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On the uniqueness
of rings of coefficients in skew polynomial rings

By YASUYUKI HIRANO (Okayama)

Abstract. Let R be a ring, let α be an automorphism of R, and let δ be an α-
derivation of R. The ring R is said to be strongly invariant in a skew polynomial ring
R[X; α, δ] if for any isomorphism Ψ of R[X; α, δ] to any skew polynomial ring S[Y, β, ∂],
there holds Ψ(R) = S. We consider what conditions imply that R is strongly invariant
in T .

1. Introduction

Throughout this paper, all rings are associative with unit. Let α

be an automorphism of a ring R. An α-derivation of R is any additive
map δ : R → R such that δ(ab) = α(a)δ(b) + δ(a)b for all a, b ∈ R.
The skew polynomial ring R[X; α, δ] is a ring of polynomials in X over
R with the usual addition and with multiplication subject to the rule
Xa = α(a)X + δ(a) for all a ∈ R (see [2, Definition, p. 10]). A ring T may
be viewed as a skew polynomial ring over a subring T ′ if and only if there
exists an isomorphism Φ from a skew polynomial ring R[X, α, δ] to T such
that Φ(R) = T ′. In fact, if there exists such an isomorphism Φ, then α′ =
ΦβΦ−1 is an automorphism of T ′ = Φ(R), δ′ = ΦδΦ−1 is an α′-derivation
of T ′, T is a free left T ′-module with the basis 1, Φ(X), Φ(X)2, . . . and
Φ(X)a = α′(a)Φ(X) + δ′(a) for all a ∈ T ′. Therefore we obtain T =
T ′[Φ(X); α′, δ′]. There may possibly be many different ways to represent
T as a skew polynomial ring over a subring. For example, consider the first
Weyl algebra A1(K) over a field K. This is an algebra over K generated by
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x, y with relation xy − yx = 1. We may write A1(K) = K[y]
[
x; 1, d

dy

]
=

K[x]
[
y; 1,− d

dx

]
. Hence two different subrings K[y], K[x] can become rings

of coefficients of A1(K). In this paper, we consider what conditions imply
R to be unique as a ring of coefficients of T = R[X;α, δ].

2. Strongly invariant rings

To discuss the uniqueness of rings of coefficients in skew polynomial
rings, we need the following two definitions.

Definition 1. A ring R is strongly invariant in a skew polynomial ring
R[X; α, δ] if for any isomorphism Ψ of R[X;α, δ] to any skew polynomial
ring S[Y ; β, ∂], there holds Ψ(R) = S.

Definition 2. A ring R is reduced if R contains no nonzero nilpotent
elements. A reduced ring R with an automorphism α is α-reduced if, for
any r ∈ R, rα(r) = 0 implies r = 0.

We give an example of a reduced ring which is not α-reduced. Let
K be a field, and let R = K ⊕ K. Then R is reduced. Consider the
automorphism α of R given by α(a, b) = (b, a). Then (1, 0)α(1, 0) =
(1, 0)(0, 1) = (0, 0). Therefore R is not α-reduced.

Now we begin with the following lemma.

Lemma 1. Let R be a ring, let α be an automorphism of R, and let

δ be an α-derivation of R. Suppose that R is α-reduced and let a, b ∈ R.

(1) If ab = 0, then αi(a)αj(b) = 0 for any integers i, j.

(2) If ab = 0, then δi(a)δj(b) = 0 for any non-negative integers i, j.

(3) If ab = 0, then aXmbXn = 0 in R[X; α, δ] for any nonnegative integers

m, n.

Proof. (1) Assume ab = 0. Then bα(a)α(bα(a)) = bα(ab)α2(a) = 0.
Since R is α-reduced, we have bα(a) = 0. Since R is reduced, (α(a)b)2 = 0
implies α(a)b = 0. Similarly (ba)2 = 0 implies ba = 0. Hence, by the same
way as above, we obtain aα(b) = 0. Using these repeatedly, we obtain
αi(a)αj(b) = 0 for any non-negative integers i, j. Take a positive integer
n and apply α−n to this equation, we have αi−n(a)αj−n(b) = 0. This
proves the claim.

