Starlikeness properties of meromorphic \boldsymbol{m}-valent functions

By MARGIT PAP (Cluj-Napoca and Pécs)

Abstract

We find conditions regarding the values of β such that $F(z)$ given by $(*)$ is nonvanishing, when $f \in \Sigma_{m, n}^{*}(\alpha)$ with $n \geq-m+1$ and employ a differential subordination technique, for certain conditions on β, to obtain the sharpest value of $\delta=\delta(\alpha, \beta, \gamma, m, n)$ such that

$$
I_{\beta, \gamma}^{m}\left(\Sigma_{m, n}^{*}(\alpha)\right) \subset \Sigma_{m, n}^{*}(\delta) \subset \Sigma_{m, n}^{*}(\alpha)
$$

1. Introduction

Let $\Sigma_{m, n}$ be the class of meromorphic m-valent functions f defined in $\dot{U}=\{z \in \mathbb{C}, 0<|z|<1\}$ of the form

$$
f(z)=\frac{1}{z^{m}}+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots
$$

where m and n are integers such that $m>0$ and $n \geq-m+1$.
A function $f \in \Sigma_{m, n}$ is called starlike of order $\alpha, 0 \leq \alpha<m$ if

$$
\operatorname{Re}\left(\frac{-z f^{\prime}(z)}{f(z)}\right)>\alpha
$$

Let $\Sigma_{m, n}^{*}(\alpha)$ be the class of all such functions.

[^0]Let γ, β be real numbers, $\gamma>0$ and let us define the integral operator $I_{\gamma, \beta}^{m}: \Sigma_{m, n}^{*}(\alpha) \rightarrow \Sigma_{m, n}$,
$(*) \quad I_{\gamma, \beta}^{m}(f)(z)=F(z)=\left(\frac{\gamma}{z^{\gamma+m \beta}} \int_{0}^{z} t^{\gamma+m \beta-1} f^{\beta}(t) d t\right)^{1 / \beta}, \quad z \in \dot{U}$.
In [1], [2] and [3] Hasson Al-Amiri and Petru T. Mocanu have investigated the properties of functions f belonging to $\Sigma_{1, n}^{*}(0)=\Sigma_{n}^{*}$ for $n>0$. In [4] M.K. Aouf and M. Hossen obtained some interesting results concerning the function f from $\Sigma_{m, n}$ with $n \geq 0$.

In this paper we extend a part of results of H. Al-Amiri and P.T. MoCANU for f belonging to $\Sigma_{m, n}^{*}(0)=\Sigma_{m, n}^{*}$ with $n>0$ and other results for f belonging to $\Sigma_{m, n}^{*}$ with $n \geq-m+1$.

Moreover, we find conditions regarding the values of β such that $F(z)$ given by $(*)$ is nonvanishing, when $f \in \Sigma_{m, n}^{*}(\alpha)$ with $n \geq-m+1$ and employ a differential subordination technique, for certain conditions on β, to obtain the sharpest value of $\delta=\delta(\alpha, \beta, \gamma, m, n)$ such that

$$
I_{\beta, \gamma}^{m}\left(\Sigma_{m, n}^{*}(\alpha)\right) \subset \Sigma_{m, n}^{*}(\delta) \subset \Sigma_{m, n}^{*}(\alpha)
$$

In the case of holomorphic m-valent functions similar results were obtained by Ponnusamy [5].

2. Preliminaries

We will need the following definitions and lemmas to prove our main results.

If f and g are holomorphic functions in the unit disc U and if g is univalent, then we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if $f(0)=g(0)$ and $f(U) \subset g(U)$. The holomorphic function h, with $h(0)=0$ and $h^{\prime}(0) \neq 0$ is starlike in U (i.e. h is univalent in U and $h(U)$ is starlike with respect to the origin) if and only if $\operatorname{Re}\left[z h^{\prime}(z) / h(z)\right]>0$ for $z \in U$.

