On the uniqueness of rings of coefficients in skew polynomial rings

By YASUYUKI HIRANO (Okayama)

Abstract

Let R be a ring, let α be an automorphism of R, and let δ be an α derivation of R. The ring R is said to be strongly invariant in a skew polynomial ring $R[X ; \alpha, \delta]$ if for any isomorphism Ψ of $R[X ; \alpha, \delta]$ to any skew polynomial ring $S[Y, \beta, \partial]$, there holds $\Psi(R)=S$. We consider what conditions imply that R is strongly invariant in T.

1. Introduction

Throughout this paper, all rings are associative with unit. Let α be an automorphism of a ring R. An α-derivation of R is any additive map $\delta: R \rightarrow R$ such that $\delta(a b)=\alpha(a) \delta(b)+\delta(a) b$ for all $a, b \in R$. The skew polynomial ring $R[X ; \alpha, \delta]$ is a ring of polynomials in X over R with the usual addition and with multiplication subject to the rule $X a=\alpha(a) X+\delta(a)$ for all $a \in R$ (see [2, Definition, p. 10]). A ring T may be viewed as a skew polynomial ring over a subring T^{\prime} if and only if there exists an isomorphism Φ from a skew polynomial ring $R[X, \alpha, \delta]$ to T such that $\Phi(R)=T^{\prime}$. In fact, if there exists such an isomorphism Φ, then $\alpha^{\prime}=$ $\Phi \beta \Phi^{-1}$ is an automorphism of $T^{\prime}=\Phi(R), \delta^{\prime}=\Phi \delta \Phi^{-1}$ is an α^{\prime}-derivation of T^{\prime}, T is a free left T^{\prime}-module with the basis $1, \Phi(X), \Phi(X)^{2}, \ldots$ and $\Phi(X) a=\alpha^{\prime}(a) \Phi(X)+\delta^{\prime}(a)$ for all $a \in T^{\prime}$. Therefore we obtain $T=$ $T^{\prime}\left[\Phi(X) ; \alpha^{\prime}, \delta^{\prime}\right]$. There may possibly be many different ways to represent T as a skew polynomial ring over a subring. For example, consider the first Weyl algebra $A_{1}(K)$ over a field K. This is an algebra over K generated by
x, y with relation $x y-y x=1$. We may write $A_{1}(K)=K[y]\left[x ; 1, \frac{d}{d y}\right]=$ $K[x]\left[y ; 1,-\frac{d}{d x}\right]$. Hence two different subrings $K[y], K[x]$ can become rings of coefficients of $A_{1}(K)$. In this paper, we consider what conditions imply R to be unique as a ring of coefficients of $T=R[X ; \alpha, \delta]$.

2. Strongly invariant rings

To discuss the uniqueness of rings of coefficients in skew polynomial rings, we need the following two definitions.

Definition 1. A ring R is strongly invariant in a skew polynomial ring $R[X ; \alpha, \delta]$ if for any isomorphism Ψ of $R[X ; \alpha, \delta]$ to any skew polynomial ring $S[Y ; \beta, \partial]$, there holds $\Psi(R)=S$.

Definition 2. A ring R is reduced if R contains no nonzero nilpotent elements. A reduced ring R with an automorphism α is α-reduced if, for any $r \in R, r \alpha(r)=0$ implies $r=0$.

We give an example of a reduced ring which is not α-reduced. Let K be a field, and let $R=K \oplus K$. Then R is reduced. Consider the automorphism α of R given by $\alpha(a, b)=(b, a)$. Then $(1,0) \alpha(1,0)=$ $(1,0)(0,1)=(0,0)$. Therefore R is not α-reduced.

Now we begin with the following lemma.
Lemma 1. Let R be a ring, let α be an automorphism of R, and let δ be an α-derivation of R. Suppose that R is α-reduced and let $a, b \in R$.
(1) If $a b=0$, then $\alpha^{i}(a) \alpha^{j}(b)=0$ for any integers i, j.
(2) If $a b=0$, then $\delta^{i}(a) \delta^{j}(b)=0$ for any non-negative integers i, j.
(3) If $a b=0$, then $a X^{m} b X^{n}=0$ in $R[X ; \alpha, \delta]$ for any nonnegative integers m, n.

