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Monotone vector fields

By S. Z. NÉMETH (Cluj-Napoca)

Abstract. Monotone vector fields on Riemannian manifolds will be introduced.
Their first order characterizations will be given. The connection with one parameter
transformation groups, the Lie derivative and conformal vector fields will be outlined.

1. Introduction

We define the notion of geodesic monotone vector fields on Riemann-
ian manifolds. This notion depends on the metrical tensor of the manifold.
In particular, if we consider a finite dimensional Banach space B with the
scalar product induced by the natural pairing 〈 . , . 〉 : B×B∗ → R through
the identification of B with its dual B∗, then the geodesic monotone vec-
tor fields on B can be identified with the monotone operators on B (in
the sense of Minty–Browder [2], [11]). More precisely A : B → B is
monotone if and only if the vector field x 7→ (x,Ax) is monotone.

C. Udrişte proves [9] that a function f defined on an open and
geodesic convex subset of a Riemannian manifold is geodesic convex, if
and only if its gradient is geodesic monotone. This result is stated and
is expressed in terms of the differential of f , in [10] too. T. Rapcsák

in [8] reformulates the result of Udrişte, giving explicitly the inequality
which expreses the geodesic monotonicity of the gradient of a geodesic
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sity, Budapest.



438 S. Z. Németh

convex function. However, as far as we know, nobody has been talking (in
general) about geodesic monotone vector fields yet.

We can generalize the notion of scalar derivative (see [3], [6]), intro-
duced by us, for characterizing such vector fields. The results are general-
izations of some results of [3] and [6].

The theory of one parameter transformation groups is useful tool
for many application oriented investigations. In this paper we connect
the topic of one parameter transformation groups with results of nonlin-
ear analysis on Riemannian manifolds, concerning geodesic monotonicity.
These results generalize the results of [5]

We relate the geodesic monotone vector fields and the expansive maps.
(A map φ : M → M is called expansive if its tangential maps are expansive
in every point of M .) This is done through the Killing monotone vector
fields, a notion introduced by us. The Killing monotone vector fields are
vector fields on a Riemannian manifold (M, g), generated by expansive
one parameter transformation groups, where we mean by expansive one
parameter transformation groups smooth one parameter transformation
groups φt over Riemannian manifolds, with φt expansive for t > 0 (from
this follows easily that φt is nonexpansive for t < 0). The Killing strictly
monotone vector fields can be introduced similarly. We prove that a vec-
tor field X on M is Killing monotone (Killing strictly monotone) if and
only if (if) the Lie derivative LXg, of the metrical tensor g with respect
to X is positively semidefinite (positively definite) in every point of M .
The positive semidefinitness (positive definiteness) of LXg is proved to be
equivalent with the positive semidefiniteness (positive definiteness) of the
endomorphism AX , defined by AXU = ∇UX, with respect to g, where ∇
is the Levi–Civitá connection of M .

We prove that a vector field is Killing monotone if and only if it is
geodesic monotone. From these follows that a necessary and sufficient
condition for X to be geodesic monotone is the positive semidefiniteness
of LXg in every point.

We express the lower geodesic scalar derivative of X in terms of the
Lie derivative, and prove that a necessary condition for X to be strictly
geodesic monotone is the positive definiteness of LXg in every point of M .

Finally we prove that X is geodesic scalar differentiable if and only if
it is conformal.
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Although the results of this paper are theoretical, they could be the
starting point for solving new optimization problems, since they are con-
nected to geodesic convexity (see [7] and [8]).

The author expreses his gratitude to Professor Tamás Rapcsák, Pro-
fessor Gyula Soós, Professor János Szenthe and dr. Balázs Csikós

for many helpful conversations.

2. Geodesic monotone vector fields

Definition 2.1. Let M be a Riemannian manifold.

(i) A subset K of M is called geodesic convex [7] if for every two points
of M there is a geodesic arc contained in K joining these points.

(ii) Let K be a geodesic convex subset of M . A function f : K → R is
called geodesic convex (strictly geodesic convex), [7] if f ◦γ : [0, l] → R
is convex (strictly convex) for every unit speed geodesic arc γ : [0, l] →
M contained in K.

If N is an arbitrary manifold, we shall denote by Sec(TN) the family
of sections of the tangent bundle TN of N . Using this notation we have
the following definition:

Definition 2.2. Let (M, g) be a Riemannian manifold, K ⊂ M a geo-
desic convex open set and X ∈ Sec(TK) a vector field on K.