The holomorphic function h in U is convex (i.e. h is univalent and $h(U)$ is convex domain) if $f^{\prime}(0) \neq 0$ and

$$
\operatorname{Re} \frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1>0, \quad \text { for } z \in U
$$

Lemma A [2]. Let n be a positive integer and α be real, with $0<$ $\alpha<n$. Let q be holomorphic in U, with $q(0)=0, q^{\prime}(0) \neq 0$ and suppose that
i) $\operatorname{Re} \frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1>\frac{\alpha}{n}$.

Let
ii) $h(z)=n z q^{\prime}(z)-\alpha q(z)$.

If $p(z)=p_{n} z^{n}+\cdots$ is holomorphic in U and $z p^{\prime}(z)-\alpha p(z) \prec h(z)$, then $p(z) \prec q(z)$ and this result is sharp.

Lemma B [3]. Let n be a positive integer, let $\lambda>0$ and let $\beta^{*}=$ $\beta^{*}(\lambda, n)$ be the solution of the equation $\beta \pi-2 \operatorname{arctg}(n \lambda \beta)=0$. Let $\alpha=$ $\alpha(\beta, \lambda, n)=\frac{2}{\pi} \operatorname{arctg}(n \lambda \beta)-\beta$ for $0<\beta \leq \beta^{*}$.

If $p(z)=1+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots$ is analytic in U, then

$$
p(z)-\lambda z p^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

implies

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta} .
$$

Lemma C [3]. Let n be a positive integer, $\lambda>0, \beta^{*}=\beta^{*}(\lambda, n)$ be the solution of the equation $\beta \pi=\frac{3 \pi}{2}-\operatorname{arctg}(n \lambda \beta)$. Let $\alpha=\alpha(\beta, \lambda, n)=$ $\beta+\frac{2}{\pi} \operatorname{arctg}(n \lambda \beta)$ for $0<\beta<\beta^{*}$. If $p(z)=1+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots$ is analytic in U, then

$$
p(z)+\lambda z p^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

implies

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta} .
$$

Lemma \mathbf{D} [6]. Let h be starlike in U and let $p(z)=1+p_{n} z^{n}+\cdots$ be holomorphic in U. If $\frac{z p^{\prime}(z)}{p(z)} \prec h(z)$, then $p \prec q$, where $q(z)=\exp \frac{1}{n} \int_{0}^{z} \frac{h(t)}{t} d t$.

Lemma \mathbf{E} [7]. Let $\mu(t)$ be a positive measure on the unit interval $I=[0,1]$. Let $g(t, z)$ be a complex valued function defined on $U \times[0,1]$ and integrable in t for each $z \in U$ and for almost all $t \in[0,1]$, and suppose that $\operatorname{Re}\{g(t, z)\}>0$ on U and $g(z)=\int_{I} g(t, z) d \mu(t)$. If for fixed $\lambda(0 \leq \lambda<2 \pi)$ $g\left(t, r e^{i \lambda}\right)$ is real for r real and

$$
\operatorname{Re}\left\{\frac{1}{g(t, z)}\right\} \geq \frac{1}{g\left(t, r e^{i \lambda}\right)}
$$

for $|z| \leq r$ and $t \in[0,1]$, then

$$
\operatorname{Re}\left\{\frac{1}{g(z)}\right\} \geq \frac{1}{g\left(r e^{i \lambda}\right)}
$$

for $|z| \leq r$ and $0 \leq \lambda<2 \pi$.
This Lemma can be proved in a similar manner as that of Lemma 2 of Wilken and Feng in [7].

Theorem A [8]. Let $\beta^{\prime}, \gamma^{\prime}$ be complex numbers with $\beta^{\prime} \neq 0$ and let k be a positive integer. Let h be analytic in U with $h(0)=a \neq 0$, $\operatorname{Re}\left[\beta^{\prime} a+\gamma^{\prime}\right]>0$, and
i) $\operatorname{Re}\left(\beta^{\prime} h(z)+\gamma^{\prime}\right)>0$.

