Publ. Math. Debrecen 54 / 3-4 (1999), 489–495

On the uniqueness of rings of coefficients in skew polynomial rings

By YASUYUKI HIRANO (Okayama)

Abstract. Let R be a ring, let α be an automorphism of R, and let δ be an α derivation of R. The ring R is said to be *strongly invariant in* a skew polynomial ring $R[X; \alpha, \delta]$ if for any isomorphism Ψ of $R[X; \alpha, \delta]$ to any skew polynomial ring $S[Y, \beta, \partial]$, there holds $\Psi(R) = S$. We consider what conditions imply that R is strongly invariant in T.

1. Introduction

Throughout this paper, all rings are associative with unit. Let α be an automorphism of a ring R. An α -derivation of R is any additive map $\delta : R \to R$ such that $\delta(ab) = \alpha(a)\delta(b) + \delta(a)b$ for all $a, b \in R$. The skew polynomial ring $R[X; \alpha, \delta]$ is a ring of polynomials in X over R with the usual addition and with multiplication subject to the rule $Xa = \alpha(a)X + \delta(a)$ for all $a \in R$ (see [2, Definition, p. 10]). A ring T may be viewed as a skew polynomial ring over a subring T' if and only if there exists an isomorphism Φ from a skew polynomial ring $R[X, \alpha, \delta]$ to T such that $\Phi(R) = T'$. In fact, if there exists such an isomorphism Φ , then $\alpha' = \Phi\beta\Phi^{-1}$ is an automorphism of $T' = \Phi(R), \, \delta' = \Phi\delta\Phi^{-1}$ is an α' -derivation of T', T is a free left T'-module with the basis $1, \Phi(X), \Phi(X)^2, \ldots$ and $\Phi(X)a = \alpha'(a)\Phi(X) + \delta'(a)$ for all $a \in T'$. Therefore we obtain $T = T'[\Phi(X); \alpha', \delta']$. There may possibly be many different ways to represent T as a skew polynomial ring over a subring. For example, consider the first Weyl algebra $A_1(K)$ over a field K. This is an algebra over K generated by

Mathematics Subject Classification: 16S32, 16S36.

Key words and phrases: skew plonomial rings, strongly regular rings, automorphisms.

Yasuyuki Hirano

x, y with relation xy - yx = 1. We may write $A_1(K) = K[y] \left[x; 1, \frac{d}{dy}\right] = K[x] \left[y; 1, -\frac{d}{dx}\right]$. Hence two different subrings K[y], K[x] can become rings of coefficients of $A_1(K)$. In this paper, we consider what conditions imply R to be unique as a ring of coefficients of $T = R[X; \alpha, \delta]$.

2. Strongly invariant rings

To discuss the uniqueness of rings of coefficients in skew polynomial rings, we need the following two definitions.

Definition 1. A ring R is strongly invariant in a skew polynomial ring $R[X; \alpha, \delta]$ if for any isomorphism Ψ of $R[X; \alpha, \delta]$ to any skew polynomial ring $S[Y; \beta, \partial]$, there holds $\Psi(R) = S$.

Definition 2. A ring R is reduced if R contains no nonzero nilpotent elements. A reduced ring R with an automorphism α is α -reduced if, for any $r \in R$, $r\alpha(r) = 0$ implies r = 0.

We give an example of a reduced ring which is not α -reduced. Let K be a field, and let $R = K \oplus K$. Then R is reduced. Consider the automorphism α of R given by $\alpha(a,b) = (b,a)$. Then $(1,0)\alpha(1,0) = (1,0)(0,1) = (0,0)$. Therefore R is not α -reduced.

Now we begin with the following lemma.

Lemma 1. Let R be a ring, let α be an automorphism of R, and let δ be an α -derivation of R. Suppose that R is α -reduced and let $a, b \in R$.

- (1) If ab = 0, then $\alpha^i(a)\alpha^j(b) = 0$ for any integers *i*, *j*.
- (2) If ab = 0, then $\delta^i(a)\delta^j(b) = 0$ for any non-negative integers *i*, *j*.
- (3) If ab = 0, then $aX^m bX^n = 0$ in $R[X; \alpha, \delta]$ for any nonnegative integers m, n.

