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On a system of norm-equations
over cyclic cubic number fields

By ATTILA PETHŐ∗ (Debrecen) and HORST G. ZIMMER (Saarbrücken)

Abstract. We determine all units η belonging to the ring of integers of cyclic
cubic number fields and such that the absolute norm of η2 − 11η − 1 is ±5n, n ∈ Z,
n ≥ 0. Applying this result we determined all elliptic curves over cyclic cubic number
fields such that their torsion groups are isomorphic to Z/5Z.

1. Introduction and the Theorem

Let Norm(α) respectively Disc(α) denote the (absolute) norm respec-
tively the (absolute) discriminant of an algebraic integer α. In the present
paper we determine all cubic algebraic integers η, which satisfy the follow-
ing conditions:

Norm(η) = ε,(1)

Norm(η2 − 11η − 1) = ε1 · 5n,(2)

Disc(η) = y2,(3)

where ε, ε1 {1,−1} and n ≥ 0 is an integer.
This task arose in connection with our investigation of elliptic curves

over algebraic number fields. Specifically, in the papers [3], [6], [7], [10],
[11], [13] we determined all torsion groups of elliptic curves E with integral
j-invariant over quadratic, cubic and certain biquadratic number fields K.
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318 A. Pethő and H. G. Zimmer

Under these restrictions on the curves E and fields K, there is only a finite
family of possible torsion groups Etors(K) of E over K. This is due to the
fact that the restrictions entail bounds for the order of Etors(K) which are
stronger than the bound established by Merel [5] in the general case of
an arbitrary elliptic curve over any algebraic number field K.

Furthermore, with the exception of groups of small order in the family,
the possible torsion groups Etors(K) can occur only for a finite set (up to
isomorphism) of elliptic curves E over a finite set of number fields K, and
these finite sets can all be computed by solving certain norm equations for
a parameter η by which both the curves and the fields are determined.

The exceptional torsion groups of small order occurring for infinitely
many curves E and fields K are those exhibited in the following list. Over
quadratic and pure cubic fields these are the groups

Etors(K) ∼= Z/2Z, Z/3Z and Z/2Z× Z/2Z,

and over cyclic cubic fields, the group

Etors(K) ∼= Z/4Z

has to be added to the list.
It was proved in [11], Corollary (13), that an elliptic curve E over

a cubic number field K has a torsion group containing Z/5Z if and only
if K = Q(η) for a cubic algebraic integer η satisfying (1) and (2) with
0 ≤ n ≤ 9. We proved in [9] that there exist, for any fixed n 6= 1, infinitely
many cubic algebraic integers η satisfying (1) and (2). (See also the remark
after Lemma 1 below.) Hence over general cubic fields, the group

Etors(K) ∼= Z/5Z

also appears in the list of exceptional groups. Is this true also for curves
E over cyclic cubic fields K?

The determination of all elliptic curves with integral j-invariant over
cyclic cubic fields having torsion group isomorphic to Z/5Z gives rise to
the system of equations (1)–(3). Solving these equations represents an
interesting diophantine problem, because it leads to a mixed exponential-
polynomial equation (equation (10) below), for which no general theory
exists. A priori , not even the finiteness of the number of solutions is
guaranteed. However, by employing properties of Fibonacci and Lucas
numbers and by using generalizations of sieving methods of Cohn [1] and
Ribenboim [12], we are able to completely solve the system of equations
(1)–(3). In fact we prove the following theorem.
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Theorem. Let n ≥ 0 be an integer, ε, ε1 ∈ {1,−1}, and denote by

K a cyclic cubic number field. Assume that there exists an η ∈ ZK, the

ring of integers of K, which satisfies the system of equations (1)–(3). Then

either η or −1/η is a zero of one of the eight polynomials P (z) listed in

Table 1 below, and we have K = Q(η).

In Table 1, D(P (z)) and DK denote the discriminant of P (z) and K,
respectively.

No. P (z) D(P (z)) DK n

1 z3 − 12z2 + 9z + 1 (32 · 13)2 (32 · 13)2 0
2 z3 − 12z2 + 35z + 1 (5 · 13)2 132 4
3 z3 + 3z2 − 160z + 1 (52 · 163)2 1632 4
4 z3 − 17z2 − 25z + 1 (23 · 5 · 13)2 132 5
5 z3 − 13z2 + 10z + 1 1392 1392 0
6 z3 − 14z2 + 11z + 1 1632 1632 2
7 z3 − 9z2 + 6z + 1 (32 · 7)2 (32 · 7)2 3
8 z3 + 3z2 − 10z + 1 (5 · 13)2 132 5

Table 1.