If q is the analytic solution of the Briot-Bouquet differential equation

$$
q(z)+\frac{k z q^{\prime}(z)}{\beta^{\prime} q(z)+\gamma^{\prime}}=h(z)
$$

given by

$$
q(z)=\left(\frac{\beta^{\prime}}{k} \int_{0}^{z}[H(t z) / H(z)]^{\frac{\beta^{\prime} a}{k}} t^{\frac{\gamma^{\prime}}{k}-1} d t\right)^{-1}-\frac{\gamma^{\prime}}{\beta^{\prime}}
$$

with

$$
H(z)=z \exp \int_{0}^{t}[h(t)-a] / a t d t
$$

and if
ii) h is convex or $Q(z)=\frac{z q^{\prime}(z)}{\beta^{\prime} q(z)+\gamma^{\prime}}$ is starlike then q and h are univalent. Furthermore, if the holomorphic function $p(z)=a+a_{k} z^{k}+\cdots$ satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta^{\prime} p(z)+\gamma^{\prime}} \prec h(z)
$$

then $p \prec q \prec h$ and q is the best (a, k) dominant.

More general form of this theorem may be found in [8].
We also need the following well known formula.
For a, b, c real numbers with $c \neq 0,-1,-2, \ldots$ the function
$(* *) \quad{ }_{2} F_{1}(a, b, c ; z)=1+\frac{a b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\cdots, \quad z \in U$,
is called the (Gaussian) hypergeometric function.
If $c>a>0$, then

$$
{ }_{2} F_{1}(a, b, c ; z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} t^{a-1}(1-t)^{c-a-1}(1-z t)^{-b} d t
$$

and

$$
{ }_{2} F_{1}(a, b, c ; z)=(1-z)^{-b}{ }_{2} F_{1}\left(b, c-a, c, \frac{z}{z-1}\right) .
$$

3. Main results

Theorem 1. Let q be holomorphic, with $q(0)=0, q^{\prime}(0) \neq 0$ and suppose that $\operatorname{Re} \frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1>\frac{m}{n+m}$. Let $h(z)=(m+n) z q^{\prime}(z)-m q(z)$.

If n is positive integer, $f \in \Sigma_{m, n}$ and

$$
z^{m+1} f^{\prime}(z)+m \prec h(z),
$$

then $z^{m} f(z)-1 \prec q(z)$ and the result is sharp.
Proof. If we denote $p(z)=z^{m} f(z)-1$, then $p(z)=a_{n} z^{m+n}+\cdots$ is holomorphic in U and

$$
\begin{equation*}
z p^{\prime}(z)-m p(z)=z^{m+1} f^{\prime}(z)+m \prec h(z) . \tag{1}
\end{equation*}
$$

Applying Lemma A with $\alpha=m, n=m+n$ from (1) we obtain that $z^{m} f(z)-1 \prec q(z)$.

Corollary 1. Let M be a positive real number and n, m be positive integers. If $f \in \Sigma_{m, n}$ and

$$
\begin{equation*}
\left|z^{m+1} f^{\prime}(z)+m\right|<M, \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|z^{m} f(z)-1\right|<\frac{M}{n} . \tag{3}
\end{equation*}
$$

Proof. If we take $q(z)=\frac{M z}{n}$, then $h(z)=M z$ and the result follows from Theorem 1.