X is called geodesic monotone if for every x, y ∈ K and every unit
speed geodesic arc γ : [0, l] → M joining x and y (γ(0) = x, γ(l) = y) and
contained in K we have that

g(Xx, γ̇(0)) ≤ g(Xy, γ̇(l)),

where γ̇ denotes the tangent vector of γ with respect to the arclength.
Let X be geodesic monotone. With the previous notations we have:
X is called strictly geodesic monotone if for every distinct x and y we

have
g(Xx, γ̇(0)) < g(Xy, γ̇(l)).

X is called virtually geodesic monotone if there are x and y such that

g(Xx, γ̇(0)) < g(Xy, γ̇(l)).
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X is called trivially geodesic monotone if for every x, y we have that

g(Xx, γ̇(0)) = g(Xy, γ̇(l)).

Since the length of the tangent vector of an arbitrary parametrized
geodesic is constant, the relations of Definition 2.2 can be given for any
parametrization of γ.

It is also easy to see that X is geodesic monotone (strictly geodesic
monotone), if and only if for every arbitrarily parametrized geodesic γ the
function

υ : τ 7→ g(Xγ(τ), γ
′(τ))

is monotone (strictly monotone), where γ′(τ) is the tangent vector of γ,
with respect to its parameter τ . Similarly X is trivially monotone, if and
only if υ is constant.

Definition 2.2 can be given for an arbitrary open subset G of M , if
we consider just a pair of points x, y which can be joined by a geodesic
contained in G. Hence we can define the (global) monotonicity notion on
every manifold, not just on the complete ones.

The following theorem is a modified version of Udrişte’s result [10], [9].

Theorem 2.3. Let M be a Riemannian manifold and K an open and
geodesic convex subset of M . A function f : K → R is geodesic convex
(strictly geodesic convex), if and only if its gradient grad f is geodesic
monotone (strictly geodesic monotone). (Udrişte, 1976)

C. Udrişte gives the inequality which expreses the geodesic monotonic-
ity in terms of df , the differential of f .

T. Rapcsák [8] states the required inequality in explicit form, using
the gradient of f . However, neither of them speaks (in general) about
monotone vector fields.

Definition 2.4. Let (M, g) be a Riemannian manifold, K ∈ M a ge-
odesic convex open set and X ∈ Sec(TK) a vector field on K. Then the
lower geodesic scalar derivative (upper geodesic scalar derivative) of X is
the function

X# : K → R; X#(x) = lim inf
t↘0
γ∈Γ

g(Xγ(t), γ̇(t))− g(Xx, γ̇(0))
t

(
X

#
: K → R; X

#
(x) = lim sup

t↘0
γ∈Γ

g(Xγ(t), γ̇(t))− g(Xx, γ̇(0))
t

)
,
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where Γ denotes the family of unit speed geodesic arcs γ : [0, l] → M

starting from x (i.e. γ(0) = x), and contained in K.
If x0 ∈ K and X#(x0) = X

#
(x0) =: X#(x0), then X is called geo-

desic scalar differentiable in x0 and X#(x0) is called the geodesic scalar
derivative of X in x0. If X is geodesic scalar differentiable in every
x ∈ K then X is called geodesic scalar differentiable, and the function
X# : x 7→ X#(x) is called the geodesic scalar derivative of X.

The following theorem is a local characterization of geodesic monotone
vector fields.

Theorem 2.5. Let (M, g) be a Riemannian manifold, K ⊂ M a ge-

odesic convex open set and X ∈ Sec(TK) a vector field on K. Then we

have the following assertions:

(i) X (−X) is geodesic monotone if and only if X#(x) ≥ 0 (X
#

(x) ≤ 0)
for all x ∈ K.

(ii) X is trivially monotone if and only if X is scalar differentiable and

X#(x) = 0 for all x ∈ K

Proof. (i) First we suppose that X#(x) ≥ 0 for every x ∈ K and
prove that X is geodesic monotone Let a and b be two arbitrary distinct
points of K and γ : [0, l] → M a unit speed geodesic arc joining a and b

(γ(0) = a, γ(l) = b) contained in K. Let x = γ(t) be an arbitrary point of
the geodesic arc.

Let ε > 0 be an arbitrary but fixed positive number. Since X# ≥ 0,
there is a δ(t) > 0 such that for every s ∈ It = ]t− δ(t), t + δ(t)[ we have
that

(2.1)
g(Xγ(s), γ̇(s))− g(Xx, γ̇(t))

s− t
> −ε

l
.