(2) Since R is reduced, ab = 0 implies ba = 0, and hence bα(a) = 0 by
(1). Since 0 = δ(ab) = α(a)δ(b) + δ(a)b, {α(a)δ(b)}2=− δ(a)bα(a)δ(b)=0,
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so that α(a)δ(b) = 0. Hence aδ(b) = 0 by (1). Using ba = 0, we similarly
obtain δ(a)b = 0. Using these repeatedly, we can prove our claim.

(3) Using the rule Xr = α(r)X + δ(r) for each r ∈ R, we can write
aXmbXn = cm+nXm+n + cm+n−1X

m+n−1 + · · · + c1X + c0. Then we
see that cm+n = aαm(b), cm+n−1 =

∑m−1
i=0 aαm−i−1δαi(a), and in gen-

eral ck is the sum of some terms of the form aαi1δj1αi2δj2 · · ·αitδjt(b)
with i1 + j1 + · · · + it + jt = m. However, using (1) and (2), we see
aαi1δj1αi2δj2 · · ·αitδjt(b) = 0 for each i1, . . . , it, j1, . . . , jt, and therefore
ck = 0 for k = 0, 1, . . . ,m + n.

The following theorem improves [4, Proposition 3.4].

Theorem 2. Let R be a ring, let α be an automorphism of R, and let
δ be an α-derivation of R. If R is α-reduced, then the set of all units in
R[X; α, δ] equals the set of all units in R.

Proof. Let f(X) =
∑m

i=0 aiX
i be a unit in R[X, α, δ] and let

g(X) =
∑n

j=0 bjX
j be its inverse. Then we can write 1 = f(X)g(X)

=
∑m+n

k=0 (
∑

i+j=k aiX
ibjX

j) = cm+nXm+n + cm+n−1X
m+n−1 + · · · +

c1X + c0. We prove that f(X) ∈ R. Suppose, on the contrary, that m > 0
and am 6= 0. We claim that asbt = 0 for s + t ≥ m. We can easily see
that cm+n = amαm(bn) = 0. Thus we obtain ambn = 0 by Lemma 1(1).
This proves our claim for s + t = m + n. Let p be an integer such that
m+n > p ≥ m, and suppose that asbt = 0 if s+t > p. We shall prove that
asbt = 0 when s + t = p. By Lemma 1(3), we have

∑
i+j=u aiX

ibjX
j = 0

for u = m + n, m + n− 1, . . . , p + 1. Hence we obtain

(1) cp =
∑

i+j=p

aiα
i(bj) = 0.

Since asbt = 0 for s + t > p, asα
s(bt) = 0 for s + t > p by Lemma 1(1),

and hence αs(bt)as = 0 for s + t > p because R is reduced. Multipling the
equation (1) on the right by ap, we obtain

0 =
{ ∑

i+j=p

aiα
i(bj)

}
ap = apα

p(b0)ap.

Since R is reduced, apα
p(b0) = 0, so that apb0 = 0 by Lemma 1(1). Now

the equation (1) becomes

(2)
∑

i+j=p
j≥1

aiα
i(bj) = 0.
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Multipling the equation (2) on the right by ap−1, we have ap−1α
p−1(b1)×

ap−1 = 0. Hence ap−1α
p−1(b1) = 0, so that ap−1b1 = 0. Continuing

this process, we have aibj = 0 for all i, j with i + j = p. Thus we
have proved asbt = 0 for s + t ≥ m. In particular, we have ambn =
ambn−1 = · · · = amb0 = 0. Thus amXmg(X) = 0 by Lemma 1(3),
and hence (

∑m−1
i=0 aiX

i)g(X) = 1. Therefore we obtain
∑m−1

i=0 aiX
i =

(
∑m−1

i=0 aiX
i)g(X)f(X) = f(X) =

∑m
i=0 aiX

i. This implies am = 0, a
contradiction. This completes the proof.

As a consequence of Theorem 2, we obtain the following corollary.

Corollary 3. Let R be a ring, let α be an automorphism of R, and
let δ be an α-derivation of R. Suppose that R is α-reduced and that R
is generated by its units. Then Ψ(R) = R for any automorphism Ψ of
R[X; α, δ].

A ring is called an integral domain if the product of nonzero elements
is always nonzero. For example, a division ring is an integral domain.

Corollary 4. If R is an integral domain generated by its units, then
R is strongly invariant in R[X; α, δ] for any automorphism α and for any
α-derivation δ.