Corollary 1. Let $f \in \Sigma_{m, n}$ with m, n positive integers and suppose that

$$
\begin{equation*}
\left|z^{m+1} f^{\prime}(z)+m\right|<\frac{m n}{\sqrt{m^{2}+n^{2}}}, \tag{4}
\end{equation*}
$$

then $f \in \Sigma_{m, n}^{*}$.
Proof. Let $0<M \leq \frac{m n}{\sqrt{m^{2}+n^{2}}}$. If we denote $P(z)=z^{m} f(z)$, then by Corollary 1 we obtain $|P(z)-1|<\frac{M}{n}$, which implies that $P(z) \neq 0$ in U. Hence the function $p(z)=-\frac{z f^{\prime}(z)}{f(z)}=m+p_{n} z^{m+n}+\cdots$ is holomorphic in U and we have $-z^{m+1} f^{\prime}(z)=P(z) p(z)$. Hence the inequality (4) becomes

$$
\begin{equation*}
|P(z) p(z)-m|<M, \quad z \in U . \tag{5}
\end{equation*}
$$

We have to show that this inequality implies $\operatorname{Re} p(z)>0$ in U. Suppose $\operatorname{Re} p(z) \ngtr 0$ in U. Then there exists a point $z_{0} \in U$ such that $p\left(z_{0}\right)=i s$ where s is real number.

If $M \leq \frac{m n}{\sqrt{m^{2}+n^{2}}}$, then $|\operatorname{Im} P(z)|<\frac{\sqrt{m^{2}-M^{2}}}{m}|P(z)|$ and

$$
|P(z) i s-m|^{2}-M^{2}=|P(z)|^{2} s^{2}+2 m s \operatorname{Im} P(z)+m^{2}-M^{2} \geq 0
$$

for all real s, then we deduce that

$$
|P(z) i s-m|^{2} \geq M^{2}
$$

for $z \in U$ and s real.
In particular $\left|P\left(z_{0}\right) p\left(z_{0}\right)-m\right| \geq M$ which contradicts (5).
Hence we must have $\operatorname{Re} p(z)>0$ in U, which shows that $f \in \Sigma_{m, n}^{*}$.
Remark. For $m=1$ Theorem 1, Corollary 1, Corollary 2 were proved in [2].

Theorem 2. Let m, n be integers such that $m>0$ and $n \geq-m+1$.
Let

$$
\begin{equation*}
\beta^{*}=\beta^{*}(m, n) \tag{6}
\end{equation*}
$$

be the root of the equation $\beta \pi-2 \operatorname{arctg}\left(\frac{n+m}{m} \beta\right)=0$.
Let

$$
\begin{equation*}
\alpha=\alpha(m, n, \beta)=\frac{2}{\pi} \operatorname{arctg} \frac{(n+m) \beta}{n}-\beta \tag{7}
\end{equation*}
$$

for $0<\beta<\beta^{*}$.
If $f \in \Sigma_{m, n}$ and

$$
\begin{equation*}
\left|\arg \left[-z^{m+1} f^{\prime}(z)\right]\right|<\alpha \frac{\pi}{2}, \quad z \in U \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\arg \left[z^{m} f(z)\right]\right|<\beta \frac{\pi}{2} \tag{9}
\end{equation*}
$$

Proof. If we let $p(z)=z^{m} f(z)=1+a_{n} z^{m+n}+\cdots$, then

$$
\frac{-z^{m+1} f^{\prime}(z)}{m}=p(z)-\frac{1}{m} z p^{\prime}(z)
$$

and the inequality (8) becomes

$$
p(z)-\frac{1}{m} z p^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha} .
$$

Hence by Lemma B with $\lambda=\frac{1}{m}$ and $m+n \geq 1$ we deduce

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

where α and β satisfy (6) and (7).

Theorem 3. Let m, n be integers such that $m>0$ and $n \geq-m+1$ and suppose that α, β satisfy (6) and (8).

