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On a conditional Cauchy functional equation
involving cubes of finite fields II:

The case of odd characteristic p ≡ 2 (mod 3)

By J-L. GARCÍA-ROIG (Barcelona)

and EMMA MARTÍN-GUTIÉRREZ (La Coruña)

Abstract. We show that the conditional Cauchy functional equation f(x3+y3) =
f(x3) + f(y3), where f is a map from a finite field of odd characteristic p ≡ 2 (mod 3)
into itself, is equivalent to the unconditional Cauchy functional equation f(x + y) =
f(x) + f(y).

Introduction

In this paper we solve the conditional Cauchy functional equation

(1) f(x3 + y3) = f(x3) + f(y3)

where f is a map from a finite field Fq (q = pn, p prime) into itself, and
the characteristic p is odd and congruent with 2 mod 3.

The case p ≡ 1 (mod 3) was treated in our earlier paper [G-M]. In
contrast to our previous results in the present case there appear no excep-
tions, so that (1) is eventually equivalent to the usual Cauchy functional
equation.

The case p odd, p ≡ 2 (mod 3) is split into two subcases: q = pn, n

even, and q = pn, n odd. The odd case turns out to be immediate but
the even case is considerably more difficult to settle and the technicali-
ties needed may look probably more entangled than those of our previous
paper.

Mathematics Subject Classification: 39B52.
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1. The functional equation f(x3 + y3) = f(x3) + f(y3)
for maps f : Fq → Fq,

with q = pn and odd p ≡ 2 (mod 3)

The case n odd can be readily dealt with.

Lemma 1. Let p be odd and congruent to 2 modulo 3, and let q = pn

be a power of p. Then the map x 7→ x3 from Fq into itself is bijective if

and only if n is odd.

Proof. By applying the law of quadratic reciprocity (see [S],
Ch. I §3), we have

(−3
p

)
=

(−1
p

) (
3
p

)
= (−1)

p−1
2 · (−1)

3−1
2 · p−1

2

(p

3

)
=

(p

3

)
= −1,

so that
√−3 /∈ Fp and consequently,

√−3 ∈ Fpn if and only if n is even.
This entails that the quadratic form X2 +XY +Y 2 is irreducible over Fpn

if and only if n is odd. From

X3 − Y 3 = (X − Y )(X2 + XY + Y 2),

we see that x 7→ x3 is injective if and only if n is odd. But injective here
is equivalent to bijective, since the fields involved are finite. ¤

Corollary. For n odd, the functional equation (1) is equivalent to the

Cauchy functional equation.

We next treat the case q = pn, n even, and we proceed as in the case
p ≡ 1 (mod 3), but the number of technical details here seems to be larger.

Recall (cf. [G-M]) that any map f : Fq → Fq is induced by a polyno-
mial P (T ), with coefficients in Fq, which may be assumed to be reduced
(via T q ≡ T ):

(2) P (T ) = a0 + a1T + a2T
2 + · · ·+ aq−1T

q−1.

If the functional equation (1) is to be satisfied, then the reductions
of the polynomials P (X3 + Y 3) and P (X3) + P (Y 3) must coincide and,
consequently, all “mixed” terms aXrY s, with r, s > 0, occurring in P (X3+
Y 3) have to vanish (after expansion and reduction).

But now we can proceed exactly as in [G-M]: just observe that as n

is even, p ≡ 2 (mod 3) implies q ≡ 1 (mod 3) and thus we can split the
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Figure 1

arithmetic triangle mod p up to its (q − 1)st row into 3 parts of equal
width k = q−1

3 (see Figure 1).

