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On a class of iterations
containing the Chebyshev and the Halley methods

By J. A. EZQUERRO (Logroño) and M. A. HERNÁNDEZ (Logroño)

Abstract. We investigate a parametrized set of cubically convergent iterative
methods for solving nonlinear equations in a Banach space. The methods can be thought
of as a weighted mean between the Chebyshev and the Halley methods, the weights
being α and 1− α, where α ∈ (−15, 2). A Kantorovich-type convergence theorem and
corresponding error bounds are provided. Finally, we decide that Halley’s method is
more suitable for solving a nonlinear equation than Chebyshev’s method. Even more,
we can consider other iterations more suitable than Halley’s one.

1. Introduction

Let F : Ω ⊆ X → Y be a nonlinear twice Fréchet differentiable
operator in an open convex domain Ω and X, Y Banach spaces. One of
the main problems in numerical analysis is to solve the nonlinear equation

(1) F (x) = 0.

The two most famous third-order iterations to solve equation (1) are
the Chebyshev method [2], [4])and the Halley method ([1], [3], [6], [15]).

Two are the main goals of this paper. Firstly, getting a priori election
criterion between Chebyshev’s method and Halleys’s method for solving
(1). Secondly, constructing a new third-order uniparametric class of iter-
ations such that we can use a priori more appropriate iterative methods
than the two mentioned above. For that, we construct new parameter-
based methods of order three which contain both methods for a specific
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choice of the parameter. Let us assume that F ′(x0)−1 ∈ L(Y, X) exists
at some x0 ∈ Ω0, where L(Y, X) is the set of bounded linear operators
from Y into X. According to the basic idea of continuation methods ([11],
[12]), a homotopy αH1(x)+ (1−α)H0(x), where α ∈ [0, 1], can be defined
between two operators H0 and H1 ([7], [8]). Following this idea, the next
uniparametric family of iterations is designed:

(2) x0 = xα,0, xα,n+1 = αH1(xα,n) + (1− α)H0(xα,n), n ≥ 0,

where

H0(xn) = xn −
[
I +

1
2
LF (xn)

]
F ′(xn)−1F (xn),

H1(xn) = xn −
[
I +

1
2
LF (xn)

(
I − 1

2
LF (xn)

)−1
]

F ′(xn)−1F (xn)

and α ∈ [0, 1]. We have denoted by I the identity operator on X and by
LF (x) the linear operator defined by

LF (x) = F ′(x)−1F ′′(x)F ′(x)−1F (x), x ∈ X,

provided that F ′(x)−1 exists, see [9] to get more information about this
operator.

Observe that iteration (2) reduces to the Chebyshev method for α = 0
and the Halley method for α = 1. We also see that we extend the domain
of values for the parameter α to (−15, 2), so that the second goal of the
paper is reached.

We will show, under standard Newton–Kantorovich assumptions ([10],
[14]), the family of iterative methods defined by (2) converges to a zero
x∗ of equation (1). We provide an existence-uniqueness theorem and give
error bounds for α ∈ (−15, 2).

Finally, a numerical result is provided where our previous analysis do
agree.
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2. A Kantorovich theorem and corresponding
error bounds

Following Argyros and Chen [2], we write iteration (2) as

yα,n = xα,n − F ′(xα,n)−1F (xα,n), n ≥ 0,(3)

xα,n+1 = yα,n +
1
2
LF (xα,n)Gα(xα,n)(yα,n − xα,n), n ≥ 0,(4)

where Gα(xα,n) = I + α
2 LF (xα,n)J(xα,n), J(xα,n) =

(
I − 1

2LF (xα,n)
)−1

and α ∈ (−15, 2). It is also assumed that

(I) There exists a continous linear operator F ′(x0)−1, x0 ∈ Ω. More-
over ‖F ′(x0)−1‖ ≤ β.

(II) ‖F ′′(x)‖ ≤ M for x ∈ Ω.

(III) ‖F ′′(x)− F ′′(y)‖ ≤ N‖x− y‖ for x, y ∈ Ω.

(IV) ‖F ′(x0)−1F (x0)‖ ≤ η.