If $f \in \Sigma_{m, n}$ and $\left|\arg \left[-z^{m+1} f^{\prime}(z)\right]\right|<\alpha \frac{\pi}{2}$, then

$$
\left|\arg \left(-\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\operatorname{arctg} \frac{m+n}{m} \beta, \quad z \in U,
$$

hence $f \in \Sigma_{m, n}^{*}$.
Proof. Applying Theorem 1 from (9) and (10) we deduce

$$
\left|\arg \left(-\frac{z f^{\prime}(z)}{f(z)}\right)\right| \leq\left|\arg \left[-z^{m+1} f^{\prime}(z)\right]\right|+\left|\arg \left[z^{m} f(z)\right]\right|<\gamma \frac{\pi}{2}
$$

where

$$
\gamma=\beta+\alpha=\frac{2}{\pi} \operatorname{arctg} \frac{m+n}{m} \beta .
$$

Consequently

$$
\left|\arg \left(-\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\operatorname{arctg} \frac{m+n}{n} \beta<\frac{\pi}{2}
$$

from which it follows that

$$
\operatorname{Re}\left(-\frac{z f^{\prime}(z)}{f(z)}\right)>0 .
$$

Theorem 4. Let m, n be integers such that $m>0$ and $n \geq-m+1$. Suppose that the positive real numbers α, β, γ, c satisfy

$$
\begin{align*}
& \alpha=\beta+\frac{2}{\pi} \operatorname{arctg} \frac{m+n}{c} \beta \tag{10}\\
& \beta=\frac{2}{\pi} \operatorname{arctg} \frac{m+n}{m} \gamma-\gamma . \tag{11}
\end{align*}
$$

If $f \in \Sigma_{m, n}$ and

$$
\begin{equation*}
\left|\arg \left[-z^{m+1} f^{\prime}(z)\right]\right|<\alpha \frac{\pi}{2}, \quad z \in U \tag{12}
\end{equation*}
$$

then

$$
\left|\arg \left(-\frac{z F^{\prime}(z)}{F(z)}\right)\right|<\operatorname{arctg}\left(\frac{m+n}{m} \gamma\right), \quad z \in \dot{U},
$$

consequently $F \in \Sigma_{m, n}^{*}$, where

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+m}} \int_{0}^{z} t^{c+m-1} f(t) d t, \quad z \in \dot{U} . \tag{13}
\end{equation*}
$$

Proof. From (13) we obtain

$$
(c+m) F(z)+z F^{\prime}(z)=c f(z),
$$

and if we denote $p(z)=\frac{-z^{m+1} F^{\prime}(z)}{m}=1+p_{m} z^{m+n}+\ldots$, then

$$
p(z)+\frac{1}{c} z p^{\prime}(z)=-\frac{1}{m} z^{m+1} f^{\prime}(z),
$$

and (12) becomes

$$
p(z)+\frac{1}{c} z p^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha} .
$$

Applying Lemma C we obtain

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

that means

$$
\begin{equation*}
\left|\arg \left[-z^{m+1} F^{\prime}(z)\right]\right|<\beta \frac{\pi}{2} \tag{14}
\end{equation*}
$$

where α and β satisfy

$$
\alpha=\beta+\frac{2}{\pi} \operatorname{arctg} \frac{m+n}{c} \beta .
$$

Now by Theorem 2, the inequality (14) implies

$$
\left|\arg \left[z^{m} F(z)\right]\right|<\gamma \frac{\pi}{2}
$$

where

$$
\beta+\gamma=\frac{2}{\pi} \operatorname{arctg} \frac{m+n}{m} \gamma
$$

and we deduce

$$
\begin{aligned}
\left|\arg \left(-\frac{z F^{\prime}(z)}{F(z)}\right)\right| & \leq\left|\arg \left[-z^{m+1} F^{\prime}(z)\right]\right|+\left|\arg \left[z^{m} F(z)\right]\right| \\
& <(\beta+\gamma) \frac{\pi}{2}=\operatorname{arctg} \frac{m+n}{m} \gamma<\frac{\pi}{2} .
\end{aligned}
$$

Theorem 5. Let m, n be integers, $m>0$ and $n \geq-m+1$. Let α, β, γ, β_{1} be real numbers so that $\alpha \in[0, m), \gamma>0$
i) $1=\beta_{1}+\frac{2}{\pi} \operatorname{arctg} \frac{m+n}{\gamma} \beta_{1}$
ii) $\beta_{1}<|\beta|<\frac{m+n}{2(m-\alpha)}$.

