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On homologies of Klingenberg projective spaces
over special commutative local rings

By MAREK JUKL (Olomouc)

Abstract. In this article homologies of Kliengenberg projective spaces over com-
munitative local rings of a special type are investigated. Especially sets of invariant
points are studied.

1. Introduction

Klingenberg projective spaces (KPS) over a local ring were described
by F. Machala [6]. Let us have in the KPS P a hyperplane H and
a point C non-neighbour with H and let there exist a homology of P

such that every point of H and the point C are invariant. In the case
of projective spaces over fields (which is a special case of a KPS over a
local ring) the set of invariant points of the considered homology is just
H∪ {C}. However in the case of KPS over a local ring there exist certain
invariant points which do not belong to H ∪ {C}. If we consider KPS
over local rings of the following special type then we may introduce the
notion“degree of neighbourhood” of two points and by this notion we shall
describe the sets of invariant points.

In this paper we shall consider the local commutative ring A the
maximal ideal a of which has the following properties:

(1) ∃m ∈ N : (am = 0) ∧ (am−1 6= 0),

(2) a = ηA1.
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1The factor ring of polynomials R[x]/(xm) is an example of the ring of this type.
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Throughout the paper the capital A always denotes the ring of de-
scribed type.

Clearly, for every τ ∈ A, τ 6= 0, there exists a unit τ ′ and an integer k,
0 ≤ k ≤ m− 1, such that τ = ηkτ ′. The number k is called an order of τ .
The order of τ = 0 is equal to m.

Let M be a free finite dimensional module over A. It is well known
that all bases of M have the same number of elements and from every
system of generators of M we may select a basis of M.

Moreover, in our case the module M has the following properties
(proved in [4]):

1. Any linearly independent system can be completed to a basis of M.

2. A submodule of M is a free module if and only if it is a direct summand
of M.

Remark. Free finite dimensional modules over a local ring R are called
R-spaces (see e.g. [3]) and their direct summands R-subspaces.

We get that in our case the A-subspaces of an A-space M are just all
the free submodules of M.

For A-subspaces of M we have (proved in [4]):

3. Let K,L be A-subspaces of an A-space M. Then K + L is an A-
subspace if and only if K ∩ L is an A-subspace. In this case the
dimensions of the A-subspaces fulfil the following relation:

dim(K + L) + dim(K ∩ L) = dim K + dim L.

Lemma 1. Let M be an A-space and let M̄ be a vector space M/aM.

Then the elements u1, . . . ,uk form a linearly independent system in M if

and only if cosets ū1, . . . , ūk form a linearly independent system in M̄.

Proof. It follows from the first property that a system {u1, . . . ,uk}
⊆ M is linearly independent iff it may be completed to a basis {u1, . . . ,uk,
uk+1, . . . ,un+1} of M. This is (according to the Theorem I.2 of [3]) equiv-
alent to the fact that the cosets {ū1, . . . , ūk, ūk+1, . . . , ūn+1} form a basis
of the vector space M̄ = M/aM which means that ū1, . . . , ūk are linearly
independent vectors.
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Lemma 2. Let x as well as y be a linearly independent element of an
A-space M. If ξx + ϑy = o then ξ, ϑ have the same order.

Proof. If ξ = 0 then the linear independence of y implies ϑ = 0.
Analogously ϑ = 0 implies ξ = 0.

Let ξ, ϑ 6= 0. Then we may write ξ = ηkξ′, ϑ = ηhϑ′ where ξ′, ϑ′

are units and 0 ≤ k, h ≤ m − 1. If k 6= h (e.g. h = k + r, r ∈ N) then
multiplying the equality ξx + ϑy = o by ηm−k−r we obtain ηm−rx = o,
which contradicts the linear independence of x.

2. Klingenberg projective spaces over local rings

According to [6] we define:

Definition 1. Let R be a local ring with the maximal ideal r. Let
us denote M = Rn+1, M̄ = M/rM, R̄ = R/r, and let µ be a natural
homomorphism M → M̄.

Then an incidence structure PR such that
(1) the points are just all submodules [x] of M such that µ(x) is a non-zero

element of M̄,
(2) the lines are just all submodules [x,y] of M such that [µ(x), µ(y)] is

a two-dimensional subspace of M̄,
(3) the incidence relation is inclusion,

is called an n-dimensional Klingenberg coordinate space over
the ring R.
Two points P = [p], Q = [q] such that [µ(p)] = [µ(q)] are called

neighbour points or neighbours. In the contrary case they are called non-
neighbours.

If X = [x] is a point of PR, then x will be called an arithmetical
representative of X.

A submodule H of M is called a hyperplane of PR if H=[x1,x2, . . . ,xn]
so that [µ(x1), µ(x2), . . . , µ(xn)] is an n-dimensional subspace of M̄.

We obtain from Definition 1 and Lemma 1 the following corollaries:

Corollary 1. The points of the Klingenberg space PA are just all
one-dimensional A-subspaces of M. The lines of the Klingenberg space
PA are just all two-dimensional A-subspaces of M. The hyperplanes of
the Klingenberg space PA are just all n-dimensional A-subspaces.
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Corollary 2. Two points of the Klingenberg space PA are neighbours

if and only if their arithmetical representatives form a lienarly dependent

subset of M.

