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On incidence algebras associated
with regular cell decomposition of Sn

By H. KOVILYANSKAYA (Kyiv) and V. MAZORCHUK (Kyiv)

Abstract. The minimal projective resolution of a simple module over the inci-
dence algebra associated with a regular cell decomposition of Sn is constructed. As a
corollary we prove that any such algebra is Koszul. We also calculate the global dimen-
sions of certain quotients of such algebras.

1. Introduction

There are several papers where the problem of constructing a pro-
jective resolution for a simple module over an incidence algebra is in-
vestigated, see for example [9], [7], [11], [8], [16] and references therein.
Although different powerful methods are known ([1], [2]) there are no gen-
eral machinery for constructing the minimal resolution (see also [14] for
the injective analogue). Only some restrictive conditions under which the
classical resolution is minimal ([9], [16]) are known. Moreover, usually the
answer is given in terms of some geometrical realization of a path algebra
([10], [11], [14], [3], [16]) leading to complicated calculations in non-trivial
cases.

In the paper we study a class of incidence algebras obtained from the
poset of cells of a regular cell decomposition of Sn (i.e. a cell decomposition
of Sn such that the closure of each cell is homeomorphic to a closed ball
of the corresponding dimension). We call them RC-algebras. Classical
results lead to difficult technical calculations in order to obtain a projec-
tive resolution of a simple module over an RC-algebra. Nevertheless, we
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succeed to obtain the minimal projective resolution for a simple module
using some geometrical properties of regular cell decomposition. We also
show that all RC-algebras are Koszul ([9], [4], [12]). Our construction is
inspired by the well-known BGG-resolution of a simple finite-dimensional
module over a simple finite-dimensional complex Lie algebra ([5]).

The paper is organized in the following way: In Section 2 we collect
all necessary preliminaries on incidence algebras. In Section 3 we define
our main object – the RC-algebras. In Section 4 we construct the minimal
projective resolution for a simple module over an RC-algebra and prove
that RC-algebras are Koszul. In Section 5 we calculate global dimension
of some zero relation quotients of an RC-algebra. Finally, in Section 6 we
illustrate our results by examples.

2. Preliminaries

Let F denote a fixed field of arbitrary characteristics. Consider a finite
partially ordered set (poset) (P, <). In a natural way we associate with
P its oriented quiver (i.e. a finite oriented graph) Q in the following way:
the set Q0 of vertices (points) of Q coincides with P and there is an arrow
from x to y, x, y ∈ Q0 if and only if y < x and there are no u ∈ Q0 such
that y < u < x ([6]). We will denote by Q1 the set of all arrows of Q.

A path of length m in Q is a sequence of arrows α1, . . . , αm written
p = αmαm−1 . . . α1, such that the initial point of αi+1 coincides with the
terminal point of αi for all 1 ≤ i ≤ m− 1. We assume that to each x ∈ Q0

corresponds the “trivial path” ex of length 0 with x as the initial and the
terminal point. We will denote by B the set of all paths in Q.

Consider a path algebra FQ. This is an F-algebra with the base B

and a multiplication defined as follows:

1. e2
x = ex for any x ∈ Q0;

2. ex ·p = p ·ey = p where y is the initial point of p and x is the terminal
point of p;

3. p · g = 0 if the initial point of p does not coincide with the terminal
point of g;

4. p · g = pg if the initial point of p coincides with the terminal point
of g.
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Let I be a two-sided ideal in FQ generated by all differences p− g where
p, g are paths in B having common initial and common terminal points.
The quotient algebra A = FQ/I is called the incidence algebra of P ([6]).

For x, y ∈ P we will write [x, y] for the set {z ∈ P | x < z < y}∪{x, y}
in the case x < y or x = y and we set [x, y] = ∅ otherwise. We will also
denote by [·, x] the set {z ∈ P | z < x} ∪ {x}.