Proof. (1) Assume $a b=0$. Then $b \alpha(a) \alpha(b \alpha(a))=b \alpha(a b) \alpha^{2}(a)=0$. Since R is α-reduced, we have $b \alpha(a)=0$. Since R is reduced, $(\alpha(a) b)^{2}=0$ implies $\alpha(a) b=0$. Similarly $(b a)^{2}=0$ implies $b a=0$. Hence, by the same way as above, we obtain $a \alpha(b)=0$. Using these repeatedly, we obtain $\alpha^{i}(a) \alpha^{j}(b)=0$ for any non-negative integers i, j. Take a positive integer n and apply α^{-n} to this equation, we have $\alpha^{i-n}(a) \alpha^{j-n}(b)=0$. This proves the claim.
(2) Since R is reduced, $a b=0$ implies $b a=0$, and hence $b \alpha(a)=0$ by (1). Since $0=\delta(a b)=\alpha(a) \delta(b)+\delta(a) b,\{\alpha(a) \delta(b)\}^{2}=-\delta(a) b \alpha(a) \delta(b)=0$,
so that $\alpha(a) \delta(b)=0$. Hence $a \delta(b)=0$ by (1). Using $b a=0$, we similarly obtain $\delta(a) b=0$. Using these repeatedly, we can prove our claim.
(3) Using the rule $X r=\alpha(r) X+\delta(r)$ for each $r \in R$, we can write $a X^{m} b X^{n}=c_{m+n} X^{m+n}+c_{m+n-1} X^{m+n-1}+\cdots+c_{1} X+c_{0}$. Then we see that $c_{m+n}=a \alpha^{m}(b), c_{m+n-1}=\sum_{i=0}^{m-1} a \alpha^{m-i-1} \delta \alpha^{i}(a)$, and in general c_{k} is the sum of some terms of the form $a \alpha^{i_{1}} \delta^{j_{1}} \alpha^{i_{2}} \delta^{j_{2}} \cdots \alpha^{i_{t}} \delta^{j_{t}}(b)$ with $i_{1}+j_{1}+\cdots+i_{t}+j_{t}=m$. However, using (1) and (2), we see $a \alpha^{i_{1}} \delta^{j_{1}} \alpha^{i_{2}} \delta^{j_{2}} \cdots \alpha^{i_{t}} \delta^{j_{t}}(b)=0$ for each $i_{1}, \ldots, i_{t}, j_{1}, \ldots, j_{t}$, and therefore $c_{k}=0$ for $k=0,1, \ldots, m+n$.

The following theorem improves [4, Proposition 3.4].
Theorem 2. Let R be a ring, let α be an automorphism of R, and let δ be an α-derivation of R. If R is α-reduced, then the set of all units in $R[X ; \alpha, \delta]$ equals the set of all units in R.

Proof. Let $f(X)=\sum_{i=0}^{m} a_{i} X^{i}$ be a unit in $R[X, \alpha, \delta]$ and let $g(X)=\sum_{j=0}^{n} b_{j} X^{j}$ be its inverse. Then we can write $1=f(X) g(X)$ $=\sum_{k=0}^{m+n}\left(\sum_{i+j=k} a_{i} X^{i} b_{j} X^{j}\right)=c_{m+n} X^{m+n}+c_{m+n-1} X^{m+n-1}+\cdots+$ $c_{1} X+c_{0}$. We prove that $f(X) \in R$. Suppose, on the contrary, that $m>0$ and $a_{m} \neq 0$. We claim that $a_{s} b_{t}=0$ for $s+t \geq m$. We can easily see that $c_{m+n}=a_{m} \alpha^{m}\left(b_{n}\right)=0$. Thus we obtain $a_{m} b_{n}=0$ by Lemma $1(1)$. This proves our claim for $s+t=m+n$. Let p be an integer such that $m+n>p \geq m$, and suppose that $a_{s} b_{t}=0$ if $s+t>p$. We shall prove that $a_{s} b_{t}=0$ when $s+t=p$. By Lemma 1(3), we have $\sum_{i+j=u} a_{i} X^{i} b_{j} X^{j}=0$ for $u=m+n, m+n-1, \ldots, p+1$. Hence we obtain

$$
\begin{equation*}
c_{p}=\sum_{i+j=p} a_{i} \alpha^{i}\left(b_{j}\right)=0 . \tag{1}
\end{equation*}
$$

Since $a_{s} b_{t}=0$ for $s+t>p, a_{s} \alpha^{s}\left(b_{t}\right)=0$ for $s+t>p$ by Lemma 1(1), and hence $\alpha^{s}\left(b_{t}\right) a_{s}=0$ for $s+t>p$ because R is reduced. Multipling the equation (1) on the right by a_{p}, we obtain

$$
0=\left\{\sum_{i+j=p} a_{i} \alpha^{i}\left(b_{j}\right)\right\} a_{p}=a_{p} \alpha^{p}\left(b_{0}\right) a_{p} .
$$