PROOF. (1) Assume ab = 0. Then $b\alpha(a)\alpha(b\alpha(a)) = b\alpha(ab)\alpha^2(a) = 0$. Since R is α -reduced, we have $b\alpha(a) = 0$. Since R is reduced, $(\alpha(a)b)^2 = 0$ implies $\alpha(a)b = 0$. Similarly $(ba)^2 = 0$ implies ba = 0. Hence, by the same way as above, we obtain $a\alpha(b) = 0$. Using these repeatedly, we obtain $\alpha^i(a)\alpha^j(b) = 0$ for any non-negative integers i, j. Take a positive integer n and apply α^{-n} to this equation, we have $\alpha^{i-n}(a)\alpha^{j-n}(b) = 0$. This proves the claim.

(2) Since R is reduced, ab = 0 implies ba = 0, and hence $b\alpha(a) = 0$ by (1). Since $0 = \delta(ab) = \alpha(a)\delta(b) + \delta(a)b$, $\{\alpha(a)\delta(b)\}^2 = -\delta(a)b\alpha(a)\delta(b) = 0$,

so that $\alpha(a)\delta(b) = 0$. Hence $a\delta(b) = 0$ by (1). Using ba = 0, we similarly obtain $\delta(a)b = 0$. Using these repeatedly, we can prove our claim.

(3) Using the rule $Xr = \alpha(r)X + \delta(r)$ for each $r \in R$, we can write $aX^mbX^n = c_{m+n}X^{m+n} + c_{m+n-1}X^{m+n-1} + \dots + c_1X + c_0$. Then we see that $c_{m+n} = a\alpha^m(b)$, $c_{m+n-1} = \sum_{i=0}^{m-1} a\alpha^{m-i-1}\delta\alpha^i(a)$, and in general c_k is the sum of some terms of the form $a\alpha^{i_1}\delta^{j_1}\alpha^{i_2}\delta^{j_2}\cdots\alpha^{i_t}\delta^{j_t}(b)$ with $i_1 + j_1 + \dots + i_t + j_t = m$. However, using (1) and (2), we see $a\alpha^{i_1}\delta^{j_1}\alpha^{i_2}\delta^{j_2}\cdots\alpha^{i_t}\delta^{j_t}(b) = 0$ for each $i_1,\ldots,i_t,j_1,\ldots,j_t$, and therefore $c_k = 0$ for $k = 0, 1, \ldots, m + n$.

The following theorem improves [4, Proposition 3.4].

Theorem 2. Let R be a ring, let α be an automorphism of R, and let δ be an α -derivation of R. If R is α -reduced, then the set of all units in $R[X; \alpha, \delta]$ equals the set of all units in R.

PROOF. Let $f(X) = \sum_{i=0}^{m} a_i X^i$ be a unit in $R[X, \alpha, \delta]$ and let $g(X) = \sum_{j=0}^{n} b_j X^j$ be its inverse. Then we can write $1 = f(X)g(X) = \sum_{k=0}^{m+n} (\sum_{i+j=k} a_i X^i b_j X^j) = c_{m+n} X^{m+n} + c_{m+n-1} X^{m+n-1} + \dots + c_1 X + c_0$. We prove that $f(X) \in R$. Suppose, on the contrary, that m > 0 and $a_m \neq 0$. We claim that $a_s b_t = 0$ for $s + t \ge m$. We can easily see that $c_{m+n} = a_m \alpha^m(b_n) = 0$. Thus we obtain $a_m b_n = 0$ by Lemma 1(1). This proves our claim for s + t = m + n. Let p be an integer such that $m+n > p \ge m$, and suppose that $a_s b_t = 0$ if s+t > p. We shall prove that $a_s b_t = 0$ when s + t = p. By Lemma 1(3), we have $\sum_{i+j=u} a_i X^i b_j X^j = 0$ for $u = m + n, m + n - 1, \dots, p + 1$. Hence we obtain

(1)
$$c_p = \sum_{i+j=p} a_i \alpha^i(b_j) = 0.$$

Since $a_s b_t = 0$ for s + t > p, $a_s \alpha^s(b_t) = 0$ for s + t > p by Lemma 1(1), and hence $\alpha^s(b_t)a_s = 0$ for s + t > p because R is reduced. Multipling the equation (1) on the right by a_p , we obtain

$$0 = \left\{\sum_{i+j=p} a_i \alpha^i(b_j)\right\} a_p = a_p \alpha^p(b_0) a_p.$$