By an A-module we will mean a finite-dimensional A-module. It
is well-known (se for example [13]) that any module V over A can be
considered as a set of F-spaces Vx, x ∈ Q0 and a set of linear operators
C(V, f), f ∈ Q1 that satisfy all necessary relations caused by the ideal I.
For an A-module V we will denote by Supp V the set {x ∈ Q0 | Vx 6= 0}.
Clearly, each C(V, ex) is the identity operator on Vx.

Simple modules S(x) over A are in 1–1 correspondence with x ∈ Q0

and have rather simple structure: SuppS(x) = {x} and dim(S(x))x = 1.
Thus C(S(x), f) = 0 for any ex 6= f ∈ B and C(S(x), ex) is the identity
map.

There is a 1–1 correspondence between indecomposable projectives
P (x) and x ∈ Q0 also. The structure of P (x) is again quite simple:
SuppP (x) = [·, x] and dim(P (x))y = 1 for any y ∈ [·, x]. Fixing a base in
each (P (x))y we set an operator C(P (x), f) to be the unit matrix if and
only if initial and terminal points of f belong to Supp P (x). C(P (x), f) is
zero otherwise.

Clearly, any path a with the initial point x and the terminal point
y defines a linear operator a(V ) : Vx → Vy in any A-module V . For two
A-modules V and W a homomorphism ϕ : V → W is a collection of linear
operators ϕx : Vx → Wx, x ∈ P such that ϕya(V ) = a(W )ϕx holds for
any path a with the initial point x and the terminal point y.

We will also need some topological notations. For a subset A of a
topological space we will denote by A the closure of A, by int(A) the
interior of A and by Ã = A \ int(A) the boundary of A.

3. Definition of RC-algebras

Let K be a regular cell decomposition of the sphere Sn, n > 0 ([15]).
By Ki, 0 ≤ i ≤ n we will denote the set of i-cells in K. Consider the poset
P = P (K) containing the elements ∅, L, e ∈ Ki, 0 ≤ i ≤ n with the order
< defined as follows:
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1. ∅ < x for any ∅ 6= x ∈ P ;
2. x < L for any L 6= x ∈ P ;
3. x < y, x, y ∈ K if and only if x ∈ ȳ.

For the rest of the paper A = A(K) will denote the incidence algebra
of P . We will call A regular cell algebra (RC-algebra) associated with K.

Since ∅ is the minimal and L is the maximal elements in P we have
[·, x] = [e, x] for any x ∈ P and [e, L] = P . For 0 ≤ i ≤ n we set Pi = Ki,
P−1 = {∅} and Pn+1 = {L}.

4. Projective resolution and global dimension

The aim of this section is to construct the minimal projective resolu-
tion of a simple A-module and to calculate the global dimension of A. As
a corollary we will obtain that A is Koszul.

Clearly, the algebra Ax = A∑
y≤x ey is an RC-algebra for any x∈P .

Ax is trivial for x = ∅ and coincides with A for x = L. For x ∈ K the
algebra Ax is the RC-algebra associated with the natural regular cell de-
composition of x̃. Thus, it is sufficient to construct the minimal projective
resolution for S(L) only.

Lemma 1. Let x, y ∈ P , x < y then

dim HomA(P (x), P (y)) = 1

and each non-zero homomorphism from the above space is a monomor-
phism.

Proof. Let vx (vy) denote a generator of P (x) (P (y)) i.e. 0 6= vx ∈
P (x)x (0 6= vy ∈ P (y)). Let a be a path with the initial point y and the
terminal point x. It exists since x < y.