(V) The equation

(5) p(t) ≡ k

2
t2 − t

β
+

η

β
= 0

where

(V1) k2 ≥ 3(1−α)
3−α M2 + N

3β if α ∈ (−15,−1),

(V2) k2 ≥ 2
3−α

[
(2− α)M2 + 2N

3β

]
if α ∈ [−1, 0),

(V3) k2 ≥ M2 + N
3β if α = 0,

(V4) k2 ≥ 4
3(2−α)

[
(2 + α)M2 + 2N

3β

]
if α ∈ (0, 1),

(V5) k2 ≥ M2 + 2N
3β if α = 1,

(V6) k2 ≥ 2
3(2−α)

[
3(1 + α)M2 + (3 + α) N

3β

]
if α ∈ (1, 2),

has two positive roots t∗ and t∗∗ (t∗ ≤ t∗∗). Equivalently, 2kβη ≤ 1.

For each α ∈ (−15, 2), we define the scalar sequence {tα,n} by

(6) t0 = tα,0 = 0, sα,n = tα,n − p(tα,n)
p′(tα,n)

, n ≥ 0,
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tα,n+1 = Φα(tα,n)(7)

= sα,n+
1
2
Lp(tα,n)

(
1+

αLp(tα,n)
2−Lp(tα,n)

)
(sα,n−tα,n), n ≥ 0,

where p is the polynomial defined in (5).
We will show that the sequences {tα,n} and {xα,n} are well-defined,

converge respectively to a solution t∗ of (5) and a solution x∗ of (1), and
{tα,n} is a majorizing sequence of {xα,n} (see [10], [14]).

Let us denote

B(x, r) = {x′ ∈ X; ‖x′−x‖ ≤ r} and B(x, r) = {x′ ∈ X; ‖x′−x‖ < r}.

Theorem 2.1. Let us assume that assumptions (I)–(V) hold and

B(yα,0, t∗ − η) ⊂ Ω. Then, the sequences defined by (3) and (4) are

well-defined for all n ≥ 0 and α ∈ (−15, 2), converges to a solution

x∗ ∈ B(x0, t∗) of equation (1), and xα,n, yα,n ∈ B(x0, t∗), for each n ≥ 0.

The solution x∗ is unique in B(x0, t
∗∗) ∩ Ω. Moreover the following error

estimates are satisfied for all n ≥ 0:

‖x∗ − xα,n‖ ≤ t∗ − tα,n and ‖x∗ − yα,n‖ ≤ t∗ − sα,n.

We first prepare the following lemmas. The first one contains sufficient
conditions for the convergence of the sequences defined by (6) and (7).

Lemma 2.2. Let p be the polynomial defined in (5). Then the process

defined by (6) and (7) is increasing and converges cubically to t∗ for all

α ∈ (−15, 2).

Proof. As p(t0) > 0, it is clear that t0 − t∗ ≤ 0. By applying the
Mean Value theorem, we obtain

tα,1 − t∗ = Φ′α(ε0)(t0 − t∗),

for some ε0 ∈ (t0, t∗). Moreover it follows that

Φ′α(t) =
3Lp(t)2

2(2− Lp(t))2
[2(2− α) + (1− α)Lp(t)(Lp(t)− 4)] ≥ 0

in [t0, t∗], since Lp(t) ≤ 1
2 (see [1]). In consequence, tα,1 ≤ t∗.



On a class of iterations containing the Chebyshev and the Halley methods 407

On the other hand,

tα,1 − t0 = − p(t0)
p′(t0)

[
1 +

1
2
Lp(t0)

(
1 +

αLp(t0)
2− Lp(t0)

)]
≥ 0.

Now we apply mathematical induction to obtain tα,n ≤ t∗ and tα,n ≥
tα,n−1 for all n ≥ 1, since (tα,n−1, t

∗) ⊂ (t0, t∗).

Therefore the sequences defined by (6) and (7) converges to r ∈ [t0, t∗].
From

1 +
1
2
Lp(r)

(
1 +

αLp(r)
2− Lp(r)

)
> 0,

it follows that r = t∗. Besides

Φα(t∗) = Φ′α(t∗) = Φ′′α(t∗) = 0,

and consequently, the convergence is cubical. ¤

Next we give the following representation for F (xα,n).

