).
If f belongs to S(R, G) then

(5) f(−x) = f(x) for any x ∈ R

and

f(tz) + f [tz(y + 1) + t(y2 + y + 1)] + f [tzy + t(y2 + y + 1)](6)

− f [tz(y + 1) + t(y2 + 2y)]− f [tz + t(2y + 1)]

− f [tzy + t(y2 − 1)] = 0

for any t, z, y ∈ R.

Proof. By interchanging variables b and c in (3) we have f(b− c) =
f(c − b), which implies (5) for all x ∈ R (with the notation x := b − c).
For any t, x, y ∈ R let

A :=
(

txy tx

ty t

)
∈ Mat∗(2, R).

Then from (3)

f(txy + tx + ty) + f(tx + ty + t) + f(txy − t)

= f(txy + tx + t) + f(txy + ty + t) + f(tx− ty)

follows, which implies, with the notation z := x − y (i.e., x = z + y), the
functional equation (6). ¤

Theorem 2. If R is a field and f ∈ S(R, G) then (5) holds, and for

any x, y, t ∈ R

f(x) + f [x(y + 1) + t(y2 + y + 1)] + f [xy + t(y2 + y + 1)](7)

− f [x(y + 1) + t(y2 + 2y)]− f [x + t(2y + 1)]

− f [xy + t(y2 − 1)] = 0.

Proof. If t 6= 0 then let z := t−1x in (6), where x ∈ R is arbitrary.
This implies the validity of (7) for any x, y ∈ R and t 6= 0 (t ∈ R). It is
easy to verify that (7) also holds for t = 0, and this completes the proof of
the theorem. ¤
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The above theorem shows that another type of functional equations
can be used to solve our problem. Functional equation (7) can also be
written in the following form: let f1 = f2 = f, f3 = f4 = f5 = −f and for
any y ∈ R fixed

ϕ1,y(x) = ϕ3,y(x) := (y + 1)x(8.0)
ϕ2,y(x) = ϕ5,y(x) := yx

ϕ4,y(x) := x (x ∈ R)

and

ψ1,y(t) = ψ2,y(t) := (y2 + y + 1)t(8.1)

ψ3,y(t) := (y2 + 2y)t
ψ4,y(t) := (2y + 1)t

ψ5,y(t) := (y2 − 1)t (t ∈ R).

With the above notation (7) implies

(9) f(x) +
5∑

i=1

fi[ϕi,y(x) + ψi,y(t)] = 0

for any x, t ∈ R and y ∈ R, where f, fi : R → G (i = 1, 2, 3, 4, 5) are
unknown functions and for a fix y ∈ R the functions

ϕi,y, ψi,y : R → R (i = 1, 2, 3, 4, 5)

are additive, (that is, fulfil the Cauchy functional equation a(x + y) =
a(x) + a(y) (x, y ∈ R), a : R → R). The type of functional equations
of form (9) is known for a fix y ∈ R, this is the so-called “linear” func-
tional equation (Székelyhidi [6], [7]), which can be solved generally under
certain conditions. The following results deal with this problem.

Let S and G be Abelian groups, n ∈ N, let ϕi, ψi be additive functions
from S into S, and let

(10) rg(ϕi) ⊆ rg(ψi) (i = 1, 2, . . . , n + 1).

If f, fi : G → G (i = 1, 2, . . . , n+1) satisfy the “linear” functional equation

f(x) +
n+1∑

i=1

fi[ϕi(x) + ψi(t)] = 0
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for any x, t ∈ G then f : S → G fulfils the Fréchet equation

(11) ∆y1,y2,...,yn+1f(x) = 0

for all x, y1, y2, . . . , yn+1 ∈ S, where ∆y is the difference operator, i.e., for
f : S → G and y ∈ S ∆yf(x) := f(x + y)− f(x) for any x ∈ S.

If G is a torsion-free Abelian group in which multiplication by any
positive integer is bijective then G is a linear space over the field Q of
the rationals. In this case the following theorem is true. If S and G are
Abelian groups and G is a linear space over Q then f : S → G is the
solution of the Fréchet equation (11) if and only if f is a polynomial of
degree at most n.

The notion of polynomials on a group was introduced by S. Mazur

and W. Orlicz [9], M. Fréchet [8], and G. Van der Lijn [10] and
means the following. Let k ∈ N, and let Ak : Gk → S be a k-additive
(i.e., additive in all variables), and symmetric function. For k = 0 let
A0 : G → S be the constant function (i.e., there exists a0 ∈ S such that
A0(x) = a0 for any x ∈ S). In this case let

(12) A∗k(x) := Ak(x, x, . . . , x) (x ∈ G, k = 0, 1, 2, . . . )

be the so-called diagonal of Ak. A function p : G → S is called a polyno-
mial of degree at most n if there exist k-additive, symmetric functions Ak

(k = 0, 1, . . . , n) such that

(13) p =
n∑

k=0

A∗k.