Let ϕ ∈ HomA(P (x), P (y)). Then ϕ(vx) ∈ P (y)x and thus ϕ(vx) =
cavy for some c ∈ F. Since vx generates P (x), each c ∈ F defines the
unique homomorphism ϕc ∈ Hom(P (x), P (y)) by ϕc(vx) = cavy. Thus we
obtain that dim Hom(P (x), P (y)) = 1. The rest follows directly from the
construction of ϕc. ¤

Fix a generator vx of P (x) for each x ∈ P . Set Ci =
⊕

x∈Pi

P (x),

−1 ≤ i ≤ n + 1. By Lemma 1 any homomorphism ϕ : Ci → Ci+1,
−1 ≤ i ≤ n is uniquely defined by a complex matrix

d = (dyx)x∈Pi

y∈Pi+1
.
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It is convenient to extend our cell-complex K to the cell-decomposed
ball K ′ by adding one n + 1-cell L in a natural way. Fix an orientation in
each x ∈ K ′ ([15]) and set [y : x] to be the incidence numbers with respect
to this choice of orientations. Denote by

di = (dyx)x∈Pi

y∈Pi+1
, 0 ≤ i ≤ n

the complex matrix such that dyx = [y : x]. We also set

d−1 = (dx∅)x∈P0 , dx∅ = 1 for all x ∈ P0.

As it was mentioned, the matrices di, −1 ≤ i ≤ n define homomorphisms
di : Ci → Ci+1. Let p : Cn+1 → S(L) be a canonical projection.

Theorem 1. The sequence

(1) 0 −→ C−1
d−1−−→ C0

d0−→ C1
d1−→ . . .

dn−1−−−→ Cn
dn−→ Cn+1

p−→ S(L) −→ 0

is the minimal projective resolution of S(L).

We divide the proof of this theorem into several steps.

Lemma 2. The sequence (1) is a complex (i.e. di+1 ◦ di = 0 for −1 ≤
i ≤ n− 1 and p ◦ dn = 0).

Proof. Clearly, p◦dn = 0 by the definition of p. By [15, Theorem 6.2]
for any x ∈ Pi, y ∈ Pi+2 the number of z ∈ Pi+1 such that x < z < y is
either 2 or 0 for each 0 ≤ i ≤ n−1. By [15, Theorem 6.6], [y : z1][z1 :x] +
[y : z2][z2 :x] = 0 holds for any 0 ≤ i ≤ n − 1 and any x ∈ Pi, y ∈ Pi+2

such that there exist two distinct z1, z2 ∈ Pi+1 with x < zj < y, j = 1, 2.
At the same time [x : z1] + [x : z2] = 0 holds for any x ∈ P1 with faces
z1, z2 ∈ P0 by [15, Theorem 6.6]. Hence di+1di = 0 for all −1 ≤ i ≤ n.
This completes the proof. ¤

Lemma 3. For any x ∈ Ki, 0 ≤ i ≤ n−1 the poset [x, L] is isomorphic

to P (K1) where K1 is a cell decomposition of the sphere Sn−i−1.

Proof. Clearly, it is enough to prove this statement for i = 0. Thus
we will assume that x is a point on Sn. Since K is regular we can find a
closed ball T containing x such that for each y ∈ K the following holds:
T ∩ y 6= ∅ if and only if x < y. Consider the n-dimensional ball T1 =
T ∩ Sn and let T2 be the quotient T1/T̃1. Clearly, T2 is homeomorphic to
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an n-dimensional sphere and possess a natural regular cell decomposition
induced from the original Sn. Crossing it with a hyperplane that does not
contain any zero-dimensional cell we easily get the required regular cell
decomposition of Sn−1 with the corresponding poset isomorphic to [x, L].

¤

Proposition 1. The sequence (1) is exact.

Proof. Clearly, it is sufficient to show that for any fixed x ∈ P the
induced sequence

(2) 0 → (C−1)x → (C0)x → · · · → (Cn)x → (Cn+1)x → S(L)x → 0

is exact. Obviously, this is true for x = L.
To prove the statement we will construct a new complex. Suppose

that x ∈ Pk and x 6= L. For i ≥ k set Ai to be a free abelian group
with the base ay, y ∈ Pi, x < y. Let δi : Ai → Ai+1, k ≤ i ≤ n be a
homomorphism defined by the matrix

δi = ([y : z])z∈Pi,x<z
y∈Pi+1,x<y .

