On a class of QR-submanifolds of quaternion space forms

By CALIN AGUT (Oradea)

Abstract

Let M be a QR-submanifolds (cf. A. Bejancu [2]) of a quaternion space form $N(c)$ such that every geodesic of M is a circle of $N(c)$. Then we prove that either $c=0$ or M is a totally real submanifold.

1. Introduction

Let N be a quaternion Kaehlerian manifold of real dimension $4 n$. Then there exist on N a Riemannian metric g and a vector bundle V of tensors of type $(1,1)$ with a local basis of Hermitian structures J_{1}, J_{2}, J_{3} such that $J_{1} J_{2}=-J_{2} J_{1}=J_{3}$. Moreover, for each local section S of V and vector field X on $N, \widetilde{\nabla}_{X}$ S is also a section of V, where $\widetilde{\nabla}$ is the Levi-Civita connection on N with respect to g. If the quaternion sectional curvature of N is a constant c then we say that N is a quaternion space form and denote it by $N(c)$. As it is well known (cf. K. Yano and M. Kon [10], p. 172) the curvature tensor \widetilde{R} of $\widetilde{\nabla}$ on $N(c)$ is given by

$$
\begin{gather*}
\widetilde{R}(X, Y) Z=\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y \\
\left.+\sum_{a=1}^{3}\left\{g\left(J_{a} Y, Z\right) J_{a} X-g\left(J_{a} X, Z\right) J_{a} Y+2 g\left(X, J_{a} Y\right) J_{a} Z\right\}\right\} \tag{1.1}
\end{gather*}
$$

for any $X, Y, Z \in \Gamma(T N(c))$.
Mathematics Subject Classification: 53C25, 53C40.
Key words and phrases: QR-submanifolds, quaternionic space forms, second fundamental forms.

Throughout the paper we use the following notations:
$F(N)$ - the algebra of smooth functions on N,
$\Gamma(E)$ - the $F(N)$-module of smooth sections of a vector bundle E over N. The same notations will be used for any other manifold.

Next, we consider an m-dimensional Riemannian manifold M isometrically immersed in N. Then M is said to be a quaternion-real submanifold (QR-submanifold) (cf. A. Bejancu [2]) if there exist a vector subbundle ν of the normal bundle $T M^{\perp}$ such that

$$
J_{a}\left(\nu_{x}\right)=\nu_{x} \quad \text { and } \quad J_{a}\left(\nu_{x}^{\perp}\right) \subset T_{x} M,
$$

for any $x \in M$ and $a \in\{1,2,3\}$, where ν^{\perp} is the complementary orthogonal vector bundle to ν in $T M^{\perp}$. If, in particular, $\nu=T M^{\perp}$ (resp. $\nu=\{0\}$), M is said to be a quaternion submanifold (cf. B.Y. CHEN [4]) (resp. antiquaternion submanifold, cf. J.S. Pak [8]).

Denote by s the rank of ν^{\perp}, that is, each fibre of ν^{\perp} is of dimension s. Then consider the s-dimensional vector subspaces $D_{a, x}=J_{a}\left(\nu_{x}^{\perp}\right)$, $a \in\{1,2,3\}$ of $T_{x} M$ which are mutually orthogonal. Thus we obtain a globally defined distribution

$$
D^{\perp}: x \rightarrow D_{x}^{\perp}=D_{1, x} \oplus D_{2, x} \oplus D_{3, x}
$$

on M. Also, we have

$$
J_{a}\left(D_{a, x}\right)=\nu_{x}^{\perp} \quad \text { and } \quad J_{a}\left(D_{b, x}\right)=D_{c, x},
$$

for any $x \in M$, where (a, b, c) is a cyclic permutation of $(1,2,3)$. Denote by D the complemetary orthogonal distribution to D^{\perp} in $T M$. It is easy to see that D is a quaternion distribution on M, that is, $J_{a}\left(D_{x}\right)=D_{x}$ for any $x \in M$ and $a \in\{1,2,3\}$.

Finally, we recall from K. Nomizu and K. Yano [6] the notion of circle in N. A curve $C: x=x(t)$ with arc-length parameter t in N is said to be a circle if there exists a field of unit vectors Y_{t} along C, which, together with the unit tangent vectors X_{t}, satisfies the differential equations

$$
\begin{equation*}
\widetilde{\nabla}_{t} X_{t}=k Y_{t} \quad \text { and } \quad \tilde{\nabla}_{t} Y_{t}=-k X_{t}, \tag{1.2}
\end{equation*}
$$

where k is a positive constant.
The main purpose of this note is to prove the following
Theorem 1. Let M be a $Q R$-submanifold of $N(c)$, such that each geodesic of M is a circle in $N(c)$. Then either $c=0$ or $D=\{0\}$.