Since R is reduced, $a_p \alpha^p(b_0) = 0$, so that $a_p b_0 = 0$ by Lemma 1(1). Now the equation (1) becomes

(2)
$$\sum_{\substack{i+j=p\\j\ge 1}} a_i \alpha^i(b_j) = 0.$$

Yasuyuki Hirano

Multipling the equation (2) on the right by a_{p-1} , we have $a_{p-1}\alpha^{p-1}(b_1) \times a_{p-1} = 0$. Hence $a_{p-1}\alpha^{p-1}(b_1) = 0$, so that $a_{p-1}b_1 = 0$. Continuing this process, we have $a_ib_j = 0$ for all i, j with i + j = p. Thus we have proved $a_sb_t = 0$ for $s + t \ge m$. In particular, we have $a_mb_n = a_mb_{n-1} = \cdots = a_mb_0 = 0$. Thus $a_mX^mg(X) = 0$ by Lemma 1(3), and hence $(\sum_{i=0}^{m-1} a_iX^i)g(X) = 1$. Therefore we obtain $\sum_{i=0}^{m-1} a_iX^i = (\sum_{i=0}^{m-1} a_iX^i)g(X)f(X) = f(X) = \sum_{i=0}^m a_iX^i$. This implies $a_m = 0$, a contradiction. This completes the proof.

As a consequence of Theorem 2, we obtain the following corollary.

Corollary 3. Let R be a ring, let α be an automorphism of R, and let δ be an α -derivation of R. Suppose that R is α -reduced and that R is generated by its units. Then $\Psi(R) = R$ for any automorphism Ψ of $R[X; \alpha, \delta]$.

A ring is called an integral domain if the product of nonzero elements is always nonzero. For example, a division ring is an integral domain.

Corollary 4. If R is an integral domain generated by its units, then R is strongly invariant in $R[X; \alpha, \delta]$ for any automorphism α and for any α -derivation δ .

PROOF. Let S be a ring with an automorphism β and with a β derivation ∂ , and assume that $\Psi : R[X; \alpha, \delta] \to S[Y, \beta; \partial]$ is an isomorphism. Since S also is an integral domain, the set of all units in $S[Y; \beta, \partial]$ equals the set of all units in S by Theorem 2. Hence, by hypothesis, we have $\Psi(R) \subseteq S$. Clearly $\Psi(X) \notin S$, and so we can write $\Psi(X) = s_k Y^k + \cdots + s_1 Y + s_0$ with some $s_0, \ldots, s_k \neq 0 \in S$ and some k > 0. We have to prove $\Psi(R) = S$. Suppose, on the contrary, that $\Psi(R) \subsetneq S$ and take an element $s \in S - \Psi(R)$. Then there is $f(X) = r_n X^n + r_{n-1} X^{n-1} + \cdots + r_1 X + r_0 \in R[X; \alpha, \delta]$ with n > 0 and some $r_0, \ldots, r_n \neq 0 \in R$ such that $\Psi(f(X)) = s$. Then $\Psi(r_n)\Psi(X)^n + \cdots + \Psi(r_1)\Psi(X) + (\Psi(r_0) - s) = 0$. Since the coefficient of Y^{nk} is zero, we obtain $\Psi(r_n) s_k \beta^k(s_k) \beta^{2k}(s_k) \cdots \beta^{(n-1)k}(s_k) = 0$. Since $r_n \neq 0$ and $s_k \neq 0$, this is a contradiction. Consequently we obtain $\Psi(R) = S$.

An integral domain R is called a local domain if R/J(R) is a division ring, where J(R) denotes the Jacobson radical of R. It is easy to see that a local domain R is generated by its units. Hence, by Corollary 4, Ris strongly invariant in any skew polynomial ring $R[X; \alpha, \delta]$. We give an example of a commutative local domain with a non-trivial automorphism α and with a non-trivial α -derivation.