One can see that the complex (2) is exact if and only if the following
complex:

(3) 0 −→ Ak
δk−→ Ak+1

δk+1−−−→ . . .
δn−1−−−→ An

δn−→ An+1 −→ 0

is exact.
Using Lemma 3 we see that the homology of the sequence (3) coincide

with the homology of the regular cell complex Sn−k−1 with the poset
isomorphic to [x, L]. Thus they coincide with the reduced homology of
the closed ball. Since ball is homotopic to a one-point space we conclude
that the sequence (3) and thus the sequence (1) is exact. This completes
the proof. ¤

Proof of Theorem 1. Clearly, each Ci is projective for −1 ≤ i ≤
n + 1. By Lemma 2 and Proposition 1 the sequence (1) is a projective
resolution of S(L). Its minimality follows easily from the fact that Im di ⊂
RadCi+1, −1 ≤ i ≤ n. ¤
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Corollary 1. Gl.dimA = n + 2.

Proof. Follows from the minimality of the resolution (1). ¤
Let A be a path algebra of some finite quiver Q and I be an ideal

of A generated by all arrows. Set A′ = A/I. A′ is a semi-simple algebra
isomorphic to a finite product of copies of F, one for each vertex. Define
an Ext-algebra E(A) by

E(A) =
∑

i≥0

Exti
A(A′, A′).

An algebra A is called Koszul if the Ext-algebra E(A) is generated by
elements of degree 0 and 1 (here we mean the standard grading). For
details on Koszul algebras see [12], [4].

Corollary 2. A is Koszul.

Proof. Clearly, A is quadratic. By [9], A is Koszul if the i-th com-
ponent in the minimal projective resolution of A′ is generated by elements
of degree i. This follows immediately from Theorem 1. ¤

5. Global dimension of some quotient algebras

In this section we calculate the global dimension of the quotients of
A defined by one zero relation. Analogous results for trees were obtained
in [8].

Consider an algebra A defined in Section 3. Let a be a path with the
initial point x and the terminal point y for some x, y ∈ P . Let I = AaA
and set Aa = A/I. We note the following difference with [8]: The case
when a ∈ Q1 is not trivial (as it was it [8]) since A is not a path algebra
of Q but its quotient by some commutativity relations.

Theorem 2. Gl.dimAa = n + 2.

To prove this we need some auxiliary lemmas. We recall that all the
modules considered in this section are Aa-modules.

Lemma 4. For z > x or z = x, z ∈ P holds

SuppP (z) = {u ∈ P | u < z, u ≮ y}.

Proof. Follows from the fact that the path a is zero in Aa. ¤
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Lemma 5. For z ≯ x, z ∈ P holds SuppP (z) = [∅, z].

Proof. Since I is generated by a it follows that u /∈ SuppP (z) if and
only if u ≮ z or there exists a path with the initial point z and with the
terminal point u containing a as a subpath. Thus z > x which contradicts
to our assumption. ¤

Proof of Theorem 2. We will consider four different cases.
Case 1. Assume that x = L and the length of a is greater than 1.

Then for any z ∈ P , z 6= x a projective resolution of S(z) can be con-
structed using Theorem 1 and thus Gl. dimAa ≥ n + 1. We will construct
a projective resolution for S(L).

Let Ci, −1 ≤ i ≤ n+1, i 6= n and di, 1 ≤ i ≤ n−2 be as in Section 4.
Set

C ′n =
⊕

z∈Pn

P (z), C ′n−1 = P (y)⊕
⊕

z∈Pn−1

P (z).

Denote by dn−1 the map from Cn−1 to Cn defined by the matrix

([u : z])z∈Pn−1
u∈Pn

and by d′n−2 the map from Cn−2 to C ′n−1 defined in the following way: the
matrix defines a map from P (z) to P (u), z ∈ Pn−2, u ∈ Pn−1 and the map
P (z) → P (y) is leave as printed for all z ∈ Pn−2. As usual, we denote by
p : P (L) → S(L) the canonical projection.