2. Preliminaries

First, from the general theory of submanifolds we recall the formulas of Gauss and Weingarten (cf. B.Y. Chen [3], p. 39):

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi, \quad \forall X \in \Gamma(T M), \xi \in \Gamma\left(T M^{\perp}\right) \tag{2.2}
\end{equation*}
$$

respectively, where $\nabla, \nabla^{\perp}, h$ and A_{ξ} are the Levi-Civita connection on M, the normal connection of M, the second fundamental form and the shape operator of M, respectively. Also, h and A_{ξ} are related by

$$
\begin{equation*}
g(h(X, Y), \xi)=g\left(A_{\xi} X, Y\right), \quad \forall X, Y \in \Gamma(T M), \xi \in \Gamma\left(T M^{\perp}\right) . \tag{2.3}
\end{equation*}
$$

The covariant derivative of h is defined by

$$
\begin{gather*}
\left(\nabla_{X} h\right)(Y, Z)=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right), \\
\forall X, Y, Z \in \Gamma(T M) . \tag{2.4}
\end{gather*}
$$

Then the Codazzi equation is given by

$$
\begin{equation*}
\widetilde{R}(X, Y) Z\}^{\perp}=\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z), \quad \forall X, Y, Z \in \Gamma(T M) \tag{2.5}
\end{equation*}
$$

where $\{*\}^{\perp}$ means the normal part of $*$.
Now, suppose M is a QR-submanifold of a quaternion Kaehlerian manifold N. Then according to C.L. Bejan [1] the second fundamental form of M satisfies

$$
\begin{equation*}
g(h(X, Y), \xi)=0, \quad \forall X, Y \in \Gamma(D), \xi \in \Gamma(v) . \tag{2.6}
\end{equation*}
$$

Let $C: x=x(t)$ be a geodesic of M, that is, $\nabla_{t} X_{t}=0$. Thus from (2.1) we deduce

$$
\widetilde{\nabla}_{t} X_{t}=h\left(X_{t}, X_{t}\right),
$$

which, together with (2.2), implies

$$
\begin{equation*}
\widetilde{\nabla}_{t}^{2} X_{t}=-A_{h\left(X_{t}, X_{t}\right)} X_{t}+\nabla_{t}^{\perp}\left(h\left(X_{t}, X_{t}\right)\right) . \tag{2.7}
\end{equation*}
$$

Suppose now C is a circle in N. Then by using (2.1) and (1.2) we deduce

$$
\begin{equation*}
\widetilde{\nabla}_{t}^{2} X_{t}=-k^{2} X_{t} . \tag{2.8}
\end{equation*}
$$

Comparing (2.7) and (2.8) we infer

$$
\begin{equation*}
A_{h\left(X_{t}, X_{t}\right)} X_{t}=k^{2} X_{t} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{t}^{\perp}\left(h\left(X_{t}, X_{t}\right)=0 .\right. \tag{2.10}
\end{equation*}
$$

Consider $t=0$. Using (2.3) and (2.9) we obtain

$$
g(h(X, X), h(X, X))=k^{2}
$$

for any unit tangent vector X at a point $x \in M$. Thus there exists a non-zero function λ such that

$$
\begin{equation*}
g(h(X, X), h(X, X))=\lambda^{2}, \tag{2.11}
\end{equation*}
$$

for any unit vector field X on M. According to O'Neill [7], the immersion of M in $N(c)$ is λ-isotropic. From (2.11) we deduce

$$
\begin{equation*}
g(h(X, X), h(X, X))=\lambda^{2} g(X, X) g(X, X), \quad \forall X \in \Gamma(T M) \tag{2.12}
\end{equation*}
$$

which is equivalent to

$$
\begin{align*}
& g(h(X, Y), h(Z, U))+g(X, Z), h(U, Y))+g(X, U), h(Y, Z)) \\
& =\lambda^{2}\{g(X, Y) g(Z, U)+g(X, Z) g(U, Y)+g(X, U) g(Y, Z)\}, \tag{2.13}
\end{align*}
$$

for any $X, Y, Z, U \in \Gamma(T M)$. Also, from (2.10) and (2.4), taking into account that C is a geodesic, we deduce:

$$
\begin{equation*}
\left(\nabla_{X} h\right)(X, X)=0, \quad \forall X \in \Gamma(T M), \tag{2.14}
\end{equation*}
$$

which is equivalent to

$$
\begin{gather*}
\left(\nabla_{X} h\right)(Y, Z)+\left(\nabla_{Y} h\right)(X, Z)+\left(\nabla_{Z} h\right)(X, Y)=0, \tag{2.15}\\
\forall X, Y, Z \in \Gamma(T M) .
\end{gather*}
$$

Remark 1. K. Nomizu [5] obtained both (2.11) and (2.14) for a Kaehler submanifold of a complex projective space. Actually, it is easy to see that the above calculations hold good for a Riemannian submanifold whose geodesics are circles in the ambient space.