Proof. Let S be a ring with an automorphism β and with a β-
derivation ∂, and assume that Ψ : R[X; α, δ] → S[Y, β; ∂] is an iso-
morphism. Since S also is an integral domain, the set of all units in
S[Y ; β, ∂] equals the set of all units in S by Theorem 2. Hence, by hy-
pothesis, we have Ψ(R) ⊆ S. Clearly Ψ(X) 6∈ S, and so we can write
Ψ(X) = skY k + · · · + s1Y + s0 with some s0, . . . , sk(6= 0) ∈ S and
some k > 0. We have to prove Ψ(R) = S. Suppose, on the contrary,
that Ψ(R) $ S and take an element s ∈ S − Ψ(R). Then there is
f(X) = rnXn + rn−1X

n−1 + · · · + r1X + r0 ∈ R[X; α, δ] with n > 0 and
some r0, . . . , rn(6= 0) ∈ R such that Ψ(f(X)) = s. Then Ψ(rn)Ψ(X)n +
· · ·+Ψ(r1)Ψ(X)+ (Ψ(r0)− s) = 0. Since the coefficient of Y nk is zero, we
obtain Ψ(rn)skβk(sk)β2k(sk) · · ·β(n−1)k(sk) = 0. Since rn 6= 0 and sk 6= 0,
this is a contradiction. Consequently we obtain Ψ(R) = S.

An integral domain R is called a local domain if R/J(R) is a division
ring, where J(R) denotes the Jacobson radical of R. It is easy to see
that a local domain R is generated by its units. Hence, by Corollary 4, R
is strongly invariant in any skew polynomial ring R[X;α, δ]. We give an
example of a commutative local domain with a non-trivial automorphism
α and with a non-trivial α-derivation.
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Example. Let K[[x]] denote the ring of formal power series over a field
K, and α the automorphism of K[[x]] defined by α(f(x)) = f(−x) for all
f(x) ∈ K[[x]]. We define a map δ : K[[x]] → K[[x]] by

δ

( ∞∑

i=0

aix
i

)
= −

∞∑

i=0

a2i+1x
2i.

We can easily see that δ is an α-derivation of K[[x]]. Since K[[x]] is a local
domain, it is generated by its units. By Corollary 4, K[[x]] is strongly
invariant in K[[x]][Y ;α, δ].

Recall that R is said to be von Neumann regular if, for each element
a of R, there exists an element x of R such that a = axa. A reduced von
Neumann regular ring is called a strongly regular ring . It is well-known
that a von Neumann regular ring R is strongly regular if and only if every
idempotent of R is central.

Lemma 5. Let R be a ring, let α be an automorphism of R, and let δ

be an α-derivation of R. If R is α-reduced, then R[X; α, δ] is reduced. In

this case, α(e) = e and δ(e) = 0 for any idempotent e ∈ R. Conversely, if R

is a strongly regular ring and if R[X; α, δ] is reduced, then R is α-reduced.

Proof. Let R be a α-reduced ring. Suppose, on the contrary, that
R[X; α, δ] is not reduced. Then there exists a nonzero element f∈R[X; α, δ]
such that f2 = 0. Since R is reduced, f 6∈ R. Let f =

∑m
i=0 aiX

i with
a0, . . . , am(6= 0) ∈ R. Since f2 = 0, we have amαm(am) = 0. By Lemma
1(1) we obtain a2

m = 0, and hence am = 0, a contradiction. Therefore
R[X; α, δ] is reduced. Note that every idempotent in a reduced ring is
central (see [5, Lemma I.12.2, p. 40]). Let e be any idempotent in R.
Then e is central in R[X;α, δ], and hence eX = Xe = α(e)X + δ(e). This
implies α(e) = e and δ(e) = 0. Next assume that R is a strongly regular
ring. If R is not α-reduced, then there exists a nonzero element r ∈ R

such that rα(r) = 0. Since R is strongly regular, there exists an element
x ∈ R such that r2x = r and rx = xr. If we set e = rx, then e is a nonzero
central idempotent of R and eα(e) = xrα(r)α(x) = 0. Let f = eXe− eX.
Then f2 = 0, but f = e(α(e)X + δ(e))e−eX = eδ(e)−eX 6= 0. Therefore
R[X; α, δ] is not reduced.