According to the above results, in the following we assume that

(i) G is an Abelian group which is a linear space over Q, and
(ii) R is a field of characteristic zero.

Theorem 3. If R is a field of characteristic zero, G is a linear space

over the field Q of the rationals, and f ∈ S(R, G) then there exist k-

additive, symmetric functions Ak : Rk → G (k = 4, 2, 0, G0 := G) such

that

(14) f(x) = A∗4(x) + A∗2(x) + A∗0

holds for any x ∈ R.
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Proof. In this case f satisfies the functional equation (7) for all
x, t, y ∈ R. Let y = 2 in (7). Then

f(x) + f(3x + 7t) + f(2x + 7t)− f(3x + 8t)− f(x + 5t)− f(2x + 3t) = 0

for any x, t ∈ R, and with the notations of (8.0) and (8.1) the functional
equation

(15) f(x) +
5∑

i=1

fi[ϕi,2(x) + ψi,2(t)] = 0

holds for all x, t ∈ R. Since in (15)

rg(ϕi,2) = rg(ψi,2) = R (i = 1, 2, 3, 4, 5)

in R, which is a field of characteristic zero, therefore f is a polynomial of
degree at most 4, that is,

(16) f(x) =
4∑

k=0

A∗k(x) (x ∈ R),

where Ak : Rk → G are k-additive, symmetric functions. On the other
hand, from (16) we get

(17) f(−x) = A∗4(x)−A∗3(x) + A∗2(x)−A∗1(x) + A∗0

for all x ∈ R, which implies, as a consequence of equations (5), (16)
and (17),

f(x) =
f(x) + f(−x)

2
= A∗4(x) + A∗2(x) + A∗0

for any x ∈ R. ¤

Theorem 3 does not state that the final form of f is (14), only that f

has the representation (14). This however does not imply that the func-
tions of the form (14) satisfy the functional equation (3). Therefore in the
following we shall examine under which (other) conditions a function of
the form (14) belongs to S(R, G).
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3. On the polynomial solutions

In the following R is a commutative ring with identity, and G is linear
space over the field Q of the rationals. Let Ak : Rk → G (k = 4, 2, 0) be
k-additive and symmetric functions given and, according to (14), let

(18) f = A∗4 + A∗2 + A∗0 (f : R → G).

We shall examine what conditions are necessary and sufficient for the func-
tion f defined in (18) to belong to S(R, G).

Theorem 4. If the function f defined in (18) is in S(R, G) then A∗k ∈
S(R,G) if k = 4, 2, 0.

Proof. The assertion is trivial for A∗0. So if f ∈ S(R, G) then g :=
(f −A∗0) ∈ S(R,G). On the other hand, note that if g ∈ S(R, G) then the
function

g2(x) := g(2x) (x ∈ R)

is an element of S(R, G), too. This implies that the function

1
12

[g(2x)− 4g(x)] =
1
12

[A∗4(2x) + A∗2(2x)− 4A∗4(x)− 4A∗2(x)]

=
1
12

[16A∗4(x) + 4A∗2(x)− 4A∗4(x)− 4A∗2(x)] = A∗4(x) (x ∈ R)

also belongs to S(R, G), from which A∗2 ∈ S(R, G) follows, as well. ¤

Theorem 5. A∗2 ∈ S(R, G) if and only if

(19) A∗2(x) = A2(x2, 1) (x ∈ R).

Proof. Let x ∈ R be arbitrary, and let

A =
(

x2 x

x 1

)
.

Then DA∗2 (A) = 0 holds if and only if

A∗2(x
2 + 2x) + A∗2(2x + 1) + A∗2(x

2 − 1) = 2A∗2(x
2 + x + 1).
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By the binomial theorem for multiadditive functions (see [6] for details),
from this

A∗2(x
2) + 2A2(x2, 2x) + A∗2(2x) + A∗2(2x) + 2A2(2x, 1) + A∗2(1)

+A∗2(x
2) + 2A2(x2,−1) + A∗2(−1)

= 2A∗2(x
2) + 4A2(x2, x) + 4A2(x2, 1) + 2A∗2(x) + 4A2(x, 1) + 2A∗2(1)

follows, whence
A∗2(x) = A2(x2, 1),

so (19) holds. On the other hand, the Ramanujan identity implies that
the function x 7→ A2(x2, 1) (x ∈ R) belongs to S(R,G). ¤

Theorem 6. A∗4 ∈ S(R, G) if and only if

(20) A∗4(x) = A4(x4, 1, 1, 1) (x ∈ R).