Lemma 2.3. We assume that the iterations xα,n generated by (3)
and (4) belong to Ω and F ′(xα,n)−1 exists for all n ≥ 0. Then we have for

n ≥ 0:

F (xα,n) =
∫ 1

0

F ′′(yα,n−1 + t(xα,n − yα,n−1))(xα,n − yα,n−1)2(1− t) dt

+
∫ 1

0

F ′′(xα,n−1 + t(yα,n−1 − xα,n−1))

× (xα,n − yα,n−1)(yα,n−1 − xα,n−1) dt

+
∫ 1

0

F ′′(xα,n−1 + t(yα,n−1 − xα,n−1))

× (I −Gα(xα,n−1))(yα,n−1 − xα,n−1)2(1− t) dt

+
∫ 1

0

[F ′′(xα,n−1 + t(yα,n−1 − xα,n−1))− F ′′(xα,n−1)]

×Gα(xα,n−1)(yα,n−1 − xα,n−1)2(1− t) dt.
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Proof. Observe that

F (xα,n) = F (xα,n)− F (yα,n−1)− F ′(yα,n−1)(xα,n − yα,n−1)

+ F (yα,n−1) + F ′(yα,n−1)(xα,n − yα,n−1)

=
∫ xα,n

yα,n−1

F ′′(x)(xα,n − x) dx

+ F (yα,n−1) + F ′(yα,n−1)(xα,n − yα,n−1)

and

F (yα,n−1) =
∫ yα,n−1

xα,n−1

F ′′(x)(yα,n−1 − x) dx + F (xα,n−1)

+ F ′(xα,n−1)(yα,n−1 − xα,n−1)

=
∫ 1

0

F ′′(xα,n−1+t(yα,n−1−xα,n−1))(yα,n−1 − xα,n−1)2(1− t)dt.

Moreover

F ′(yα,n−1)(xα,n − yα,n−1)

=
∫ yα,n−1

xα,n−1

F ′′(x)(xα,n − yα,n−1) dx + F ′(xα,n−1)(xα,n − yα,n−1)

=
∫ yα,n−1

xα,n−1

F ′′(x)(xα,n − yα,n−1) dx

− 1
2
F ′′(xα,n−1)Gα(xα,n−1)(yα,n−1 − xα,n−1)2.

Now the proof concludes immediately. ¤
Lemma 2.4. The sequence {tα,n} defined by (6) and (7) is a ma-

jorizing sequence of the sequence {xα,n} defined by (3) and (4). More

precisely:

‖xα,n+1 − xα,n‖ ≤ tα,n+1 − tα,n, n ≥ 0.

Proof. For each n ≥ 0, we prove that
(in) xα,n ∈ B(x0, tα,n),

(iin) ‖F ′(xα,n)−1‖ ≤ − 1
p′(tα,n)

,
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(iiin) ‖yα,n − xα,n‖ ≤ sα,n − tα,n,

(ivn) yα,n ∈ B(x0, sα,n),

(vn) ‖xα,n+1 − yα,n‖ ≤ tα,n+1 − sα,n.

These can be proved directly by induction on n. Taking into account
(I)–(V), we deduce easily (i0)–(v0). Now we assume that (ik)–(vk) are true
for k = 1, . . . , n − 1. Item (in) follows immediately. To see (iin), we note
that

I − F ′(x0)−1F ′(xα,n) =
∫ 1

0

F ′(x0)−1F ′′(x0 + t(xα,n − x0))(xα,n − x0) dt.

Then
‖I − F ′(x0)−1F ′(xα,n)‖ ≤ βk‖xα,n − x0‖ ≤ βkt∗ < 1,

and by the Banach lemma [10], F ′(xα,n)−1 exists and

‖F ′(xα,n)−1‖ ≤ ‖F ′(x0)−1‖
1− ‖I − F ′(x0)−1F ′(xα,n)‖

≤ β

1− βk‖xα,n − x0‖ ≤
−1

p′(tα,n)
.

So (iin) is also true.
Let α ∈ (0, 1). By Lemma 2.3, the Altman lemma ([1], [15]) and taking

into account that ‖LF (xα,n−1)‖ ≤ Lp(tα,n−1), ‖J(xα,n−1)‖ ≤ 2
2−Lp(tα,n−1)

and ‖Gα(xα,n−1)‖ = 1 + αLp(tα,n−1)
2−Lp(tα,n−1)

, we deduce that

‖F (xα,n)‖ ≤ M

2
‖xα,n − yα,n−1‖2 + M‖xα,n − yα,n−1‖‖yα,n−1 − xα,n‖

+
M

2
‖I −Gα(xα,n−1)‖ ‖yα,n−1 − xα,n−1‖2

+
N

6
‖Gα(xα,n−1)‖ ‖yα,n−1 − xα,n−1‖3

≤ M

2
‖xα,n − yα,n−1‖2

−
[
α

2
M2‖J(xα,n−1)‖+

(
M2 +

N

3β

)
‖Gα(xα,n−1)‖

]

× ‖yα,n−1 − xα,n−1‖3
2p′(tα,n−1)
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≤ M