(The geodesic arc can be continued to an open one contained in K and δ(t)
chosen sufficiently small so that γ(s) can be defined.) But {It : t ∈ [0, l]} is
an open covering of the compact set [0, l]. Hence [0, l] ⊂ It1∪It2∪. . .∪Itm−1

for some positive integer m and some points t1 < t2 < . . . < tm−1 of [0, l].
This yields 0 =: t0 ∈ It1 and l =: tm ∈ Itm−1 . Obviously we can choose the
intervals {Iti : i = 1, m− 1} so that no interval is contained in another.
Let ξi ∈ Iti−1 ∩ Iti ∩ ]ti−1, ti[ for i = 1, m. Then, using (2.1) we have that

(2.2) g(Xγ(ξi), γ̇(ξi))− g(Xγ(ti−1), γ̇(ti−1)) > −ε

l
(ξi − ti−1),
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and

(2.3) g(Xγ(ti), γ̇(ti))− g(Xγ(ξi), γ̇(ξi)) > −ε

l
(ti − ξi),

for i = 1,m. Summing the inequalities (2.2) and (2.3) we obtain

(2.4) g(Xγ(ti), γ̇(ti))− g(Xγ(ti−1), γ̇(ti−1)) > −ε

l
(ti − ti−1),

for i = 1,m. Summing the inequalities (2.4) for i = 1,m we get

g(Xγ(l), γ̇(l))− g(Xγ(0), γ̇(0)) > −ε.

Since ε is an arbitrary positive number we have that

g(Xγ(l), γ̇(l))− g(Xγ(0), γ̇(0)) ≥ 0.

Hence for any two distinct points a and b of K and an arbitrary geodesic
arc joining a and b contained in K, we have that

g(Xb, γ̇(l)) ≥ g(Xa, γ̇(0)).

Thus X is geodesic monotone.
Now suppose that X is geodesic monotone. Then by the definitions

of geodesic monotonicity and geodesic scalar derivative, we have that
X#(x) ≥ 0 for all x ∈ K. The statement of the theorem for −X is
obtained by using the identity

(−X)# = −X
#

.

(ii) We have that X is trivially geodesic monotone if and only if X
and −X is geodesic monotone. Hence X is trivially geodesic monotone
if and only if 0 ≤ X#(x) ≤ X

#
(x) ≤ 0 for all x ∈ K. Hence X#(x) =

X
#

(x) = 0. Thus X is trivially geodesic monotone if and only if it is
scalar differentiable and X#(x) = 0 for every x ∈ K. ¤

Similarly to Theorem 2.5 we can prove the following

Theorem 2.6. Let (M, g) be a Riemannian manifold, K ⊂ M a geo-
desic convex open set and X ∈ Sec(TK) a vector field on K. If X#(x) > 0
for every x ∈ K, then X is strictly geodesic monotone.

The converse of this theorem is not true. As an example, it is enough
to take the vector field C on R which assigns to each x ∈ R the tangent
vector at 0 of the curve t 7→ x + tx3.

For the smooth case we have the following corollary of Theorem 2.5:
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Corollary 2.7. Let (M, g) be a Riemannian manifold, ∇ the Levi–

Civitá connection of M , K ⊂ M a geodesic convex set and X ∈ Sec(TK)
a smooth vector field on K. For x ∈ K define φ(x) : Tx(M) → Tx(M) by

φ(x)(v) = ∇vX for v ∈ Tx(M), where Tx(M) is the tangent space of M

in x. Then we have the following assertions:

(i) X#(x) = inf
v∈Tx(M)
‖v‖=1

g(φ(x)(v), v)

(ii) X is geodesic monotone if and only if φ(x) is positive semidefinite for

every x in K,

(iii) X is trivially monotone if and only if φ(x) is antisymmetric for every

x ∈ K,

(iv) If φ(x) is positive definite for every x ∈ K, then X is strictly geodesic

monotone.

Proof. Let x be an arbitrary point of K. Then we have

(2.5) X#(x) = inf
γ∈Γ

lim
t↘0

g(Xγ(t), γ̇(t))− g(Xx, γ̇(0))
t

.

Equation (2.5) can be rewritten as

(2.6) X#(x) = inf
γ∈Γ

d

dt

∣∣∣
t=0

g(Xγ(t), γ̇(t)).

Using that ∇ is the Levi–Civitá connection of M and γ is geodesic, (2.6)
becomes

(2.7) X#(x) = inf
γ∈Γ

g(∇γ̇(0)X|x, γ̇(0)).