The following theorem generalizes [1, Theorem 3] and also improves
[4, Theorem 4.5].
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Theorem 6. Let R be a strongly regular ring, let α be an automor-

phism of R, and let δ be an α-derivation of R. Then the following state-

ments are equivalent:

(1) R is strongly invariant in R[X; α, δ].

(2) Ψ(R) = R for any automorphism Ψ of R[X; α, δ].

(3) R is α-reduced.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3). Suppose that R is not α-reduced. Then, by the same way

as in the proof of Lemma 5, we can find a nonzero central idempotent e

of R such that eα(e) = 0 and f = eXe − eX = eδ(e) − eX 6= 0. Let Ψ
denote the automorphism of R[X;α, δ] defined by Ψ(a) = (1 + f)a(1− f)
for all a ∈ R[X; α, δ]. Then Ψ(e) = (1 + f)e(1− f) = e− eδ(e) + eX 6∈ R,
and hence Ψ(R) 6⊆ R.

(3) ⇒ (1). Since R is α-reduced, R[X; α, δ] is reduced by Lemma
5. Let S be a ring with an automorphism β and a β-derivation ∂ and
assume that Ψ : R[X; α, δ] → S[Y ; β, ∂] is an isomorphism. Since S[Y ;β, ∂]
is reduced, [3, Theorem 3.15] implies that the set of all idempotents in
S[Y ; β, ∂] is contained in S. Let P be any prime ideal of R. Since R is
strongly regular, for each a ∈ P , Ra is generated by a central idempotent
(cf. [5, Proposition I.12.3, p. 40]). Since P =

∑
a∈P Ra, there exists a set

{ei | i ∈ I} of central idempotents such that P =
∑

i∈I Rei. By Lemma 5,
α(ei) = ei and δ(ei) = 0 for each i ∈ I. Hence P is stable under α and δ.
Similarly

∑
i∈I SΨ(ei) is stable under β and ∂. Since Ψ(P (R[X; α, δ])) =

Ψ(
∑

i∈I eiR[X; α, δ]) =
∑

i∈I Ψ(ei)S[Y, β, ∂], Ψ induces an isomorphism
Ψ̄ : (R/P )[X; ᾱ, δ̄] → (S/

∑
i∈I SΨ(ei))[Y ; β̄, ∂̄], where ᾱ, δ̄, β̄ and ∂̄ are

the maps induced by α, δ, β and ∂ respectively. Since R is strongly
regular, R/P is a division ring. By Corollary 4 we obtain Ψ̄(R/P ) =
S/

∑
i∈I SΨ(ei), that is, S = Ψ(R)+

∑
i∈I SΨ(ei). Hence we have Ψ(R) ⊆

S. We need to prove Ψ(R) = S. Suppose, on the contrary, that Ψ(R) $ S.
Then Ψ−1(S) $ R. Hence there is an element f(X) = anXn+an−1X

n−1+
· · ·+a1X +a0 ∈ Ψ−1(S) with n > 0 and some a0, . . . , an(6= 0) ∈ R. Recall
that the prime radical N(R) of R is the intersection of all prime ideals of
R. Since N(R) is a nil ideal by [5, Proposition XV.1.2, p. 283] and since
R is reduced, N(R) = 0, that is, the intersection of all prime ideals of
R is zero. Since an 6= 0, there exists a prime ideal Q of R such that
an /∈ Q. By a similar way as above, we can easily see that Ψ induces an
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isomorphism Ψ̃ : (R/Q)[X; α̃, δ̃] → (S/Ψ(P )S)[Y ; β̃, ∂̃], where α̃, δ̃, β̃ and
∂̃ are the maps induced by α, δ, β and ∂, respectively. Since R is strongly
regular, R/Q is a division ring, so that Ψ̃(R/Q) = S/Ψ(Q)S by Corollary
4. Therefore we have S = Ψ(R) + Ψ(Q)S. Hence Ψ(f(X)) ∈ S = Ψ(R) +
Ψ(Q)S ⊆ Ψ(R + Q(R[X; α, δ])). This implies f(X) ∈ R + Q(R[X; α, δ]),
and hence an ∈ Q, a contradiction. Consequently we obtain Ψ(R) = S.
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