2
(tα,n − sα,n−1)2

−
[
αM2 +

(
M2 +

N

3β

)
(2− (1− α)Lp(tα,n−1))

]

× (sα,n−1 − tα,n−1)3

2p′(tα,n−1)(2− Lp(tα,n−1))

≤ M

2
(tα,n − sα,n−1)2

−
[
(2 + α)M2 +

2N

3β

]
(sα,n−1 − tα,n−1)3

3p′(tα,n−1)

≤ k

2
(tα,n − sα,n−1)2

− k2

2

(
1− α +

α

2− Lp(tα,n−1)

)
(sα,n−1 − tα,n−1)3

p′(tα,n−1)
.

Therefore

(8) ‖F (xα,n)‖ ≤ p(tα,n),

and consequently

‖yα,n − xα,n‖ ≤ ‖F ′(xα,n)−1‖ ‖F (xα,n)‖ ≤ p(tα,n)
p′(tα,n)

= sα,n − tα,n.

Thus (iiin) is true. Now items (ivn) and (vn) follow immediately. That
completes the induction for the case α ∈ (0, 1).

The cases α = 0, α = 1, α ∈ (−15, 0) and α ∈ (1, 2) follow analogously
to the previous one (see [2] and [5] for α = 0 and α = 1 repectively). ¤

Proof of Theorem 2.1. From Lemma 2.4 it follows that the sequence
{tα,n} majorizes the sequence {xα,n}. In consequence, the convergence of
{tα,n} implies the convergence of {xα,n} to a limit x∗. Letting n →∞ in
(8), we obtain F (x∗) = 0. Furthermore

‖xα,n − yα,0‖ ≤ ‖xα,n − yα,n−1‖+‖yα,n−1−xα,n−1‖+ · · ·+ ‖xα,1 − yα,0‖
≤ (tα,n − sα,n−1) + (sα,n−1 − tα,n−1) + · · ·+ (tα,1 − sα,0)

= tα,n − η ≤ t∗ − η,

and similarly
‖yα,n − yα,0‖ ≤ sα,n − η ≤ t∗ − η.
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Next, for m ≥ 0,

‖xα,n+m − xα,n‖ ≤ tα,n+m − tα,n, ‖xα,n+m − yα,n‖ ≤ tα,n+m − sα,n

and letting m →∞ we obtain

‖x∗ − xα,n‖ ≤ t∗ − tα,n and ‖x∗ − yα,n‖ ≤ t∗ − sα,n, n ≥ 0.

Finally, to see the uniqueness, let us assume that there exists another
solution ζ∗ of the equation (1) in B(x0, t

∗∗)∩Ω. Following Argyros and
Chen [2], we consider the equation

0 = F (x∗)− F (ζ∗) =
∫ 1

0

F ′(x∗ + t(ζ∗ − x∗))(ζ∗ − x∗) dt.

Now it suffices to see that the operator
∫ 1

0
F ′(x∗+t(ζ∗−x∗)) dt is invertible

in order to obtain x∗ = ζ∗. In fact,

‖F ′(x0)−1‖
∫ 1

0

‖F ′(x∗ + t(ζ∗ − x∗))− F ′(x0)‖ dt

≤ βM

∫ 1

0

‖x∗ + t(ζ∗ − x∗)− x0‖ dt

≤ βM

∫ 1

0

(t‖ζ∗ − x0‖+ (1− t)‖x∗ − x0‖) dt

<
βM

2
(t∗ + t∗∗) ≤ 1

and the proof is complete. ¤

After that, we obtain error bounds for the sequence {tα,n} defined by
(6) and (7). We a priori compare the iterations of class (4) by these error
bounds. Following Ostrowski [13] we derive the following result.

Theorem 2.5. Let p be the polynomial defined in (5) and we assume

that p has two positive roots t∗ and t∗∗ (t∗ ≤ t∗∗). Let {tα,n} be the

sequence given by (6) and (7). Then

(a) If t∗ < t∗∗, let ωα =
√

2− α, θ =
t∗

t∗∗
and ϑα = ωαθ. Besides if
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(a1) α ∈ (−15, 1) and kβη <
2ωα

(1 + ωα)2
, then

(t∗∗ − t∗)θ3n

1− θ3n < t∗ − tα,n <
(t∗∗ − t∗)ϑ3n

α

ωα − ϑ3n

α

, n ≥ 0,

(a2) α = 1, then

t∗ − tα,n =
(t∗∗ − t∗)θ3n

1− θ3n , n ≥ 0,

(a3) α ∈ (1, 2), then

(t∗∗ − t∗)ϑ3n

α

ωα − ϑ3n

α

< t∗ − tα,n <
(t∗∗ − t∗)θ3n

1− θ3n , n ≥ 0,

where θα < 1 and ϑα < 1.