Let $F: U \rightarrow \mathbb{C}$ defined by (*). If $f \in \Sigma_{m, n}^{*}(\alpha)$, then $\operatorname{Re}\left[z^{m} F(z)\right]>0$, consequently $F(z) \neq 0$ in \dot{U}.

Proof. Since $f \in \Sigma_{m, n}^{*}(\alpha)$ we have $f(z) \neq 0$, for all $z \in U$ and, let $\varphi(z)=z^{m} f(z)$.

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=m+\frac{z f^{\prime}(z)}{f(z)} \prec m-m \frac{1+\left(1-\frac{2 \alpha}{m}\right) z}{1-z}=\frac{2(\alpha-m) z}{1-z}=h(z) .
$$

Applying Lemma D we obtain that

$$
\begin{equation*}
\varphi(z)=z^{m} f(z) \prec(1-z)^{\frac{2(\alpha-m)}{m+n}} . \tag{15}
\end{equation*}
$$

This implies that $z^{m} f(z) \neq 0$ in U.
Let $g(z)=\left(z^{m} F(z)\right)^{\beta}=1+g_{n} z^{m+n}+\cdots$. From (1) we obtain that

$$
g(z) z^{\gamma}=\gamma \int_{0}^{z} f^{\beta}(t) t^{\gamma+m \beta-1} d t
$$

this implies that

$$
\begin{equation*}
g(z)+\frac{1}{\gamma} z g^{\prime}(z)=\left(z^{m} f(z)\right)^{\beta} \prec(1-z)^{\frac{2(\alpha-m) \beta}{m+n}} . \tag{16}
\end{equation*}
$$

We observe that $|\arg (1-z)|<\frac{\pi}{2}$, when $z \in U$. From ii) and (16) it follows that

$$
\operatorname{Re}\left(g(z)+\frac{1}{\gamma} z g^{\prime}(z)\right)>0
$$

consequently

$$
g(z)+\frac{1}{\gamma} z g^{\prime}(z) \prec \frac{1+z}{1-z} .
$$

Applying Lemma C with $\alpha=1, n=m+n$ we obtain that

$$
\begin{equation*}
g(z) \prec\left(\frac{1-z}{1+z}\right)^{\beta_{1}}, \tag{17}
\end{equation*}
$$

where β_{1} is given by i). We observe that

$$
0<1-\beta_{1}=\frac{2}{\pi} \operatorname{arctg} \frac{n+m}{\gamma} \beta_{1}<1,
$$

i.e. $\beta_{1} \in(0,1)$. From (17) it follows that

$$
\left|\arg \left[z^{m} F(z)\right]^{\beta}\right|<\beta_{1} \frac{\pi}{2},
$$

that implies

$$
\begin{equation*}
\left|\arg \left[z^{m} F(z)\right]\right|<\frac{\beta_{1}}{|\beta|} \frac{\pi}{2} \tag{18}
\end{equation*}
$$

Taking into account that $\beta_{1}<|\beta|$, from (18) we deduce that $\operatorname{Re}\left(z^{m} F(z)\right)>0$ in \dot{U}, and this implies $F(z) \neq 0$ in \dot{U}.

Theorem 6. Let $m, n, \alpha, \beta, \gamma, \beta_{1}$ be real numbers satisfying all the conditions of Theorem 5 and suppose that $\beta<0$.

If $f \in \Sigma_{m, n}^{*}(\alpha)$ and $F(z)$ is given by (1), then

$$
\begin{equation*}
F \in \Sigma_{m, n}^{*}(\delta) \tag{19}
\end{equation*}
$$

where

$$
\delta=-\frac{\gamma}{\beta} \frac{1}{{ }_{2} F_{1}\left(\frac{2 \beta(\alpha-m)}{m+n}, 1, \frac{\gamma}{m+n}+1 ; \frac{1}{2}\right)}+\frac{\gamma+\beta m}{\beta}
$$