2. Auxiliary results

In the sequel we denote by {Fn}∞−∞ and {Ln}∞−∞ the sequence of
Fibonacci and Lucas numbers, respectively. They are given by the initial
conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1 and satisfy the difference
equation

xn+1 = xn + xn−1.

For later applications, we list several well known properties of these
sequences. The proofs can be found in [1] or can be easily given by using
the methods of [1].

(P1) If x, y ∈ Z is a solution of the diophantine equation

x2 − 5y2 = ±4

then (x, y) = (±Lm,±Fm) for some integer m ∈ Z≥0.
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(P2)

F−n =
{

Fn, if n is odd

−Fn, if n is even
and

L−n =
{ −Ln, if n is odd

Ln, if n is even.

(P3) 2Fn+m = FmLn + FnLm.

(P4) 2Ln+m = LmLn + 5FmFn.

(P5) Let n = ±2α · 3β · k for α, β ∈ Z≥0 with α ≥ 2 and k ∈ Z such that
gcd(k, 6) = 1. Then, for any m ∈ Z,
Fn+m ≡ −Fm (mod L2α−2k) and
Ln+m ≡ −Lm (mod L2α−2k).

(P6) For any M ∈ N, the modular sequences {Fm mod M}∞−∞ and
{Lm mod M}∞−∞ are periodic.
The minimal length of period of the corresponding modular sequence
will be denoted by r(M) = rF (M) and rL(M), respectively. We have
rL(M) | rF (M).

(P7) 5 | Fn if and only if 5 | n.

(P8) If k ∈ N is odd, then Ln | Lkn for any n ∈ Z.

Using these properties of Fibonacci and Lucas numbers we first char-
acterize the solutions of the system (1) and (2) in cubic fields.

Lemma 1. Let ε = −1, K a cubic number field and η ∈ ZK a solution
of the system (1) and (2). Then there exist an m ∈ Z≥0 and ε2, ε3 ∈
{1,−1} such that η is a zero of the polynomial

P (z) := P (z; k, m, ε2, ε3) = z3 + (−12 + ε25kGm)z2

+ (10 + ε2ε35kGm−5ε3)z + 1,

where

Gm =





Fm, if n = 2(k + 1), k ∈ Z≥0

Lm, if n = 2(k + 1) + 1, k ∈ Z≥0

F5m, if n = 0, k = −1.

For n = 1, the system (1) and (2) has no solution.
Conversely, if η is a zero of the polynomial P (z; k,m, ε2, ε3) and

K = Q(η), then η is a solution of the system (1) and (2) in ZK.
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Remarks. (a) It follows immediately from Lemma 1 that for any n ∈
Z≥0, n 6= 1, there exist infinitely many cubic fields in which the system
(1) and (2) is solvable.

(b) Let us fix a cubic number field K. By the same argument as in
Fung et al. [3], one can easily show that n is bounded and the system (1)
and (2) has only finitely many effectively computable solutions η ∈ ZK.
But their method appears to be not capable of showing that there exist
only finitely many cyclic cubic fields, for which the system (1) and (2) is
solvable.

The Lemma could be proved by using the Theorem of [9], but we
prefer here to argue directly.

Proof of Lemma 1. Suppose that η ∈ ZK solves (1) and (2). Let
P (z) = z3 − vz2 + m1z + 1 and let Q(z) denote the minimal polynomial
of η and η2 − 11η − 1, respectively. We wish to determine the coefficients
v and m1. To this end we put S(z) = z2− 11z− 1. Then Q(z) divides the
resultant

Q1(z) = Resy(z − S(y), P (y))

by Theorem 8 in [2]. A simple computation using MAPLE V results in

Q1(z) = z3 − (v2 − 11v − 2m1 − 3)z2

− (2v2 − 24v + 11vm1 −m2
1 − 125m1 + 30)z

− v2 + 134v − 11vm1 + m2
1 + 112m1 − 1364,

thus Q1(z) = Q(z). Since the constant term of Q(z) is the negative of the
norm of η2 − 11η − 1, i.e. the negative of ε15n, we obtain the following
quadratic equation for the integer m1:

m2
1 −m1(11v − 112)− v2 + 134v − 1364− ε15n = 0.