493

Example. Let K[[x]] denote the ring of formal power series over a field K, and α the automorphism of K[[x]] defined by $\alpha(f(x)) = f(-x)$ for all $f(x) \in K[[x]]$. We define a map $\delta : K[[x]] \to K[[x]]$ by

$$\delta\left(\sum_{i=0}^{\infty}a_ix^i\right) = -\sum_{i=0}^{\infty}a_{2i+1}x^{2i}.$$

We can easily see that δ is an α -derivation of K[[x]]. Since K[[x]] is a local domain, it is generated by its units. By Corollary 4, K[[x]] is strongly invariant in $K[[x]][Y; \alpha, \delta]$.

Recall that R is said to be *von Neumann regular* if, for each element a of R, there exists an element x of R such that a = axa. A reduced von Neumann regular ring is called a *strongly regular ring*. It is well-known that a von Neumann regular ring R is strongly regular if and only if every idempotent of R is central.

Lemma 5. Let R be a ring, let α be an automorphism of R, and let δ be an α -derivation of R. If R is α -reduced, then $R[X; \alpha, \delta]$ is reduced. In this case, $\alpha(e) = e$ and $\delta(e) = 0$ for any idempotent $e \in R$. Conversely, if R is a strongly regular ring and if $R[X; \alpha, \delta]$ is reduced, then R is α -reduced.

PROOF. Let R be a α -reduced ring. Suppose, on the contrary, that $R[X; \alpha, \delta]$ is not reduced. Then there exists a nonzero element $f \in R[X; \alpha, \delta]$ such that $f^2 = 0$. Since R is reduced, $f \notin R$. Let $f = \sum_{i=0}^{m} a_i X^i$ with $a_0, \ldots, a_m \neq 0 \in R$. Since $f^2 = 0$, we have $a_m \alpha^m (a_m) = 0$. By Lemma 1(1) we obtain $a_m^2 = 0$, and hence $a_m = 0$, a contradiction. Therefore $R[X; \alpha, \delta]$ is reduced. Note that every idempotent in a reduced ring is central (see [5, Lemma I.12.2, p. 40]). Let e be any idempotent in R. Then e is central in $R[X; \alpha, \delta]$, and hence $eX = Xe = \alpha(e)X + \delta(e)$. This implies $\alpha(e) = e$ and $\delta(e) = 0$. Next assume that R is a strongly regular ring. If R is not α -reduced, then there exists a nonzero element $r \in R$ such that $r^2x = r$ and rx = xr. If we set e = rx, then e is a nonzero central idempotent of R and $e\alpha(e) = xr\alpha(r)\alpha(x) = 0$. Let f = eXe - eX. Then $f^2 = 0$, but $f = e(\alpha(e)X + \delta(e))e - eX = e\delta(e) - eX \neq 0$. Therefore $R[X; \alpha, \delta]$ is not reduced.

The following theorem generalizes [1, Theorem 3] and also improves [4, Theorem 4.5].

Yasuyuki Hirano

Theorem 6. Let R be a strongly regular ring, let α be an automorphism of R, and let δ be an α -derivation of R. Then the following statements are equivalent:

- (1) R is strongly invariant in $R[X; \alpha, \delta]$.
- (2) $\Psi(R) = R$ for any automorphism Ψ of $R[X; \alpha, \delta]$.

(3) R is α -reduced.

PROOF. $(1) \Rightarrow (2)$ is trivial.

 $(2) \Rightarrow (3)$. Suppose that R is not α -reduced. Then, by the same way as in the proof of Lemma 5, we can find a nonzero central idempotent eof R such that $e\alpha(e) = 0$ and $f = eXe - eX = e\delta(e) - eX \neq 0$. Let Ψ denote the automorphism of $R[X; \alpha, \delta]$ defined by $\Psi(a) = (1 + f)a(1 - f)$ for all $a \in R[X; \alpha, \delta]$. Then $\Psi(e) = (1 + f)e(1 - f) = e - e\delta(e) + eX \notin R$, and hence $\Psi(R) \not\subseteq R$.