Consider the following sequence:

(4) 0 −→ C−1
d−1−−→ C0

d0−→ . . .
dn−→ Cn+1

p−→ S(L) −→ 0.

One can see that the (4) is a complex. Now we will try to find the homology
of this complex. As it was done in Proposition 1 for any z ∈ P we consider
the corresponding complex

(5) 0 → (C−1)z → (C0)z → · · · → (Cn)z → (Cn+1)z → (S(L))z → 0.

For z ≮ y it follows from the proof of Proposition 1 that the complex
(5) is exact. For z < y one obtains that the only Ker dn/ Im dn−1 is one-
dimensional.

Thus there exists a homomorphism d′n : C ′n → Cn+1 and d′n−1 :
C ′n−1 → C ′n such that the complex

0 −→ C−1
d−1−−→ . . .

d′n−2−−−→ C ′n−1

d′n−1−−−→ C ′n
d′n−→ Cn+1

p−→ S(L) −→ 0
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is exact. Clearly, this gives us the minimal resolution for S(L) and Case 1
follows.

Case 2. Let x = L and y ∈ Pn. The proof is analogues to that of
Case 1 with the following substitution:

Cn =
⊕

z∈Pn,z 6=y

P (z).

Case 3. Assume that x 6= L and a is a path of length at least 2. We
will prove that the sequence (1) constructed in Section 4 is the minimal
projective resolution for S(L). Since the length of a is greater than 1
all the maps di, −1 ≤ i ≤ n are well-defined. For the exactness it is
sufficient to prove that the sequence (2) is exact. If z ≮ y this follows from
Proposition 1. Let X denote the cell subcomplex of K formed by union of
all u, u > z and u ≯ y. Set Y = X/z. One can see that the exactness of
sequence (2) is equivalent to vanishing of the reduced simplicial homology
of Y . But the last is true since Y is homotopic to a one-point space. The
minimality is straightforward.

Case 4. Finally, assume that x 6= L, say x ∈ Pk, and a is an arrow.
Consider the sequence (1) with the only difference that dxy = 0. At the
same way as in the Case 3 one obtains that this sequence is exact and
minimal. ¤

6. Examples

In this section we propose an example of a non-trivial RC-algebra
and an example of an algebra constructed from the Möbius strip. In the
first case we explain our results and in the second case we show that the
analogue of the main theorem is not true.

6.1. An RC-algebra for n = 2

Let K be a cell decomposition of S2 shown on Figure 1. Then P has a
form shown on Figure 2. Fixing an orientation we can choose the following
di:

d−1 =
(

1
1

)
, d0 =

(
1 −1
−1 1

)
, d1 =

(
1 1
1 1

)
, d2 = ( 1 −1 ) .
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Thus we obtain the following resolution for S(L):

0→P (∅)→P (x)⊕ P (y)→P (z)⊕ P (u)→P (I)⊕ P (II)→P (L)→S(L)→0

and conclude that Gl. dimA = 4.
Since any RC-algebra associated with S2 is a minimal incidence al-

gebra of global dimension 4 it seems to be impossible to give complete
combinatorical description of such algebras as it was done in [11] for alge-
bras of global dimension 3.

Figure 1. Figure 2.

6.2. Example of a non RC-algebra

Consider a cell decomposition of the Möbius strip shown on Figure 3. The
corresponding P is shown on Figure 4. Unfortunately, one obtains the
following resolution:

0 → P (∅)⊕ P (∅) → P (A)⊕ P (A)⊕ P (B)

⊕P (B) → P (l)⊕ P (m)⊕ P (n) → P (L) → S(L) → 0.

Thus Gl. dimA = 3, although the resolution is more complicated.
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Figure 3. Figure 4.
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