Since R is reduced, $a_{p} \alpha^{p}\left(b_{0}\right)=0$, so that $a_{p} b_{0}=0$ by Lemma $1(1)$. Now the equation (1) becomes

$$
\begin{equation*}
\sum_{\substack{i+j=p \\ j \geq 1}} a_{i} \alpha^{i}\left(b_{j}\right)=0 . \tag{2}
\end{equation*}
$$

Multipling the equation (2) on the right by a_{p-1}, we have $a_{p-1} \alpha^{p-1}\left(b_{1}\right) \times$ $a_{p-1}=0$. Hence $a_{p-1} \alpha^{p-1}\left(b_{1}\right)=0$, so that $a_{p-1} b_{1}=0$. Continuing this process, we have $a_{i} b_{j}=0$ for all i, j with $i+j=p$. Thus we have proved $a_{s} b_{t}=0$ for $s+t \geq m$. In particular, we have $a_{m} b_{n}=$ $a_{m} b_{n-1}=\cdots=a_{m} b_{0}=0$. Thus $a_{m} X^{m} g(X)=0$ by Lemma $1(3)$, and hence $\left(\sum_{i=0}^{m-1} a_{i} X^{i}\right) g(X)=1$. Therefore we obtain $\sum_{i=0}^{m-1} a_{i} X^{i}=$ $\left(\sum_{i=0}^{m-1} a_{i} X^{i}\right) g(X) f(X)=f(X)=\sum_{i=0}^{m} a_{i} X^{i}$. This implies $a_{m}=0$, a contradiction. This completes the proof.

As a consequence of Theorem 2, we obtain the following corollary.
Corollary 3. Let R be a ring, let α be an automorphism of R, and let δ be an α-derivation of R. Suppose that R is α-reduced and that R is generated by its units. Then $\Psi(R)=R$ for any automorphism Ψ of $R[X ; \alpha, \delta]$.

A ring is called an integral domain if the product of nonzero elements is always nonzero. For example, a division ring is an integral domain.

Corollary 4. If R is an integral domain generated by its units, then R is strongly invariant in $R[X ; \alpha, \delta]$ for any automorphism α and for any α-derivation δ.

Proof. Let S be a ring with an automorphism β and with a β derivation ∂, and assume that $\Psi: R[X ; \alpha, \delta] \rightarrow S[Y, \beta ; \partial]$ is an isomorphism. Since S also is an integral domain, the set of all units in $S[Y ; \beta, \partial]$ equals the set of all units in S by Theorem 2. Hence, by hypothesis, we have $\Psi(R) \subseteq S$. Clearly $\Psi(X) \notin S$, and so we can write $\Psi(X)=s_{k} Y^{k}+\cdots+s_{1} Y+s_{0}$ with some $s_{0}, \ldots, s_{k}(\neq 0) \in S$ and some $k>0$. We have to prove $\Psi(R)=S$. Suppose, on the contrary, that $\Psi(R) \varsubsetneqq S$ and take an element $s \in S-\Psi(R)$. Then there is $f(X)=r_{n} X^{n}+r_{n-1} X^{n-1}+\cdots+r_{1} X+r_{0} \in R[X ; \alpha, \delta]$ with $n>0$ and some $r_{0}, \ldots, r_{n}(\neq 0) \in R$ such that $\Psi(f(X))=s$. Then $\Psi\left(r_{n}\right) \Psi(X)^{n}+$ $\cdots+\Psi\left(r_{1}\right) \Psi(X)+\left(\Psi\left(r_{0}\right)-s\right)=0$. Since the coefficient of $Y^{n k}$ is zero, we obtain $\Psi\left(r_{n}\right) s_{k} \beta^{k}\left(s_{k}\right) \beta^{2 k}\left(s_{k}\right) \cdots \beta^{(n-1) k}\left(s_{k}\right)=0$. Since $r_{n} \neq 0$ and $s_{k} \neq 0$, this is a contradiction. Consequently we obtain $\Psi(R)=S$.

An integral domain R is called a local domain if $R / J(R)$ is a division ring, where $J(R)$ denotes the Jacobson radical of R. It is easy to see that a local domain R is generated by its units. Hence, by Corollary $4, R$ is strongly invariant in any skew polynomial ring $R[X ; \alpha, \delta]$. We give an example of a commutative local domain with a non-trivial automorphism α and with a non-trivial α-derivation.