Multiplying this equation by 4 and putting w = 2m1−11v+112 we obtain
the equations

Q1(0) = w2 − 125(−v + 12)2 = −4ε1 · 5n = ±4 · 5n,(4)

m1 =
11v − 112 + w

2
.(5)
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Equation (4) is obviously unsolvable for n = 1, hence our assertion is true
in this case. Now, in order to determine v and w and a fortiori m1, we
distinguish three cases.

Case 1. Let n = 2(k + 1) with k ∈ Z≥0 and suppose that v, w ∈ Z
represent a solution of (4). We claim that there exists an m ∈ Z≥0 such
that w = ε4 · 5k+1Lm and −v + 12 = ε2 · 5k · Fm with ε2, ε4 ∈ {1,−1}.
Once these expressions for w and v have been established, the assertion of
Lemma 1 follows immediately.

Of course, the claim is true for k = 0, for we then have w = 5w1 with
w1 ∈ Z and, after division by 25, equation (4) becomes

w2
1 − 5(−v + 12)2 = ±4.

We can then apply (P1) to get the asserted expressions for v and w.
Suppose now that the claim is true for a k ≥ 0. Then, as

w2 − 125(−v + 12)2 = ±4 · 52(k+2),

we have w = 5w1 with w1 ∈ Z and 5 | (−v + 12). This yields

w2
1 − 125

(−v + 12
5

)2

= ±4 · 52(k+1).

The claim is thus proved by induction on k.
Next we are going to determine m1. On inserting the values of v and

w into (5), we obtain

m1 =
11(12− ε2 · 5kFm)− 112 + ε4 · 5k+1Lm

−2

= 10 + 5k−11ε2Fm + 5ε4Lm

2
.

We have F5 = F−5 = 5 and −L5 = L−5 = −11 by (P2), hence by (P3)

m1 =
{

10 + 5kε2Lm−5, if ε2 = ε4

10− 5kε2Fm+5, if ε2 = −ε4,

which can be summarized in the form m1 = 10 + 5kε2ε3Fm−5ε3 . This
proves Lemma 1 in Case 1.
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Case 2. Let n = 2(k + 1) + 1 with k ∈ Z≥0. This case can be treated
analogously to Case 1. One needs only observe that, for odd n’s, the roles
of w and −v + 12 are to be interchanged. Furthermore, in the final step,
one has to use (P4) instead of (P3).

Case 3. Let n = 0. Then (4) becomes

w2 − 5(5(−v + 12))2 = ±4.

Hence, by (P1), we have w = ε3Lm′ and 5(−v + 12) = ε2 · Fm′ for some
m′ ∈ Z≥0 and with ε2, ε3 ∈ {1,−1}. By (P7), we know that 5 | m′ and
hence, on putting m′ = 5m, the relations

−v = −12 + ε2 · 5kF5m and w = ε3L5m

hold for k = −1. Now m1 can be transformed into the asserted form as in
Case 1.

Finally we prove the converse assertion. Let η be a zero of the poly-
nomial P (z; k,m, ε2, ε3) and put K = Q(η). It is easy to see that P (z)
is irreducible over Q for any choice of the parameters k, m, ε2, ε3. Thus η
has Norm(η) = −1.

Using the notation of the beginning of the proof, we obtain

v = 12− ε25kGm and m1 = 10 + ε2ε35kGm−5ε3 .

This implies

w = 2m1 − 11v + 112 = ε25k(2ε3Gm−5ε3 + 11Gm).

Let, for example, n = 2(k + 1), hence Gm = Fm. Then we obtain

w = ε25k(2ε3Fm−5ε3 + 11Fm) = ±ε25k+1Lm

by (P3) and (P2). Thus,

4Q1(0) = w2 − 125(−v + 12)2 = 52(k+1)(L2
m − 5F 2

m) = ±4 · 5n

by (4) and (P1). Hence Norm(η2−11η−1) = ±5n as asserted. The proofs
of the other cases are similar. ¤

In the sequel,
(

x
m

)
will denote the Jacobi symbol for coprime integers

x,m. Further, if x ∈ Z and m ∈ N, then x (mod m) will denote the
smallest non-negative residue of x with respect to the modulus m. The
following two lemmata play a crucial role in the proof of the Theorem.
They are generalizations of Lemmata 2 and 3 in [2].
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Lemma 2. Fix an integer h, a polynomial H(x, y) ∈ Z[x, y], a set

P = {p1, . . . , pt} of primes, and let {Gm} be one of the sequences defined

in Lemma 1. Let r(p) denote the minimal period of the modular sequence

{Gm mod p} for p ∈ P, put lcm[r(p1), . . . , r(pt)] = R and choose M =
{m1, . . . , ms} as a set of integers satisfying 0 ≤ m1 < m2 < · · · < ms < R.