(3) \Rightarrow (1). Since R is α -reduced, $R[X; \alpha, \delta]$ is reduced by Lemma 5. Let S be a ring with an automorphism β and a β -derivation ∂ and assume that $\Psi: R[X; \alpha, \delta] \to S[Y; \beta, \partial]$ is an isomorphism. Since $S[Y; \beta, \partial]$ is reduced, [3, Theorem 3.15] implies that the set of all idempotents in $S[Y;\beta,\partial]$ is contained in S. Let P be any prime ideal of R. Since R is strongly regular, for each $a \in P$, Ra is generated by a central idempotent (cf. [5, Proposition I.12.3, p. 40]). Since $P = \sum_{a \in P} Ra$, there exists a set $\{e_i \mid i \in I\}$ of central idempotents such that $P = \sum_{i \in I} Re_i$. By Lemma 5, $\alpha(e_i) = e_i$ and $\delta(e_i) = 0$ for each $i \in I$. Hence P is stable under α and δ . Similarly $\sum_{i \in I} S\Psi(e_i)$ is stable under β and ∂ . Since $\Psi(P(R[X; \alpha, \delta])) =$ $\Psi(\sum_{i \in I} e_i R[X; \alpha, \delta]) = \sum_{i \in I} \Psi(e_i) S[Y, \beta, \partial], \Psi$ induces an isomorphism $\bar{\Psi}: (\bar{R}/P)[X;\bar{\alpha},\bar{\delta}] \to (S/\sum_{i\in I} S\Psi(e_i))[Y;\bar{\beta},\bar{\partial}], \text{ where } \bar{\alpha}, \bar{\delta}, \bar{\beta} \text{ and } \bar{\partial} \text{ are }$ the maps induced by α , δ , β and ∂ respectively. Since R is strongly regular, R/P is a division ring. By Corollary 4 we obtain $\Psi(R/P) =$ $S/\sum_{i\in I} S\Psi(e_i)$, that is, $S=\Psi(R)+\sum_{i\in I} S\Psi(e_i)$. Hence we have $\Psi(R)\subseteq V$ S. We need to prove $\Psi(R) = S$. Suppose, on the contrary, that $\Psi(R) \subsetneq S$. Then $\Psi^{-1}(S) \subsetneq R$. Hence there is an element $f(X) = a_n X^n + a_{n-1} X^{n-1} + a_{n-1} X^{n-1}$ $\cdots + a_1 X + a_0 \in \Psi^{-1}(S)$ with n > 0 and some $a_0, \ldots, a_n \neq 0 \in R$. Recall that the prime radical N(R) of R is the intersection of all prime ideals of R. Since N(R) is a nil ideal by [5, Proposition XV.1.2, p. 283] and since R is reduced, N(R) = 0, that is, the intersection of all prime ideals of R is zero. Since $a_n \neq 0$, there exists a prime ideal Q of R such that $a_n \notin Q$. By a similar way as above, we can easily see that Ψ induces an

494

495

isomorphism $\tilde{\Psi}: (R/Q)[X; \tilde{\alpha}, \tilde{\delta}] \to (S/\Psi(P)S)[Y; \tilde{\beta}, \tilde{\partial}]$, where $\tilde{\alpha}, \tilde{\delta}, \tilde{\beta}$ and $\tilde{\partial}$ are the maps induced by α, δ, β and ∂ , respectively. Since R is strongly regular, R/Q is a division ring, so that $\tilde{\Psi}(R/Q) = S/\Psi(Q)S$ by Corollary 4. Therefore we have $S = \Psi(R) + \Psi(Q)S$. Hence $\Psi(f(X)) \in S = \Psi(R) + \Psi(Q)S \subseteq \Psi(R + Q(R[X; \alpha, \delta]))$. This implies $f(X) \in R + Q(R[X; \alpha, \delta])$, and hence $a_n \in Q$, a contradiction. Consequently we obtain $\Psi(R) = S$.

References

- E. P. ARMENDARIZ, H. K. KOO and J. K. PARK, Isomorphic Ore extensions, Comm. in Algebra 15 (1987), 2633-2652.
- [2] K. R. GOODEARL and R. B. WARFIELD, JR., An Introduction to Noncommutative Noetherian Rings, *Cambridge University Press*, 1989.
- [3] A. A. M.KAMAL, Idempotents in polynomial rings, Acta Math. Hung. 59 (1992), 355-363.
- [4] A. A. M. KAMAL, Strongly Ore invariant rings, Tamkang J. Math. 26 (1995), 277–282.
- [5] B. STENSTRÖM, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, New York, 1975.

YASUYUKI HIRANO DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY OKAYAMA 700 JAPAN *E-mail*: yhirano@math.okyama-u.ac.jp

(Received January 29, 1998; revised May 18, 1998)