3. Proof of the Theorem

First, differentiating (2.11) and taking account of (2.14) we deduce $X(\lambda)=0$ for any $\mathrm{X} \in \Gamma(T M)$ that is, λ is locally constant on M. Then we take $Y=Z \in \Gamma(D)$ and $\mathrm{X} \in \Gamma(D)$ in (2.15) and obtain

$$
\left(\nabla_{X} h\right)(Y, Y)+2\left(\nabla_{Y} h\right)(X, Y)=0
$$

On the other hand, by using (1.1) in (2.5) we derive

$$
\left(\nabla_{X} h\right)(Y, Y)-\left(\nabla_{Y} h\right)(X, Y)=0, \quad \forall X, Y \in \Gamma(D)
$$

Hence we have

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Y)=0, \quad \forall X, Y \in \Gamma(D) \tag{3.1}
\end{equation*}
$$

Next, we take $Y=Z=U \in \Gamma(D), X=J_{1} \eta$ for $\eta \in \Gamma\left(\nu^{\perp}\right)$ in (2.13) and differentiate (2.13) with respect to $W \in \Gamma(D)$. Then taking into account that λ is locally constant and by using (3.1) we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{W} h\right)\left(J_{1} \eta, Y\right), h(Y, Y)\right)=0, \quad \forall Y, W \in \Gamma(D), \eta \in \Gamma\left(\nu^{\perp}\right) \tag{3.2}
\end{equation*}
$$

By using again (1.1) and (2.5) we deduce

$$
\left(\nabla_{W} h\right)\left(J_{1} \eta, Y\right)-\left(\nabla_{J_{1} \eta} h\right)(W, Y)=\frac{c}{4} g\left(J_{1} W, Y\right) \eta,
$$

and

$$
\left(\nabla_{W} h\right)\left(J_{1} \eta, Y\right)-\left(\nabla_{Y} h\right)\left(W, J_{1} \eta\right)=\frac{c}{2} g\left(J_{1} W, Y\right) \eta
$$

Adding the last two relations and taking account of (2.15) we get

$$
\left(\nabla_{W} h\right)\left(J_{1} \eta, Y\right)=\frac{c}{4} g\left(J_{1} W, Y\right) \eta
$$

which together with (3.2) implies

$$
\begin{equation*}
\frac{c}{4} g\left(J_{1} W, Y\right) g(\eta, h(Y, Y))=0, \quad \forall Y, W \in \Gamma(D), \eta \in \Gamma\left(\nu^{\perp}\right) \tag{3.3}
\end{equation*}
$$

Finally, we suppose $c \neq 0$ and $D \neq\{0\}$. Then we take $Y=J_{1} \mathrm{~W}$ in (3.3) and by linearity obtain:

$$
\begin{equation*}
g(h(X, Y), \eta)=0, \quad \forall X, Y \in \Gamma(D), \eta \in \Gamma\left(\nu^{\perp}\right) . \tag{3.4}
\end{equation*}
$$

As a consequence of (2.6) and (3.4) we deduce $h(X, Y)=0$ for any $X, Y \in \Gamma(D)$, which contradict (2.11). This completes the proof of the theorem.

References

[1] C.-L. Bejan, On QR-submanifolds of a quaternion Kaehlerian manifold, Tensor 46 (1987), 413-417.
[2] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publish. Comp., Dordrecht, 1986.
[3] B.-Y. Chen, Geometry of submanifolds, M. Dekker, New York, 1973.
[4] B.-Y. Chen, Totally umbilical submanifolds of quaternion space forms, J. Austral. Math. Soc. 26 (1978), 154-162.
[5] K. Nomizu, A characterization of the Veronese varieties, Nagoya Math. J. 60 (1976), 181-188.
[6] K. Nomizu and K. Yano, On circles and spheres in Riemannian geometry, Math. Ann. 21 (1974), 163-170.
[7] B. O'Neill, Isotropic and Kaehler immersions, Canad. J. Math. 17 (1965), 905-915.
[8] J. S. PAK, Anti-quaternion submanifolds of quaternion projective space, Kyungpook Math. J. 18 (1981), 91-115.
[9] K. Tsukada, Parallel submanifolds in a quaternion projective space, Osaka J. Math. 22 (1985), 187-241.
[10] K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore, 1984.

```
CALIN AGUT
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ORADEA
STR. ARMATEI ROMANE NR. 5
ORADEA - 3700
ROMANIA
```

(Received December 1, 1997; revised July 7, 1998)