The reasoning of [G-M] can then be applied and we eventually have
to deal with the system of linear equations

(3) Ej
r = 0, with k < j ≤ 2k and 0 < r ≤ k

(this entails that somewhat more redundant equations occur than in
[G-M], but we do so in order to simplify further considerations), where
Ej

r stands for
(

j − k

r

)
aj−k +

[(
j

r

)
+

(
j

r + k

)]
aj

+
[(

j + k

r

)
+

(
j + k

r + k

)
+

(
j + k

r + 2k

)]
aj+k = 0,

if
(

j
r

)
lies outside the triangle ABC (see the figure), and for

(
j

r

)
aj +

[(
j + k

r

)
+

(
j + k

r + k

)]
aj+k = 0,

if
(

j
r

)
lies either inside the triangle ABC or on its sides AC or BC.
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2. The arithmetic triangle modulo p
in connection with (3),

for p ≡ 2 (mod 3) and even powers of p

Throughout this section we will assume that p is an odd prime con-
gruent to 2 modulo 3 and that q = pn, with n even.

In order to compute binomial coefficients
(

j
r

)
modulo p, we will use

the formula (see [H] or [L]):

(4)
(

j

r

)
≡

(
jn−1

rn−1

)(
jn−2

rn−2

)
· · ·

(
j0
r0

)
(mod p)

where j =
∑n−1

i=0 jip
i and r =

∑n−1
i=0 rip

i, 0 ≤ ji, ri < p, and where we
assume

(
ji

ri

)
= 0 for ji < ri.

With the same proof as in case p ≡ 1 (mod 3) (see [G-M], Prop. 1)
we have:

Proposition 2. Let (a2, a3, . . . , a3k) ∈ F3k−1
q be any solution of the

system (3). If ak+1 = · · · = a3k = 0 then, for 2 ≤ t ≤ k, we have:

at = 0, if t 6= pm,

at is arbitrary, if t = pm.

We will show that the hypothesis of Proposition 2 always holds (as in
[G-M]). In what follows ω will stand for the positive integer p−2

3 and we will
always abbreviate the p-adic expansions a0 + a1p + a2p

2 + · · ·+ an−1p
n−1

(where 0 ≤ ai < p, all i), as we usually do in the decimal (or binary)
system, by

(an−1, . . . , a2, a1, a0).

Of course, in our case the number of digits appearing above will be
even (counting zeros if necessary).

Contrary to our earlier result (see Lemma 2 of [G-M]), and with our
previous notations (recall that k = q−1

3 ), we have

Lemma 3.
(
2k
k

) ≡ 0 (mod p).

Proof. In the present case we have

k = (ω, 2ω + 1, ω, 2ω + 1, . . . , ω, 2ω + 1),

2k = (2ω + 1, ω, 2ω + 1, ω, . . . , 2ω + 1, ω),

and the result follows from (4). ¤
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In fact, not only the vertex C is zero modulo p, for we can state:

Lemma 4. For j = (2ω + 1)pn−1, we have

(
j

j − k

)
≡

(
j

j − k + 1

)
≡ · · · ≡

(
j

k

)
≡ 0 (mod p).

Proof. Immediate from (4) since the p-adic expansion of j is (2ω+1,

0, . . . , 0, 0), while the second digit (starting from the left) of all integers
between j − k and k is strictly positive. ¤

In view of the additive property for binomial coefficients, the preceding
lemma entails that in triangle ABC, from row (2ω + 1)pn−1 onwards, all
entries are zero modulo p. This situation is thus completely different from
the case p ≡ 1 (mod 3) .

However, as in case p ≡ 1 (mod 3), the vertex E =
(
3k
k

)
is not con-

gruent to zero modulo p, so that (as in [G-M], Lemma 3) we have:

Lemma 5. For each j, with k < j ≤ 2k, there exists at least one r,

with j − k ≤ r ≤ k, such that

(
j + k

r

)
+

(
j + k

j − r

)
6≡ 0 (mod p)

As a consequence of the two preceding lemmas, we have:

Proposition 6. Let (a2, a3, . . . , a3k) be a solution of the linear sys-

tem (3). Then,

(i) if, for some j with k < j < (2ω + 1)pn−1, we have aj+k = 0, then

aj = 0.