Since for every v ∈ Tx(M) there is γ ∈ Γ such that γ̇(0) = v, from (2.7)
we obtain that

(2.8) X#(x) = inf
v∈Tx(M)
‖v‖=1

g(φ(x)(v), v),

where ‖ . ‖ is the norm generated by the metrical tensor of M . From (2.8)
and Theorems 2.5, and 2.6 we obtain the assertions (ii), (iii) and (iv) of
the corollary. ¤

Denote by TM ⊂ Sec(TM) the set of all smooth vector fields on M .
Using Theorem 2.5 and Corollary 2.7 we obtain:
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Theorem 2.8. Let (M, g) be a Riemannian manifold, K ⊂ M a geo-
desic convex open set and X ∈ TK a smooth vector field on K. Then the
following assertions are equivalent:

(i) X is trivially geodesic monotone,

(ii) X is a Killing vector field.

Proof. By Corollary 2.7 (iii) we have that X is trivially geodesic
monotone if and only if AY is antysimmetric, where AY is the endomor-
phism of smooth vector fields defined by AY (X) = ∇Y X. But this is
exactly a necessary and sufficient condition for X to be a Killing vector
field. ¤

3. Killing monotone vector fields

Let (M, g) be a Riemannian manifold.

Definition 3.1. A smooth map φ : M → M is called expansive (non-
expansive), if for all x ∈ M the tangent map Tφ(x) : TxM → TxM of φ is
expansive (nonexpansive) i.e.

(3.1) ‖Tφ(x)U‖ ≥ ‖U‖ (‖Tφ(x)U‖ ≤ ‖U‖)
for all U ∈ TxM , where ‖ . ‖ is the norm generated by the metric g.

φ is called strictly expansive (nonexpansive) if in (3.1) we have strict
inequalities for U 6= 0.

Definition 3.2. A smooth one parameter transformation group φt :
M → M is called (nonexpansive) if φt is expansive (nonexpansive) for
all t > 0. The strictly expansive (strictly nonexpansive) one parameter
transformation groups can be defined similarly.

Definition 3.3. Let φt : M → M an expansive (nonexpansive) one
parameter transformation group and X : M → TM the vector field gen-
erating φt i.e.

X(z) =
d

dt

∣∣∣
t=0

φt(z),

for all z ∈ M .
Then the vector field X is called an infinitesimal expansion (nonex-

pansion). The infinitesimal strict expansions (infinitesimal strict nonex-
pansions) can be defined similarly. The infinitesimal expansions (infinites-
imal strict expansions) will also be called Killing monotone vector fields
(Killing strictly monotone vector fields).



Monotone vector fields 445

Remark 3.4. The Killing vector fields are trivially Killing monotone
vector fields. Hence the Killing monotone vector fields are generalizations
of the Killing vector fields.

The following theorem gives a characterization of the Killing mono-
tone vector fields using the Lie derivative

Theorem 3.5. X : M → TM is a Killing monotone vector field

(Killing strictly monotone vector field) if and only if (if) the Lie deriv-

ative of the metrical tensor LXg is positive semidefinite (positive definite)

in every point of M .

Proof. Suppose that X is Killing monotone. Let U, V ∈ TM be two
arbitrary vector fields, z ∈ M an arbitrary point and φt the one parameter
transformation group generated by X. Then we have that

(3.2) (LXg)(U, V ) = X(g(U, V ))− g([X, U ], V )− g(U, [X, V ]).

If we put V = U in (3.2) then we obtain

(3.3) (LXg)(U,U) = X(g(U,U))− 2g([X, U ], U).

On the other hand

(3.4) X(g(U,U))z = lim
t→0
t>0

g(U(φt(z)), U(φt(z)))− g(U(z), U(z))
t

.

Since X is Killing monotone we have that

(3.5) g(U(φt(z)), U(φt(z))) ≥ g(Tφ−1
t U(φt(z)), Tφ−1

t U(φt(z)))

Inserting (3.5) in (3.4) we get

(3.6)

X(g(U,U))z ≥ lim
t→0
t>0

(
g

(
Tφ−1

t U(φt(z))− U(z)
t

, Tφ−1
t U(φt(z))

)

+g

(
U(z),

Tφ−1
t U(φt(z))− U(z)

t

))

But

(3.7) lim
t→0
t>0

Tφ−1
t U(φt(z))− U(z)

t
= [X, U ]z.
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Inserting (3.7) in (3.6) we obtain

(3.8) X(g(U,U))z ≥ 2g([X,U ], U)z.

From (3.3) and (3.8) it follows that LXg is positive semidefinite at every
z ∈ M .