If, for each m ∈M, there exists a p ∈ P such that

(6)
(

H(Gm, Gm+h)
p

)
= −1,

then any solution x, z ∈ Z of the diophantine equation

(7) H(Gx, Gx+h) = z2

satisfies the incongruences x 6≡ mi (mod R) for 1 ≤ i ≤ s.

Before giving the proof, we formulate a simple consequence of Lem-
ma 2, which is very useful with respect to proofs of the unsolvability of
diophantine equations of form (7).

Corollary. If, for each 0 ≤ m < R, there exists a p ∈ P such that (6)
holds, then (7) has no solution x, z ∈ Z.

Proof of Lemma 2. Suppose that x, z ∈ Z is a solution of (7) such
that x (mod R) ∈ M. We may assume without loss of generality that
x ≡ m1 (mod R). For x, z ∈ Z to be a solution of (7), it is necessery that

(
H(Gx, Gx+h)

p

)
= 1

for any prime number p.
On the other hand, by hypothesis, there exists a prime p ∈ P such

that (
H(Gm1 , Gm1+h)

p

)
= −1.

As x≡m1 (mod R) and r(p) | R, we have a fortiori x≡m1 (mod r(p)),
so that Gx ≡ Gm1 (mod p) and Gx+h ≡ Gm1+h (mod p). Hence

H(Gx, Gx+h) ≡ H(Gm1 , Gm1+h) (mod p).

Therefore, the above two equations for the Legendre symbol are contra-
dictory. This proves Lemma 2. ¤
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Lemma 2 serves the purpose of restricting the solutions of (7) to a set
of fixed residue classes mod R. By enlarging the set P, we end up with
another set of residue classes with respect to a larger modulus R′ > R,
whose elements are potential solutions of (7). Unfortunately, in this way
one does not obtain a complete set of solutions of (7). For if we fix a
set P and the corresponding modulus R, then for one solution x0 ∈ Z
of (7), the quantity H(Gx, Gx+h) is a quadratic residue mod R for all
x ∈ Z appertaining to the residue class x0 (mod R). Therefore, already
for a fixed modulus R, all elements x in the residue class x0 (mod R)
constitute potential solutions of (7).

This observation shows that, in order to solve (7), we need another
auxiliary result. The next lemma will show that, in a fixed residue class
with respect to a sufficiently large modulus R, at most one integer x can
constitute a solution of (7). The lemma at the same time also provides a
method for constructing the modulus R.

Lemma 3. Let H(x, y) ∈ Z[x, y] be a plynomial, take m0, h ∈ Z and

choose P = {p1, . . . , pt} as a set of primes with pi ≥ 5 for 1 ≤ i ≤ t.

Suppose that there exist a, b1, . . . , bt ∈ N such that, for any integer α ≥
a−1, there are integers β1, . . . , βt with 0 ≤ βi ≤ bi (i = 1, . . . , t) for which

(8)

(
H(−Gm0 ,−Gm0+h)

L
2αp

β1
1 ···pβt

t

)
= −1.

Then equation (7) has at most one solution x, z ∈ Z with x satisfying the

congruence

x ≡ m0 (mod 2a+1pb1
1 · · · pbt

t ),

namely x = m0.

Proof. Let x, z ∈ Z be a solution of (7) with x=m0+2a+1pb1
1 · · · pbt

t ·n
for 0 6= n ∈ Z. Write n = ±2c ·3dn1 with n1 odd and 3 - n1. Then we have
L

2a+c−1p
b1
1 ···pbt

t
| L

2a+c−1p
b1
1 ···pbt

t ·n1
by (P8), and by (P5) it then follows that

Gx ≡ −Gm0 (mod L
2a+c−1p

b1
1 ···pbt

t
)

and
Gx+h ≡ −Gm0+h (mod L

2a+c−1p
b1
1 ···pbt

t
).
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Therefore,

(9) H(Gx, Gx+h) ≡ H(−Gm0 ,−Gm0+h) (mod L
2a+c−1p

b1
1 ···pbt

t
).