Example. Let $K[[x]]$ denote the ring of formal power series over a field K, and α the automorphism of $K[[x]]$ defined by $\alpha(f(x))=f(-x)$ for all $f(x) \in K[[x]]$. We define a map $\delta: K[[x]] \rightarrow K[[x]]$ by

$$
\delta\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)=-\sum_{i=0}^{\infty} a_{2 i+1} x^{2 i} .
$$

We can easily see that δ is an α-derivation of $K[[x]]$. Since $K[[x]]$ is a local domain, it is generated by its units. By Corollary $4, K[[x]]$ is strongly invariant in $K[[x]][Y ; \alpha, \delta]$.

Recall that R is said to be von Neumann regular if, for each element a of R, there exists an element x of R such that $a=a x a$. A reduced von Neumann regular ring is called a strongly regular ring. It is well-known that a von Neumann regular ring R is strongly regular if and only if every idempotent of R is central.

Lemma 5. Let R be a ring, let α be an automorphism of R, and let δ be an α-derivation of R. If R is α-reduced, then $R[X ; \alpha, \delta]$ is reduced. In this case, $\alpha(e)=e$ and $\delta(e)=0$ for any idempotent $e \in R$. Conversely, if R is a strongly regular ring and if $R[X ; \alpha, \delta]$ is reduced, then R is α-reduced.

Proof. Let R be a α-reduced ring. Suppose, on the contrary, that $R[X ; \alpha, \delta]$ is not reduced. Then there exists a nonzero element $f \in R[X ; \alpha, \delta]$ such that $f^{2}=0$. Since R is reduced, $f \notin R$. Let $f=\sum_{i=0}^{m} a_{i} X^{i}$ with $a_{0}, \ldots, a_{m}(\neq 0) \in R$. Since $f^{2}=0$, we have $a_{m} \alpha^{m}\left(a_{m}\right)=0$. By Lemma $1(1)$ we obtain $a_{m}^{2}=0$, and hence $a_{m}=0$, a contradiction. Therefore $R[X ; \alpha, \delta]$ is reduced. Note that every idempotent in a reduced ring is central (see [5, Lemma I.12.2, p. 40]). Let e be any idempotent in R. Then e is central in $R[X ; \alpha, \delta]$, and hence $e X=X e=\alpha(e) X+\delta(e)$. This implies $\alpha(e)=e$ and $\delta(e)=0$. Next assume that R is a strongly regular ring. If R is not α-reduced, then there exists a nonzero element $r \in R$ such that $r \alpha(r)=0$. Since R is strongly regular, there exists an element $x \in R$ such that $r^{2} x=r$ and $r x=x r$. If we set $e=r x$, then e is a nonzero central idempotent of R and $e \alpha(e)=x r \alpha(r) \alpha(x)=0$. Let $f=e X e-e X$. Then $f^{2}=0$, but $f=e(\alpha(e) X+\delta(e)) e-e X=e \delta(e)-e X \neq 0$. Therefore $R[X ; \alpha, \delta]$ is not reduced.

The following theorem generalizes [1, Theorem 3] and also improves [4, Theorem 4.5].

Theorem 6. Let R be a strongly regular ring, let α be an automorphism of R, and let δ be an α-derivation of R. Then the following statements are equivalent:
(1) R is strongly invariant in $R[X ; \alpha, \delta]$.
(2) $\Psi(R)=R$ for any automorphism Ψ of $R[X ; \alpha, \delta]$.
(3) R is α-reduced.