The correctness of the following definition follows from Lemma 2.

Definition 2. Let X = [x], Y = [y] be points of the Klingenberg
space PA and let k, k ≥ 0, be an integer fulfilling the following conditions

(1) ηkx ∈ [y]

(2) (ηk−1x /∈ [y]) ∨ (k = 0).

Then the integer r = m− k is called a degree of neighbourhood of the
points X and Y .

Remark. It follows from Corollary 2 that for non-neighbour points we
have r = 0, for different neighbour points we have 0 < r < m and for
identical points we have r = m.

Lemma 3. Let X be a point of PA. Then for every integer r, 0 ≤
r ≤ m, there exists at least one point Y ∈ PA such that the degree of

neighbourhood of the points X, Y is r.

Proof. Let X = [x]. Then (according to 1 of Section 1) there exists
z ∈ M such that x, z form a linearly independent couple. If r = 0 then
the lemma holds (Y = [z]) as well as in the case r = m. Let 0 < r < m.
Considering a point Y = [y], y = x + ηm−rz, we get ηry ∈ [x] and
ηr−1x + ηm−1z = ηr−1y /∈ [x].

3. Homologies of Klingenberg projective spaces

Definition 3. An automorphism of the incidence structure PA such
that there exist an hyperplane H of invariant points and an invariant
point C which is non-neighbour with H (it means C is not neighbour with
any point of H) is called an (H, C)-homology of PA and the point C the
center of homology .

Remark. It follows from Corollary 2 (as H is an A-subspace) that
C = [c] is non-neighbour with H just if [c] ∩H = {o}.

The following theorem is proved by Bacon [2] for the case when PA

is a plane and A is an arbitrary local ring.
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Theorem 1. Let H be an hyperplane of the Klingenberg projective

space PA, C a point of PA non-neighbour with H. If X,Y are points of PA

such that

(1) X and Y are non-neighbour with C and with H

(2) C, X, Y are collinear points

then there exists exactly one (C,H)-homology of PA such that X 7→Y .

Proof. Since [c] ∩H = {o} we get (according to the 3 of Section 1)
[c]⊕H = M.

An arbitrary (C,H)-homology F ∗ on PA will be induced by an auto-
morphism F of M in a very natural way:

∀X = [x] ∈ PA : F ∗(X) = [F (x)].

As F ∗|H is an identity mapping we may infer that there exists a unit
λ ∈ A such that F |H = λ.id. Without loss of generality we can assume
that F |H = id.

Any x ∈ M may be uniquely expressed in the form

(1) x = x′ + ξc, x′ ∈ H, ξ ∈ A.

The automorphism F is given by

(2) x = x′ + ξc 7→ F (x) = x′ + αξc,

where α is a unit.
Now x is linearly independent (equivalently, x represents a point [x]

of PA) if and only if x′ is linearly independent or ξ /∈ a.
Moreover x represents a point non-neighbour with C and with H if

and only if x′ is linearly independent and ξ /∈ a.
Considering Y = [y], Y ∈ XC, we get y = γx + σc. As Y, C are not

neighbour points, γ is a unit and the arithmetical representative y may be
expressed by

y = x + σc.

Using the expression (1) of x we obtain from this

(3) y = x′ + (ξ + σ)c.
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The automorphism F ∗ maps X to Y just if F (x) = εy, where ε is a unit.
Using (2) and (3) we get

(1− ε)x′ + (αξ − (ξ + σ)ε) = c = o.

As [c] ∩H is trivial, ε = 1, αξ = −(ξ + σ)ε = 0, hence α = ξ−1(ξ + σ).
This means that α as well as the homology F ∗ is determined uniquely.

Remark. Every (C,H)-homology of PA, C = [c] may be expressed by
the following formula:

(4) X = [x′ + ξc] 7→ F ∗(X) = [x′ + αξc], x′ ∈ H, α /∈ a.

The element α will be called the coefficient of the homology F ∗.

Proposition 1. Let F ∗ be a (C,H)-homology of PA and α the coef-

ficient of F ∗. If (1− α) has order r then

(1) for any point X ∈ PA, X and F ∗(X) are neighbours of order at least r.

(2) there exists X ∈ PA such that X and F ∗(X) are neighbours just of

degree r.

Proof. As usual let C = [c]. Let F be the automorphism of M
inducing F ∗ and let F be given by (2). Suppose that (1 − α) = α0η

r,
where α0 is a unit. Using (2) we have

F (x) = (x− ξc) + ξαc = x + ξ = (α− 1)c = x− α0η
rξc.

Therefore ηm−rF (x) = ηm−rx. This means that the degree of neighbour-
hood of the points X = [x] and F ∗(X) is (at least) r.

If ξ is a unit and [x], C are not neighbours then

ηm−r−1F (x) = ηm−r−1x− (ηm−1ξα0)c where ηm−1ξα0 6= 0.