Choose α = a + c − 1 ≥ a − 1. Then, by hypothesis, (8) holds for
some (α, β1, . . . , βt) with 0 ≤ βi ≤ bi, 1 ≤ i ≤ t. By (P8), we know that
L

2αp
β1
1 ···pβt

t
| L

2αp
b1
1 ···pbt

t
, and then (9) yields

H(Gx, Gx+h) ≡ H(−Gm0 ,−Gm0+h) (mod L
2αp

β1
1 ···pβt

t
).

This congruence, together with (8), contradicts the hypothesis that
x, z ∈ Z form a solution of (7). The lemma is proved. ¤

3. Proof of the Theorem

At this stage we have at hand most of the auxiliary results which we
need in order to prove our Theorem. We shall see that the Theorem is a
direct consequence of the following proposition.

Proposition. Put

D(u,w) = 15125 + 1464w − 3948u− 462uw + 24w2

− 24uw2 + 244u2 + 20u2w + u2w2 − 4u3 − 4w3

and let {Gm}∞−∞ be one of the sequences defined in Lemma 1. Then the

diophantine equation

(10) D(ε25kGm, ε2ε35kGm−5ε3) = y2

has only the following solutions in non-negative integers k, m, y, and
ε2, ε3 ∈ {−1, 1}:

Fm : (k, m, y, ε2, ε3) (1, 0, 65, 1, 1) (1, 4, 4075, 1,−1) (0, 3, 163,−1, 1)
Lm : (1, 1, 520,−1, 1) (0, 2, 63, 1, 1) (1, 2, 65, 1, 1)
F5m

5
: (−1, 0, 117, 1,−1) (−1, 5, 139,−1, 1).

Before proving the Proposition we shall show how it implies the The-
orem.

Proof of the Theorem. Let η be a solution of (1) and (2) with ε =
−1. Then −1/η solves (1) and (2) with ε = 1, thus, in the sequel, we may
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assume that ε = −1. Then, by Lemma 1, η is a zero of P (z; k, m, ε2, ε3)
for some values of the parameters k,m, ε2, ε3. It is well-known that the
discriminant of a defining polynomial of a cyclic cubic number field is the
square of an integer. Therefore the discriminant of η has to be a square.

Let

p(z; u,w) = z3 + (−12 + u)z2 + (10 + w)z + 1

so that we have

p(z; ε25kGm, ε2ε35kGm−5ε3) = P (z; k, m, ε2, ε3).

A simple computation shows that the discriminant of p(z;u,w) is D(u,w).
Thus to determine all cyclic cubic number fields which contain an element
η satisfying (1) and (2), it is enough, by Lemma 1, to solve (10) for the
recursive sequences Gm = Fm, Lm and F5m/5.

The solutions of (10) given in the Proposition yield the number fields
listed in the Theorem as 2., 3. and 5. for the Fibonacci sequence, as 4., 7.
and 8. for the Lucas sequence and as 1. and 6. for F5m/5. The Theorem
is thus proved. ¤

4. Proof of the Proposition

We first require another lemma.

Lemma 4. Equation (10) has no solution for k ≥ 2, m ≥ 0.

Proof. Let us first treat the case k ≥ 3, m ≥ 0 and ε2, ε3 ∈ {−1, 1}.
Then D = D(ε25kGm, ε2ε35kGm−5ε3) is an integer. We shall prove that
54 | (D − 15125). As 53‖15125, this implies that 53‖D and D cannot
be the square of an integer. In fact this assertion is trivially true for
k ≥ 4. Define A = 1464ε3Gm−5ε3 − 3948Gm. For k = 3, we have 56 |
(D − ε2 · 5kA− 15125), and we want to prove that 5 | A.

We obviously have

A ≡ 4ε3Gm−5ε3 + 2Gm (mod 5).

It is easy to see that Gm+5 = 8Gm + 5Gm−1 for any m ∈ Z, and this
implies that

A ≡
{ −32Gm + 2Gm, if ε3 = −1

4Gm−5 + 16Gm−5, if ε3 = 1
(mod 5).
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Thus A ≡ 0 (mod 5) in both cases. Therefore equation (10) is not solvable
for k ≥ 3.