${ }_{2} F_{1}$ given by ($* *$), and this result is sharp.
Proof. From Theorem 1 we obtain that if $f \in \Sigma_{m, n}^{*}(\alpha)$, then $F(z) \neq 0$ hence

$$
p(z)=-\frac{z F^{\prime}(z)}{F(z)}=m+c_{n} z^{m+n}+\cdots
$$

is an analytic function in U with $p(0)=m$. From (1) we easily obtain that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{-\beta p(z)+\gamma+m \beta}=-\frac{z f^{\prime}(z)}{f(z)}, \quad z \in U . \tag{20}
\end{equation*}
$$

The condition $f \in \Sigma_{m, n}^{*}(\alpha)$ implies that

$$
\begin{equation*}
-\frac{z f^{\prime}(z)}{f(z)} \prec m \frac{1+\left(1-\frac{2 \alpha}{m}\right) z}{1-z}=h(z) . \tag{21}
\end{equation*}
$$

From (20) and (21) we obtain that

$$
p(z)+\frac{z p^{\prime}(z)}{-\beta p(z)+\gamma+m \beta} \prec h(z)=m \frac{1+\left(1-\frac{2 \alpha}{m}\right) z}{1-z} .
$$

It is easy to show that h is a convex function in U and for $\beta<0$, $\gamma>0, \operatorname{Re}(-\beta h(z)+\gamma)>0$. Hence we can apply Theorem A with $\beta^{\prime}=-\beta$, $\gamma^{\prime}=\gamma+\beta m, a=m, k=m+n$. Observe that $\operatorname{Re}\left(\beta^{\prime} a+\gamma^{\prime}\right)=\gamma>0$ and we obtain that

$$
\begin{equation*}
p(z) \prec q(z) \prec h(z) \tag{22}
\end{equation*}
$$

and this result is sharp, where

$$
\begin{align*}
q(z) & =\left(\frac{-\beta}{m+n} \int_{0}^{z} t^{\frac{-\beta m}{m+n}}\left(\frac{1-t z}{1-z}\right)^{\frac{-2 \beta(\alpha-m)}{m+n}} t^{\frac{\gamma+\beta m}{m+n}-1} d t\right)^{-1}+\frac{\beta m+\gamma}{\beta} \\
& =\left(\frac{-\beta}{m+n} \int_{0}^{z} t^{\frac{\gamma}{m+n}-1}\left(\frac{1-t z}{1-z}\right)^{\frac{-2 \beta(\alpha-m)}{m+n}} d t\right)^{-1}+\frac{\beta m+\gamma}{\beta} . \tag{23}
\end{align*}
$$

If we consider

$$
Q(z)=\int_{0}^{1} t^{\frac{\gamma}{m+n}-1}\left(\frac{1-t z}{1-z}\right)^{\frac{-2 \beta(\alpha-m)}{m+n}} d t
$$

and we denote with

$$
b=\frac{2 \beta(\alpha-m)}{m+n}, \quad a=\frac{\gamma}{m+n}, \quad c=a+1=\frac{\gamma}{m+n}+1,
$$

we observe that $c>a>0$ and

$$
\begin{align*}
Q(z) & =(1-z)^{b} \frac{\Gamma(a) \Gamma(c-a)}{\Gamma(c)}{ }_{2} F_{1}(a, b, c, z) \\
& =(1-z)^{b} \frac{\Gamma(a) \Gamma(c-a)}{\Gamma(c)}{ }_{2} F_{1}\left(b, c-a, c \frac{z}{z-1}\right)(1-z)^{-b} \tag{24}\\
& =\int_{0}^{1} \frac{1-z}{1-(1-t) z} d \mu(t)
\end{align*}
$$

where

$$
d \mu(t)=t^{b-1}(1-t)^{c-b-1} \frac{\Gamma(a)}{\Gamma(c-b) \Gamma(b)} d t .
$$