Thus ηm−r−1F (x) /∈ [c] which means that X and F ∗(X) are neighbours
of precisely degree r.

Remark. In particular, if 1− α has order m (i.e. α = 1) the F ∗ is an
identity and all the X,F ∗(X) are neighbours of degree (at least) m, i.e.
identical.

If 1−α is a unit then there exists X such that X, F ∗(X) are neighbours
of degree zero i.e. non-neighbours.
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Proposition 2. Let F ∗ be a (C,H)-homology of PA and α the coef-

ficient of F ∗. Let X be an arbitrary point non-neighbour with C as well

as H and let the degree of neighbourhood of X and F ∗(X) be r. Then

the following hold

(1) (1− α) has order r.

(2) If Y is a point non-neighbour with C as well as with H then Y and

F ∗(Y ) are neighbours of degree r.

Proof. Let F ∗ be given by the formula (4) and let F be an auto-
morphism of M given by (2). If X and F ∗(X) are neighbours of order r

then (according to Lemma 2)

(5) ηm−rF (x) = ηm−rεx, ε /∈ a.

It follows from (2) that F (x) = x+ξ(α−1)c. Using this and (5) we obtain

ηm−r(1− ε)x = ηm−rξ(1− α)c.

Because X, C are non-neighbours we get

(6) ηm−r(1− ε)x = ηm−rξ(1− α)c = o.

Since X is non-neighbour with H we have that ξ is a unit. Thus (1 − α)
has order at least r. If the order of (1−α) is greater than r then (according
to the previous proposition) we get that U and F ∗(U) are neighbours of
degree at least r+1 for every point U and this contradicts our assumption.
Therefore the order of (1− α) is (precisely) r.

Suppose there exists Y (non-neighbour with H and with C) such
that Y , F ∗(Y ) are neighbours of degree r + 1. This implies (by (6)) that
(1− α) has order (at least) r + 1 which is not possible.

Theorem 2. Let F ∗ be a (C,H)-homology of PA, α the coefficient

of F ∗, r the order of (1 − α) and let X be a point of PA. Then X is

F ∗-invariant if and only if it is neighbour of degree at least m− r with C

or some point of H.

Proof. Let us remark that H ⊕ [c] = M. Let the homology F ∗ be
given by the formula (4).

In case (1−α) is of order m (i.e. α = 1) we get that F ∗ is an idnetity
and the proposition holds. Now suppose r ≤ m− 1.
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Let X = [x] be an invariant point of F ∗ and let F be an automorphism
of M given by (2). Then F (x) = εx, ε /∈ a. Using this and (2) we get

(1− ε)x′ = ξ(ε− α)c.

As C is not neighbour with H this yields

(7) (1− ε)x′ = ξ(ε− α)c = o.

Because x is linearly independent x′ is also linearly independent or ξ is
a unit.

(a) If x′ is linearly independent then (by (7)) ε = 1, thus ξ(1−α) = 0.
Supposing (1 − α) has order r we have ξ = ξ0η

m−r. Now we obtain
x = x′ + ξ0η

m−rc and thus ηrx = ηrx′ ∈ H. This means that the degree
of neighbourhood of X and H is at least m− r.

(b) If ξ is a unit then (by (7)) ε = α which implies that (1−ε) = (1−α)
has order r. As (1 − ε)x′ = o, x′ may be written as x′ = ηm−ry, y ∈ H.
Now we get x = ηm−ry + ξc and therefore ηrx = ηrξc, ξ /∈ a. This means
that the degree of neighbourhood of X and C is at least m− r.

Now, suppose that degree of neighbourhood of X = [x] and H is at
least m − r. This implies that ηrx ∈ H. As ηrx′ + ηrξc = ηrx ∈ H we
have ηrξ = 0 and thus ξ = ξ0η

m−r. Supposing 1− α = α0η
r we get

F (x) = x′ + ξ0αηm−rc = x′ + ξ0η
m−r(1− α0η

r)c

= x′ + ξc− ξ0α0η
mc = x,

i.e. X is an invariant point.
Let us suppose that C and X = [x] are neighbours of degree at least

m − r. Then ηrx ∈ [c] which means that ηrx′ + ηrξc = ηrx ∈ [c]. This
gives ηrx′ = o i.e. x′ = ηm−ry, y ∈ H.

Therefore x = ηm−ry+ξc and F (x)= ηm−ry+ξαc=(1+α0η
r)ηm−ry

+ ξαc = αx′ + αξc = αx. This means that X is an invariant point.

Remark. By this theorem (in view of Lemma 3) the set of F ∗-invariant
points uniquely determines the order of 1− α.

The following theorem is a consequence of Proposition 1, 2 and of
Theorem 2:

Theorem 3. Let F ∗ be a (C,H)-homology of PA and let X be an ar-
bitrary point non-neighbour with H as well as with C. Then the points X,
F ∗(X) are neighbours of degree r if and only if the F ∗-invariant points
are just all the points which are neighbours with C or with H of degree at
least m− r.
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