Now we consider the case k = 2 and suppose first that n is odd. Then,
by Lemma 1, Gm = Lm. Since the relation 5 | A holds also for k ≤ 2,
we have 53 | D. Assume that (10) is solvable. Then we must even have
54 | D since D is a square. We shall prove that this is impossible. In fact,
if 54 | D, then

D ≡ 15125 + ε25k(1464ε3Lm−5ε3 − 3948Lm) ≡ 0 (mod 54).

On dividing by 25, we see that the quantity D1 := D/53 satisfies the
congruence

5D1 ≡ 5 + ε2(14ε3Lm−5ε3 + 2Lm) ≡ 0 (mod 25).

By virtue of the identity Lm+5 = 8Lm + 5Lm−1 we obtain

5D1 ≡
{ 5(1− 2ε2(Lm + 2Lm−1)), if ε3 = −1

5(1 + ε2(Lm−5 + 2Lm−6)), if ε3 = 1
(mod 25).

But it is easy to check that Lm +2Lm−1 ≡ 0 (mod 5) holds for any m ∈ Z,
hence D1 ≡ 1 (mod 5), in contradiction to 54 | D.

In the remaining case, when k = 2 and n is even, the solvability of
equation (8) cannot be disproved in the same way. This can be seen as
follows: We have Gm = Fm and obtain, by the same computation as
before, the condition

0 ≡ D1 ≡
{ 1− 2ε2(Fm + 2Fm−1), if ε3 = −1

1 + ε2(Fm−5 + 2Fm−6), if ε3 = 1
(mod 5).

Since it is easy to show that Fm + 2Fm−1 ≡ Lm (mod 5) for any m ∈ Z,
we see that D1 ≡ 0 (mod 5) holds for any choice of ε2 and ε3.

Therefore we must use a different argument. We invoke the Corollary
of Lemma 2, choosing H(x, y; ε2, ε3) = D(ε2 · 52x, ε2ε352y), h = −5ε3 and
the set of primes P = P1 = {3, 11, 17, 19, 31, 41, 61 , 107, 181, 541, 2521}.
Then one easily checks that r(p) | 360 for any p ∈ P1. We compute

J(m, p; ε2, ε3) =
(

H(Fm, Fm+h)
p

)
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for each 0 ≤ m < 360 and each p ∈ P1 and find a p = p(m, ε2, ε3) ∈ P1

with J(m, p; ε2, ε3) = −1 for every possible choice of ε2, ε3 ∈ {−1, 1} and
each 0 ≤ m < 360. Hence, by the Corollary, (8) is not solvable for k = 2
and n even, and thus Lemma 4 is completely proved. ¤

Proof of the Proposition. By Lemma 4, we need consider equation
(10) only for k = −1, 0, 1 . The proof, carried out essentially by means of
a computer, is divided into three steps.

Step 1. Exclusion of those triples (k, ε2, ε3) for which (10) is unsolvable
and computation of the small solutions m0 of (10) in the case of solvability.
This is achieved by means of Lemma 2.

Step 2. This is a search for a small set of primes which enables us to
exclude solutions of (10) by means of Lemma 3.

Step 3. By virtue of Lemma 2, we prove that if, for some triple
(k, ε2, ε3), m is a solution of (10), then

m ≡ m0 (mod 2a+1pb1
1 . . . pbt

t )

for some suitable primes p1, . . . , pt and integers a, b1, . . . , bt.
In what follows we specify the parameters used in each step and dis-

play the results of the computations.
In Step 1 we tested (10) for any possible choice of the parame-

ters (ε2, ε3, n, k), applying Lemma 2 with the set of primes P2 = P1 ∪
{5, 7, 23, 241, 2161}. We have r(p) | 720 for any p ∈ P2. In Table 2, we
display the result of the test. A number m0 in the table indicates that,
if m is a solution of (10), then m ≡ m0 (mod 720), while an asterisk ∗
indicates that, for that choice of parameters, (10) is not solvable.

(n, k) (5, 1) (3, 0) (4, 1) (2, 0) (0,−1)

(ε2, ε3)
(1, 1) 2 2 0 ∗ ∗

(1,−1) 718, 719 718 4 ∗ 0
(−1,−1) ∗ ∗ 0 717 719
(−1, 1) 1 ∗ 716 3 0, 1

Table 2.
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Using (P2), it is easy to check that

P (z; k,−m, ε2, ε3) =
{

P (z; k, m, ε2,−ε3), if m + n is odd

P (z; k, m,−ε2,−ε3), if m + n is even.