(ii) if, for some j with k < j ≤ 2k, we have aj = 0, then aj+k = 0.

Proof. As the p-adic expansion of (2ω + 1)pn−1 − 1 is (2ω, 3ω+1,

3ω+1, . . . , 3ω+1), row (2ω+1)pn−1−1 of the arithmetic triangle contains
no zeros modulo p. Consequently, in each row j of triangle ABC with
k < j < (2ω + 1)pn−1, there will be at least a

(
j
r

) 6≡ 0 (mod p), whose
corresponding equation Ej

r = 0 yields (i). Considering now Ej
r = 0 for the

r appearing in Lemma 5, we get (ii). ¤
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We will distinguish the cases n > 2 and n = 2. The next four lemmas
treat the case n > 2.

Lemma 7. Let q = pn with n > 2, and let (a2, . . . , a3k) be a solution

of the system (3). Then

ak = a2k = a3k = 0.

Proof. Equation E2k
k = 0 yields a3k = 0, by observing Lemma 3

and the fact that
(
3k
k

) 6≡ 0 (mod p). Now, equation E2k
2ω = 0 yields ak = 0

and finally, from E2k
1 = 0, we get a2k = 0. ¤

Lemma 8. Let q = pn with n > 2, and let (a2, . . . , a3k) be a solution

of the system (3). Then, for (2ω+1)pn−1 ≤ j < 2k, we have aj = aj+k = 0.

Proof. Lemmas 4 and 5 allow us to consider an equation yielding
aj+k = 0 immediately (here it seems easier to proceed in this way rather
than invoking Proposition 6 (ii)). On the other hand, as, in terms of p-adic
expansions, we are in the case

(2ω + 1, 0, . . . , 0, 0) ≤ j < (2ω + 1, ω, . . . , 2ω + 1, ω),

we see that j = (2ω + 1, jn−2, jn−3, . . . ) with 0 ≤ jn−2 ≤ ω, and we will
distinguish two cases:

(i) jn−2 < ω

Equation Ej
r = 0, with r = ωpn−2, yields aj−k = 0, and now from

equation Ej
s = 0, with s = pn−1, we get aj = 0.

(ii) jn−2 = ω

Here there are two possibilities for j − k:
(a) j − k = (ω, 2ω + 1, j′n−3, . . . ), with j′n−3 = jn−3 − ω or j′n−3 = jn−3 −

ω − 1,
or

(b) j − k = (ω, 2ω, j′n−3, . . . ), with j′n−3 = jn−3 + 2ω + 1 or j′n−3 =
jn−3 + 2ω + 2.
For (a), we get aj = 0 from Ej

r = 0, with r = jn−3p
n−3, since j′n−3 <

jn−3 entails
(
j−k

r

) ≡ 0 (mod p). This argument is no longer valid for (b),
in which case, Ej

s = 0, with s = (jn−3 + 1)pn−3, yields aj−k = 0 and then,
from the equation Ej

r considered for (a), we also get aj = 0. ¤
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Lemma 9. Let k < j < (2ω+1)pn−1, with (even) n > 2. Then we can

choose rn−1 and rn−2 in r = (rn−1, rn−2, . . . , r1, r0) so that, independently

of the values of rn−3, . . . , r0, the first two factors on the left of the right

hand side of formula (4) are nonzero mod p for both
(

j
r

)
and

(
j+k

r

)
, and

the binomial coefficient
(

j
r

)
lies inside the triangle ABC (of Figure 1).

Proof. By hypothesis,

(ω, 2ω + 1, . . . , ω, 2ω + 1) < j = (jn−1, . . . , j0) < (2ω + 1, 0, . . . , 0, 0),

so that ω ≤ jn−1 < 2ω + 1.
If jn−1 < 2ω then the leading digit (on the left) of j − k (which is

either jn−1 − ω or jn−1 − ω − 1) is < ω and thus r = (ω, 0, . . . , r1, r0)
satisfies our requirements.