(b) If t∗ = t∗∗, then

t∗ − tα,n = t∗
(

9− α

24

)n

, n ≥ 0.

Proof. Let us write ρα,n = t∗ − tα,n and σα,n = t∗∗ − tα,n. So

p(tα,n) =
k

2
ρα,nσα,n, p′(tα,n) = −k

2
(ρα,n + σα,n)

and

Lp(tα,n) =
2ρα,nσα,n)

(ρα,n + σα,n)2
.

Now from (6) and (7), it follows that

ρα,n=ρ3
α,n−1

(ρα,n−1+σα,n−1)3+(1−α)σ3
α,n−1

(ρα,n−1+σα,n−1)3[(ρα,n−1+σα,n−1)2−ρα,n−1σα,n−1]
(9)

and

σα,n=ρ3
α,n−1

(ρα,n−1+σα,n−1)3+(1−α)ρ3
α,n−1

(ρα,n−1+σα,n−1)3 [(ρα,n−1+σα,n−1)2 − ρα,n−1σα,n−1]
.
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For t∗ < t∗∗, we denote the ratio of ρα,n and σα,n by γα,n. So

γα,n = γ3
α,n−1

(1 + γα,n−1)3 + (1− α)
(1 + γα,n−1)3 + (1− α)γ3

α,n−1

= γ3
α,n−1φα(γα,n−1).

Taking into account that the function φα is nonincreasing for all α ∈
(−15, 1), we obtain

γα,n < (2− α)γ3
α,n−1 < · · · < (2− α)

3n−1
2 γ3n

α,0

and
γα,n > γ3

α,n−1 > · · · > γ3n

α,0.

Hence (a1) is true, since ϑα < 1 as a consequence of kβη <
2ωα

(1 + ωα)2
.

The cases (a2) and (a3) follow similarly to the previous one.
If t∗ = t∗∗, then ρα,n = σα,n and, by (9), we obtain

ρα,n = ρα,n−1

(
9− α

24

)
.

Now (b) follows by applying recurrence. ¤

Remark. From the last result we can get our two initiated goals.
Firstly, although the operational cost of the Chebyshev method is lesser
than the Halley method, we follow from Theorem 2.5 that the latter one is
a priori the more appropriate, while the difference of the operational cost
between both methods is valued from the expression of F . Secondly, some
iterations are obtained, (4) for α ∈ (1, 2), with the same operational cost
as Halley’s method but a priori more appropriate.

Next we illustrate these commentaries with a numerical example.

3. Example

Consider the system of equations F (x, y) = 0, where

F (x, y) = (x2 − y − 2, y3 − x2 + y + 1).

The numerical results (see tables 1, 2 and 3) do agree quite well with
our a priori previous analysis which showed that iteration (4) for α ∈
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(1, 2), for instance α = 3/2, is the most appropriate iteration for solving
F (x, y) = 0.

n x∗ − xn y∗ − yn

0 4.267949192431122 2.000000000000000
1 0.987389032648569 0.727937814357567
2 0.098670840456724 0.138820258896789
3 0.001198513291186 0.003038870277247
4 1.548883374005515× 10−8 4.634827149840334× 10−8

5 5.406728245765557× 10−23 1.659393238500346× 10−23

Table 1: Error estimates by Chebyshev’s method.

n x∗ − xn y∗ − yn

0 4.267949192431122 2.000000000000000
1 0.806253724829364 0.581818181818181
2 0.046398081903572 0.057032561548124
3 0.000061852501410 0.000113501450570
4 4.338278564215300× 10−13 9.746283420810687× 10−13

5 2.536565808060148× 10−37 6.171999046992419× 10−37

Table 2: Error estimates by Halley’s method.

n x∗ − xn y∗ − yn

0 4.267949192431122 2.000000000000000
1 0.715686070919761 0.508758365548489
2 0.027768776212209 0.028954040361223
3 5.834964892073052× 10−6 4.665800522137905× 10−6

4 3.433527622447421× 10−17 1.692931591379338× 10−17

5 3.560125611263405× 10−51 8.086618920577318× 10−52

Table 3: Error estimates by iteration (4) with α = 3/2.
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