Hence, by Table 2, it is enough to consider the following quadruples:
(n, k, ε2, ε3) = (5, 1, 1, 1), (5, 1,−1, 1), (3, 0, 1, 1), (4, 1, 1, 1), (4, 1, 1,−1),
(2, 0,−1, 1), (0,−1, 1,−1), (0,−1,−1, 1). Let m0 = m0(n, k, ε2, ε3) de-
note the value shown at the corresponding place in Table 2. Define the
polynomial

H(x, y) = H(x, y; k, ε2, ε3) = D(ε25kx, ε2ε35ky).

In Step 2 we search for suitable sets P of primes for which we can
apply Lemma 3 with appropriate exponents a, b1, . . . , bt. In Table 3, we
summarize the result of this search. In the column Dm0 , we list the value of
D(−Gm0 ,−Gm0−5ε3) and in the rows, headed columnwise by the primes 2,
p1 = 5, . . . , p7 = 37, we display the respective exponents a, b1, . . . , bt for
which we were able to verify the hypothesis of Lemma 3. Here a hyphen
indicates that the corresponding prime did not enter into the calculation.

(n, k, ε2, ε3) m0 Dm0 2 5 7 11 13 17 31 37

(5, 1, 1, 1) 2 33 · 52 · 907 4 2 2 1 − − − −
(5, 1,−1, 1) 1 −25 · 52 · 337 3 2 1 − 1 − − −
(3, 0, 1, 1) 2 47 · 911 5 2 − − − − − −
(4, 1, 1, 1) 0 33 · 52 · 83 4 2 − − − − − −

(2, 0,−1, 1) 3 7537 3 2 1 1 − 1 1 1
(4, 1, 1,−1) 4 33 · 52 · 419 4 2 1 − 1 − − −

(0,−1, 1,−1) 0 17 · 977 3 1 2 1 − − − −
(0,−1,−1, 1) 1 72 · 233 3 1 2 − − − − −

Table 3.

In Step 3 we prove that, if m = m(n, k, ε2, ε3) solves (10), then

(11) m ≡ m0 (mod 2a · 5b1 · 7b2 · 11b3 · 13b4 · 17b5 · 31b6 · 37b7)
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for the numbers a, b1, . . . , b7 listed in the row (n, k, ε2, ε3) of Table 3. In-
deed, if we are able to verify (11), then, by Lemma 3, we conclude that
m = m0.

For this purpose we once again apply Lemma 2, this time for the
following eight sets of primes corresponding to the eight cases of Table 3.
The associated values of R are also listed.

P3 = {3, 7, 11, 13, 29, 41, 71, 97, 101, 151, 281, 401, 491, 701, 911, 1471,

2161, 2801, 3001},
R = 16900 = 24 · 52 · 72

P4 = {13, 17, 19, 29, 83, 97, 107, 167, 211, 281, 293, 421, 503, 587, 1009,

1427, 3527, 3529},
R = 24 · 32 · 72

P5 = {3, 7, 23, 47, 127, 383, 769, 1087, 1103, 2207, 3167},
R = 28 · 3
P6 = {43, 89, 197, 199, 263, 307, 331, 661, 881, 967, 991, 1321, 2179, 2731,

3169},
R = 7920 = 24 · 32 · 11 · 5
P7 = {79, 103, 131, 233, 467, 521, 859, 1171, 1249, 1637, 1951, 2081, 2341,

2731, 3121},
R = 24 · 32 · 5 · 13 = 9360

P8 = {3, 7, 11, 23, 31, 41, 61, 67, 409, 919, 1021},
R = 4080 = 24 · 3 · 5 · 17

P9 = {3, 7, 11, 23, 31, 41, 61, 557, 743, 2417, 311, 1489, 1861, 2791, 3347},
R = 22320 = 24 · 32 · 5 · 31

P10 = {3, 7, 11, 23, 31, 41, 61, 73, 149, 443, 887, 2663, 1481, 3331, 2221},
R = 8880 = 24 · 3 · 5 · 37.

On employing these sets of primes, one verifies that Table 3 contains
all solutions of equation (8). This proves the Proposition. ¤
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