Proof. Let Let x ∈ R be arbitrary, and let

A =
(

x2 x

x 1

)
, and A′ =

(
x2 −x

−x 1

)
.

Then DA∗4 (A) = 0 and DA∗4 (A
′) = 0 hold if and only if

(21) A∗4(x
2 + 2x) + A∗4(2x + 1) + A∗4(x

2 − 1) = 2A∗4(x
2 + x + 1),

and

(22) A∗4(x
2 − 2x) + A∗4(−2x + 1) + A∗4(x

2 − 1) = 2A∗4(x
2 − x + 1).

Adding the two equations then using the binomial theorem, and the fact
that

A∗4(a + b) + A∗4(a− b) = 2A4(a, a, a, a) + 12A4(a, a, b, b) + 2A4(b, b, b, b),

we have

5A4(x, x, x, x) = 2A4(x2, x2, x2, 1) + 2A4(x2, 1, 1, 1)(23)

− 2A4(x2, x2, x, x) + A4(x2, x2, 1, 1)

− 2A4(x, x, 1, 1) + 4A4(x2, x, x, 1).
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If in (23) we put 2x for x, then subtract the equation from (23) multiplied
by 26 we obtain

10A4(x, x, x, x) = 5A4(x2, 1, 1, 1)− 5A4(x, x, 1, 1)(24)

+ 2A4(x2, x2, 1, 1) + 8A4(x2, x, x, 1).

Now replacing x by 2x in (24) again, then subtracting the equation from
(24) multiplied by 22, we get

(25) 5A4(x, x, x, x) = A4(x2, x2, 1, 1) + 4A4(x2, x, x, 1),

and similarly we get that expressions of the same degree must be equal.
The equalities involving odd degrees follow from (21) and (22) similarly.

A4(x2, 1, 1, 1) = A4(x, x, 1, 1),(26.1)

A4(x2, x, 1, 1) = A4(x, x, x, 1),

A4(x2, x2, x, 1) = A4(x2, x, x, x),(26.2)

A4(x2, x2, x2, 1) = A4(x2, x2, x, x).

Putting x + 1 instead of x in (26.2), we have

A4(x2 + 2x + 1, x2 + 2x + 1, x + 1, 1) = A4(x2 + 2x + 1, x + 1, x + 1, x + 1).

Using the binomial theorem and the above equations, we obtain

2A4(x, x, x, x) = A4(x2, x2, 1, 1) + A4(x2, x, x, 1),

which together with (25) gives

A4(x, x, x, x) = A4(x2, x2, 1, 1).

Now, using equation (26.1), we have

A4(x, x, x, x) = A4(x4, 1, 1, 1),

which was to be proved. Again, the Ramanujan identity implies that the
function x 7→ A∗4(x

4, 1, 1, 1) (x ∈ R) is in S(R, G) . ¤
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4. The main result, problems

On the basis of the previous results, the following main result can be
stated.

Theorem 7. Let R be a field of characteristic zero, and G a linear

space over the field of the rationals. Then f ∈ S(R, G) if and only if there

exist additive functions ai : R → G (i = 1, 2), and a0 ∈ G such that

(27) f(x) = a2(x4) + a1(x2) + a0

for all x ∈ R.

Proof. Theorems 3, 4, 5, and 6 imply that if f ∈ S(R, G) then there
exist k-additive and symmetric functions Ak : Rk → G (k = 4, 2, 0) for
which

f(x) = A∗4(x) + A∗2(x) + A∗0 = A4(x4, 1, 1, 1) + A2(x2, 1) + A0

for all x ∈ R. With the notations a2(x) := A4(x, 1, 1, 1), a1(x) := A2(x, 1)
and a0 := A0 (x ∈ R) we have (23). On the other hand, earlier we proved
that the functions of the form (23) are elements of S(R, G) indeed. ¤

It is clear from the above investigations that results similar to Theo-
rem 7 cannot be expected for an arbitrary commutative ring with identity.
The case of fields of non-zero characteristic also seems to be worth ex-
amining. Our method breaks down for such fields, since the condition
rg(ϕ) ⊆ rg(ψ) does not hold for the additive functions in question. So
we think the following problem is still open and interesting. Let G be a
linear space over the field of the rationals. Is there any field R of non-zero
characteristic such that the solution set S(R, G) contains elements that
are not polynomials?
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