Proof. (1) $\Rightarrow(2)$ is trivial.
$(2) \Rightarrow(3)$. Suppose that R is not α-reduced. Then, by the same way as in the proof of Lemma 5 , we can find a nonzero central idempotent e of R such that $e \alpha(e)=0$ and $f=e X e-e X=e \delta(e)-e X \neq 0$. Let Ψ denote the automorphism of $R[X ; \alpha, \delta]$ defined by $\Psi(a)=(1+f) a(1-f)$ for all $a \in R[X ; \alpha, \delta]$. Then $\Psi(e)=(1+f) e(1-f)=e-e \delta(e)+e X \notin R$, and hence $\Psi(R) \nsubseteq R$.
$(3) \Rightarrow(1)$. Since R is α-reduced, $R[X ; \alpha, \delta]$ is reduced by Lemma 5. Let S be a ring with an automorphism β and a β-derivation ∂ and assume that $\Psi: R[X ; \alpha, \delta] \rightarrow S[Y ; \beta, \partial]$ is an isomorphism. Since $S[Y ; \beta, \partial]$ is reduced, [3, Theorem 3.15] implies that the set of all idempotents in $S[Y ; \beta, \partial]$ is contained in S. Let P be any prime ideal of R. Since R is strongly regular, for each $a \in P, R a$ is generated by a central idempotent (cf. [5, Proposition I.12.3, p. 40]). Since $P=\sum_{a \in P} R a$, there exists a set $\left\{e_{i} \mid i \in I\right\}$ of central idempotents such that $P=\sum_{i \in I} R e_{i}$. By Lemma 5, $\alpha\left(e_{i}\right)=e_{i}$ and $\delta\left(e_{i}\right)=0$ for each $i \in I$. Hence P is stable under α and δ. Similarly $\sum_{i \in I} S \Psi\left(e_{i}\right)$ is stable under β and ∂. Since $\Psi(P(R[X ; \alpha, \delta]))=$ $\Psi\left(\sum_{i \in I} e_{i} R[X ; \alpha, \delta]\right)=\sum_{i \in I} \Psi\left(e_{i}\right) S[Y, \beta, \partial], \Psi$ induces an isomorphism $\bar{\Psi}:(R / P)[X ; \bar{\alpha}, \bar{\delta}] \rightarrow\left(S / \sum_{i \in I} S \Psi\left(e_{i}\right)\right)[Y ; \bar{\beta}, \bar{\partial}]$, where $\bar{\alpha}, \bar{\delta}, \bar{\beta}$ and $\bar{\partial}$ are the maps induced by α, δ, β and ∂ respectively. Since R is strongly regular, R / P is a division ring. By Corollary 4 we obtain $\bar{\Psi}(R / P)=$ $S / \sum_{i \in I} S \Psi\left(e_{i}\right)$, that is, $S=\Psi(R)+\sum_{i \in I} S \Psi\left(e_{i}\right)$. Hence we have $\Psi(R) \subseteq$ S. We need to prove $\Psi(R)=S$. Suppose, on the contrary, that $\Psi(R) \varsubsetneqq S$. Then $\Psi^{-1}(S) \varsubsetneqq R$. Hence there is an element $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+$ $\cdots+a_{1} X+a_{0} \in \Psi^{-1}(S)$ with $n>0$ and some $a_{0}, \ldots, a_{n}(\neq 0) \in R$. Recall that the prime radical $N(R)$ of R is the intersection of all prime ideals of R. Since $N(R)$ is a nil ideal by [5, Proposition XV.1.2, p. 283] and since R is reduced, $N(R)=0$, that is, the intersection of all prime ideals of R is zero. Since $a_{n} \neq 0$, there exists a prime ideal Q of R such that $a_{n} \notin Q$. By a similar way as above, we can easily see that Ψ induces an
isomorphism $\tilde{\Psi}:(R / Q)[X ; \tilde{\alpha}, \tilde{\delta}] \rightarrow(S / \Psi(P) S)[Y ; \tilde{\beta}, \tilde{\partial}]$, where $\tilde{\alpha}, \tilde{\delta}, \tilde{\beta}$ and $\tilde{\partial}$ are the maps induced by α, δ, β and ∂, respectively. Since R is strongly regular, R / Q is a division ring, so that $\tilde{\Psi}(R / Q)=S / \Psi(Q) S$ by Corollary 4. Therefore we have $S=\Psi(R)+\Psi(Q) S$. Hence $\Psi(f(X)) \in S=\Psi(R)+$ $\Psi(Q) S \subseteq \Psi(R+Q(R[X ; \alpha, \delta]))$. This implies $f(X) \in R+Q(R[X ; \alpha, \delta])$, and hence $a_{n} \in Q$, a contradiction. Consequently we obtain $\Psi(R)=S$.

References

[1] E. P. Armendariz, H. K. Koo and J. K. Park, Isomorphic Ore extensions, Comm. in Algebra 15 (1987), 2633-2652.
[2] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
[3] A. A. M.Kamal, Idempotents in polynomial rings, Acta Math. Hung. 59 (1992), 355-363.
[4] A. A. M. Kamal, Strongly Ore invariant rings, Tamkang J. Math. 26 (1995), 277-282.
[5] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, New York, 1975.

YASUYUKI HIRANO

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
OKAYAMA 700
JAPAN
E-mail: yhirano@math.okyama-u.ac.jp
(Received January 29, 1998; revised May 18, 1998)