If jn−1 = 2ω, then the leading digit of j − k is either ω or ω − 1. In
the latter case the above reasoning holds, but in the former we must have
jn−2 ≥ 2ω + 1, and here we consider two possibilities:

(a) 2ω + 1 ≤ jn−2 < 3ω + 1
In this case the second digit (on the left) of j − k: jn−2 − (2ω + 1) or

jn−2 − (2ω + 1)− 1, is < ω and we can take r = (ω, ω, . . . , r1, r0) .

(b) jn−2 = 3ω + 1
In this situation j−k starts (on the left) with either (ω, ω) or (ω, ω−1),

and r = (ω, ω + 1, . . . , r1, r0) satisfies the lemma. ¤

Remark. This technical lemma will allow us to prove the following one
by using the second type of equations (3) which involve just two unknowns
instead of three. Obviously this trick cannot be applied in the preceding
cases.

Lemma 10. Let q = pn with n > 2, and let (a2, . . . , a3k) be a solution

of system (3). Then, for k < j < (2ω + 1)pn−1 we have aj = aj+k = 0.

Proof. By Proposition 6 it suffices to prove that either aj = 0 or
aj+k = 0. Furthermore we will assume rn−1 and rn−2 chosen satisfying
the requirements of Lemma 9, and all other digits (if any) occurring in the
dots of our expressions will be assumed to be zero. We now proceed to
the proof by paying attention to the first digit j0 on the right of j, and
consider several cases:
(I) j0 > ω + 1
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Take r = (rn−1, rn−2, . . . , 0, j0) to get aj = 0 if
(

j+k
r+k

) ≡ 0 (mod p).
Otherwise, consider the system Ej

r = Ej
r−1 = 0.

(II) j0 = ω + 1
Take r = (rn−1, rn−2, . . . , 0, j0 − 1) to get aj = 0.

(III) j0 < ω

Take r = (rn−1, rn−2, . . . , 0, j0 + 1) to get aj+k = 0.

(IV) j0 = ω

In this case we cannot annihilate
(
j+k

r

)
or

(
j+k
r+k

)
if we only pay atten-

tion to j0. We have to consider j1 and distinguish several subcases:

(IV.a) j1 > 2ω + 1
Take r = (rn−1, rn−2, . . . , ω, 0) to get aj = 0.

(IV.b) j1 < 2ω + 1
Take r = (rn−1, rn−2, . . . , j1 + 1, 0) to get aj+k = 0.

(IV.c) j1 = 2ω + 1
Here again we cannot annhilate

(
j+k

r

)
or

(
j+k
r+k

)
and we have to pay

attention (if it exists) to the second couple of digits starting from the
right. But in this case observe that the first couple (on the right) of digits
of j + k is (3ω + 1, 3ω + 1) so that we do not carry any units in computing
the second couple for the sum of j and k, and, moreover, the first couple
of factors (on the right) of (4) for

(
j+k
∗

)
cannot vanish. This assures that

the reasoning used for the first couple of digits on the right of j + k may
also be applied to the second, and so on, until we reach the case

j = (jn−1, jn−2, 2ω + 1, ω, . . . , 2ω + 1, ω).

For this j, the inequalities k < j < (2ω + 1)pn−1 imply that if jn−2 ≥
2ω + 1, then ω ≤ jn−1 < 2ω + 1, and if jn−2 < 2ω + 1, then ω < jn−1 <

2ω + 1.
When jn−2 < 2ω + 1, then by adding the equations Ej

r = 0 and Ej
r+1

for r = (ω, 0, . . . , 0, 0), we obtain aj = 0. Finally, if jn−2 ≥ 2ω + 1, the
previous argument also shows that aj = 0 if we now take r = (jn−1 − ω,

jn−2 − (2ω + 1), ω + 1, 0, . . . , 0, 0). ¤
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This settles the case n > 2, but there still remains to see what happens
for n = 2.