Let $g(z, t)=\frac{1-z}{1-(1-t) z}$, we observe that $\operatorname{Re}\{g(t, z)\}>0,|z| \leq r<1$, $g(t,-r) \in \mathbb{R}, 0 \leq r<1, t \in[0,1]$ and

$$
\operatorname{Re}\left\{\frac{1}{g(z, t)}\right\}=\operatorname{Re}\left\{\frac{1-(1-t) z}{1-z}\right\} \geq \frac{1+(1-t) r}{1+r}=\frac{1}{g(t,-r)}
$$

for $|z| \leq r<1$ and $t \in[0,1]$. Therefore, by using Lemma E we deduce that

$$
\operatorname{Re}\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-r)}, \quad|z| \leq r<1
$$

and by letting $r \rightarrow 1^{-}$, we obtain

$$
\operatorname{Re}\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-1)}, \quad z \in U
$$

Taking into account that $\beta<0$ we obtain that

$$
\begin{align*}
\operatorname{Re} q(z) & =\operatorname{Re}\left(\frac{m+n}{-\beta Q(z)}+\frac{\beta m+\gamma}{\beta}\right) \geq \frac{m+n}{-\beta Q(-1)}+\frac{\gamma+\beta m}{\beta} \\
& =-\frac{\gamma}{\beta} \frac{1}{{ }_{2} F_{1}\left(\frac{2 \beta(\alpha-m)}{m+n}, 1, \frac{\gamma}{m+n}+1, \frac{1}{2}\right)}+\frac{\gamma+\beta m}{\beta}=\delta . \tag{25}
\end{align*}
$$

From (22) and (24) it follows that

$$
\operatorname{Re}\left(\frac{-z F^{\prime}(z)}{F(z)}\right)>\min _{|z|<1} \operatorname{Re} q(z)=\delta,
$$

consequently $F \in \Sigma_{m, n}^{*}(\delta)$ and this result is sharp.

References

[1] Hasson Al-Amiri and Petru T. Mocanu, Integral operators preserving meromorphic starlike functions, Mathematica (Cluj) 37 (1995), 3-10.
[2] Hasson Al-Amiri and Petru T. Mocanu, Some simple criteria of starlikeness and convexity for meromorphic functions, Mathematica (Cluj) 37 (1995), 11-20.
[3] Hasson Al-Amiri and Petru T. Mocanu, Bounds on argument of certain meromorphic derivative implying starlikeness, Studia Univ. Babes-Bolyai (Cluj), Mathematica, XXVII/ 4 (1992), 35-42.
[4] M. K. Aouf and H. M. Hossen, On subclasses of meromorphic p-valent close-toconvex functions, Mathematica (Cluj) 37 (1995), 21-27.
[5] S. Ponnusamy, Integrals of certain n-valent functions, Annales Univ. Mariae-Curie Sklodowska, Lublin, Polonia, XLII, 13 (1988), 105-112.
[6] T. J. Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J. 37 (1970), 775-777.
[7] D. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. (2) 21 (1980), 287-290.
[8] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equation, J. Diff. Eq. 56 (1985), 297-309.
[9] P. T. Mocanu and Gr. Sălăgean, Integral operators and meromorphic starlike functions, Mathematica (Cluj) 32 (1990), 147-153.
[10] M. Nunokawa, N. Koike and A. Ikeda, Multivalent starlikeness conditions for analytic functions, Mathematica (Cluj) (to appear).

```
MARGIT PAP
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
BABEŞ-BOLYAI UNIVERSITY
STR. M. KOGĂLNICEANU 1
RO-3400 CLUJ-NAPOCA
ROMANIA
and
DEPARTMENT OF MATHEMATICS
JANUS PANNONIUS UNIVERSITY
IFJUSÁG U. 6
H-7624 PÉCS
HUNGARY
E-mail: papm@math.jpte.hu
```

(Received April 28, 1997; revised April 15, 1998)

[^0]: Mathematics Subject Classification: 30D30, 30C45.
 Key words and phrases: meromorph function, starlike function, differential subordination.