Conversely, suppose that LXg is positive semidefinite (positive defi-
nite) at every z ∈ M . We have to prove that g(TφtU, TφtU) ≥ g(U,U)
(g(TφtU, TφtU) > g(U,U)) for all t > 0 and U ∈ TM (U ∈ TM \ {0}).
But this is trivial since

d

dt
g(TφtU, TφtU)|t=0 = (LXg)(U, U). ¤

Let A ∈ TM and let AX : TM → TM be the endomorphism defined by

AXU = ∇UX,

where ∇ is the Levi–Civitá connection of M . Then we have the following
lemma:

Lemma 3.6.

LXg(U,U) = 2g(AXU,U).

Proof. Since ∇ is the Levi–Civitá covariant derivative of M we have
that

(3.9) Xg(U,U) = 2g(∇XU,U).

Inserting (3.9) in (3.3), bearing in mind that ∇ is torsion free and using
the definition of AX we obtain the required relation. ¤

By Theorem 3.5 and Lemma 3.6 we have the following theorem:

Theorem 3.7. X ∈ TM is Killing monotone (Killing strictly mono-

tone) if and only if (if) AX is positive semidefinite (positive definite) rel-

ative to the metrical tensor g.

Using Theorem 3.7 and Corollary 2.7 it is easy to prove the following
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Theorem 3.8. Let K ∈ M be an open and geodesic convex set and
X ∈ TK. Then we have the following two assertions:

(i) X is Killing monotone if and only if it is geodesic monotone.

(ii) X is a Killing vector field if and only if it is trivially geodesic mono-
tone.

Hence the notion of Killing monotone vector fields (Killing vector
fields) coincides with that of geodesic monotone (trivially geodesic mono-
tone) ones. We shall call for brevity’ sake these vector fields monotone
(trivially monotone). However, the relation between strictly geodesic mono-
tone vector fields and Killing strictly monotone vector fields seems to be
difficult and we cannot say anything about it yet.

From Theorem 3.7 and Corollary 2.7 (i) we get the following result:

Theorem 3.9. Let K ∈ M be an open and geodesic convex set and
X ∈ TK. Then X is Killing strictly monotone if X#(x) > 0 for all x ∈ K.

In [4] we gave examples of strictly geodesic monotone vector fields on
the 3-dimensional half sphere and on the 3-dimensional hyperbolical space.
These examples were given by proving the positiveness of the lower scalar
derivative. Hence by Theorem 3.9 these vector fields are Killing strictly
monotone too.

Using Lemma 3.6 and Corollary 2.7 (i), we easily get:

Theorem 3.10. Let X ∈ TM be a smooth vector field on M and
x ∈ M . Then the lower (upper) geodesic scalar derivative of X in x is
given by the following formula:

X#(x) =
1
2

inf
g(h,h)=1

(LXg)x(h, h)
(
X

#
(x) =

1
2

sup
g(h,h)=1

(LXg)x(h, h)
)
.

Theorem 3.11. Using the previous notations, if LXg is positive defi-
nite in every point of K then, X is strictly geodesic monotone.

Proof. Let x be an arbitrary point of K. Since

X#(x) =
1
2

inf
g(h,h)=1

(LXg)x(h, h)

and the unit ball in TxM is compact, there is a h0 ∈ TxM with g(h0, h0)=1
such that

X#(x) =
1
2
LXgx(h0, h0) > 0.
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Since x has been arbitrarily chosen Theorem 2.6 implies that X is strictly
geodesic monotone. ¤

We recall the following definition:

Definition 3.12. Let (M, g) be a Riemannian manifold and X a smooth
vector field on X. Denote by LXg the Lie derivative of g with respect
to X. Then X is called a conformal vector field if there is a smooth map
λ : M → R such that

LXg = λg.

Theorem 3.13. Let (M, g) be a Riemannian manifold and X a smooth

vector field on X. Then X is geodesic scalar differentiable, if and only if

X is conformal.

Proof. By Theorem 3.10 X is geodesic scalar differentiable if and
only if there is a smooth function λ : M → R such that

(3.10) LXg(Y, Y ) = λg(Y, Y )

for all Y ∈ TM . From (3.2) it follows that LXg is symmetric. But
a symmetric bilinear form is determined by its corresponding quadratic
form [1]. Hence (3.10) implies

LXg = λg.

In addition we have that λ = 2X#. ¤
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BABEŞ–BOLYAI UNIVERSITY
KOGALNICEANU NR. 1
RO–3400 CLUJ–NAPOCA
ROMANIA
CURRENT ADDRESS:
LABORATORY OF OPERATION RESEARCH AND DECISION SYSTEMS
COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
H–1518 BUDAPEST, P.O. BOX 63
HUNGARY

E-mail: snemeth@oplab.sztaki.hu

(Received November 27, 1997; revised June 18, 1998)