Proposition 11. Let q = p2 and let (a2, . . . , a3k) be a solution of (3).
Then aj = aj+k = 0, for k < j ≤ 2k.

Proof. The case j = 2k is settled by proceeding as in Lemma 7 to
get a3k = 0. But ak = a2k = 0 is obtained from the system of equations
E2k

2ω = E2k
2ω+1 = 0.

For the case (2ω+1)p ≤ j < 2k, the argument of Lemma 8 holds with
the simplification that case (ii) of its proof does not take place here.

Thus we are left with the case k < j < (2ω + 1)p.

Again by Proposition 6 it suffices to show that either aj or aj+k is
zero. We distinguish two subcases:

(a) j1 = ω (in which case, j0 > 2ω + 1)

(b) ω < j1 < 2ω + 1 (here j0 is arbitrary: 0 ≤ j0 ≤ 3ω + 1).

In case (a) the system of linear equations Ej
r = Ej

r+1 = 0 with r =
(ω, 0) has nonvanishing determinant and consequently aj = aj+k = 0.

Case (b) is subtler to treat and we have considered 3 possibilities:

(b.1) ω < j1 < 2ω + 1, j0 = 3ω + 1

In this case, in the equation Ej
j−k + Ej

j−k+1 = 0 the coefficient of
aj vanishes mod p. Thus if the coefficient of aj+k does not vanish we
are done. This certainly happens if j1 = 2ω and ω = 1 (i.e., p = 5). In
the remaining cases, if in the preceding equation the coefficient of aj+k

vanishes, then equation Ej
j−k+1 +Ej

j−k+2 = 0 has vanishing coefficient for
aj but not for aj+k, and thus, aj+k = 0.

(b.2) ω < j1 < 2ω + 1, 2ω + 1 ≤ j0 < 3ω + 1

In this case, from
(
a
b

) ≡ (
a

b−1

)
a−b+1

b (mod p) for b 6≡ 0 (mod p), we
can check that the system Ej

j−k = Ej
j−k+1 = 0 has nonvanishing determi-

nant mod p and thus aj = aj+k = 0.
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(b.3) ω < j1 < 2ω + 1, j0 < 2ω + 1
Equation Ej

r = 0 with r = (ω, ω) yields aj = 0 for ω < j0 < 2ω + 1,
and aj+k = 0, for j0 < ω. In the case j0 = ω it suffices to consider
Ej

r−1 + Ej
r = 0 to get aj = 0. ¤

3. The solutions of (1) for odd p ≡ 2 (mod 3)

Theorem 12. The solutions f : Fq → Fq of the functional equation

(1) for q = pn, n even, and p odd ≡ 2 (mod 3) are exactly the maps

f(x) = a1x + apx
p + ap2xp2

+ · · ·+ apn−1xpn−1

where a1, ap, ap2 , . . . , apn−1 are arbitrary elements in Fq.

Proof. We treat the case n even, since the case n odd is a direct
consequence of the Corollary to Lemma 1, and we can assume that f is
induced by a polynomial of type (2). Then, if f satisfies (1), by applying
Propositions 2 and 11 we see that f is induced by a polynomial of type

P (T ) = a0 + a1T + apT
p + ap2T p2

+ · · ·+ apn−1T pn−1
.

Equating now P (X3 + Y 3) and P (X3) + P (Y 3) we get a0 = 2a0 and
consequently a0 = 0. Now, as any map of type a1x+apx

p +ap2xp2
+ · · ·+

apn−1xpn−1
clearly satisfies (1), we are done. ¤

Corollary. For the cases considered in Theorem 12, functional equa-

tion (1) is equivalent to the Cauchy functional equation.

Acknowledgement. We thank the referee for his remarks concerning
the final version of the paper.
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