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1. Introduction

In the queueing theory the M/G/1 system is one of the most well-
known ones, for its equilibrium description one usually uses the embed-
ded Markov chain technique leading to the Pollaczek–Khinchin formula,
the generating function of ergodic distribution. From mathematical view-
point it gives the complete solution of the problem, but in practice it can
lead to complications. One had such kind of difficulties at computation
of percentiles. For this purpose it is necessary to take one by one and
sum up the probabilities p0, p1, p2, . . . till the sum achieves a given prob-
ability level. In order to obtain these probabilities the differentiation of
the Pollaczek–Khinchin formula seems to be the most natural way, but
it gives very complicated expressions. In [6], [7] Brière and Chaudry

consider this problem from another viewpoint in case of bulk-arrival and
bulk-service systems, the inversion of generating function is realized by
comparing the coefficients at the corresponding powers of z, a recursive al-
gorithm is obtained for different concrete service time distributions. Their
work includes both sample numerical results and easily implementable al-
gorithms. Software packages realizing these algorithms are also available
on such systems [9]. [8] presents a unified approach for the numerical
solutions of the M/G/1 queue. It gives an overview of existing methods
and discusses the possibility of their applications. There is mentioned e.g.
Neuts’ matrix-analytic method which by Powell and Van Hoorn is good for
mathematical treatment, but it is difficult to implement computationally
at least for high values of parameters. The authors present a possible so-
lution in case the service time distribution has a rational Laplace–Stieltjes
transform, under such assumptions explicit closed-form expressions can be
obtained in terms of roots of associated characteristic equation (it cor-
responds to the denominator of generating function). We used another
approach. The functioning of M/G/1 system may be characterized by
the help of Kovalenko’s piecewise linear processes, it gives possibility to
compute the desired probabilities on the basis of a busy period and the
transition probabilities of the embedded Markov chain. The arrival rate,
the mean value of service time and the probability of appearence of a given
number of requests for the service time are the primary information about
the functioning of the system, the desired probabilities are obtained di-
rectly from them avoiding the generating functions, even we have not to
know the concrete service time distribution.
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In [11] Levy and Yechiali introduced the idea and investigated the
M/G/1 system with vacation. It means that after each busy period an ad-
ditional time interval called vacation is required (e.g. to repair the equip-
ment), i.e. having completed the service of all present requests we cannot
come at once to free state. If during the vacation no request enters we
reach the usual free state, in another case a further busy period begins,
it generates again a vacation, etc. This process will be terminated only
in case, when for a vacation no request appears. In the future the period
from the beginning of the first busy period till the end of last vacation will
be called “cycle”. Introducing the special state of vacation and reasoning
on the same way as in case of the simple M/G/1 system we are able to
find the ergodic distribution for this model, too.

2. Kovalenko’s results and some notations

The piecewise linear processes were introduced in [3], [4] and they are
described in the third chapter of [1]. There is a useful theorem concerning
how to determine the ergodic distribution at the same place in the fourth
chapter. Since the functioning of the M/G/1 system may be described by
means of these processes, we shortly point out the basic moments which
are necessary for the fulfilment of conditions of these theorems. In case
of investigation of the M/G/1 system by the help of embedded Markov
chain its states are identified by the number of requests there at moments
tn +0, i.e. they coincide with the number of requests after having serviced
the n-th one. There is no restriction on the waiting room, so the number
of states is countable. The ergodicity theorem from [1] (a detailed proof
is given in [14]) requires a finite number of states, so we unite into one
the cases when the number of present ones is equal to or greater than k.
Furthermore, we assume that the mean value of service time of a request
is finite, and if the service process of a request started, it is continued till
the end without interruption. Under these conditions according to [1] the
ergodic distribution exists and it can be computed on the basis of the mean
value of duration of busy period and the mean value of sojourn on different
levels for it (the expressions to have k requests in the system and to stay
at level k we will use in the same sense). Introducing the special state
for systems with vacation and reasoning the same way as above, one can
also show the applicability of piecewise linear processes and the ergodicity
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theorem to it (actually one has to only consider a cycle and sojourns in
different states for it). So our purpose is to find the mean values of a busy
period and a cycle, the mean values of time spent in different states for
them.

It is well-known that the Laplace–Stieltjes transform of the busy pe-
riod’s distribution function Γ(s) is the unique analytical solution of the
functional equation

Γ(s) = b(s + λ− λΓ(s))

at < s > 0 under condition |Γ(s)| ≤ 1, where λ is the arrival rate, b(s) =
∞∫
0

e−sxdB(x), and B(x) is the distribution function of the service time for

a request. Generally, from this equation one cannot obtain an explicit
expression for Γ(s), but by using it we are able to find the moments, e.g.
the mean value of the busy period’s duration is equal to

τ

1− ρ

(
τ =

∞∫

0

xdB(x), ρ = λτ

)
,

from which and Wald’s equality it follows that the average number of
requests serviced for a busy period is equal to (1− ρ)−1.

We introduce some further notations:

ak =
∞∫
0

(λx)k

k!
e−λxdB(x) – the probability of appearence of k new

requests for the service time of a request;
ζ =

τ

1− ρ
– the mean value of duration of a busy period;

ζ ′ – the mean value of duration of a cycle;
ζi – the mean value of time spent above the i-th level for a busy

period;
ζ ′i – the mean value of time spent above the i-th level for a cycle;
ξi – the mean value of time spent on the i-th level for a busy period;
ξ′i – the mean value of time spent on the i-th level for a cycle;
ρ = λτ – the utilization factor for the system without vacation;

D(x) – the distribution function of vacation, d(s) =
∞∫
0

e−sxdD(x) is

its Laplace–Stieltjes transform and η =
∞∫
0

xdD(x) its mean value;
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dk =
∞∫
0

(λx)k

k!
e−λxdD(x) – the probability of appearence of k requests

for the vacation;
ρv = λη – the utilization factor for the system with vacation.

In this notations the ergodic probabilities for the simple M/G/1 sys-
tem obviously are pi = ξi/ζ (i = 0, 1, 2, . . . ), and for the system with
vacation p′i = ξ′i/ζ ′ (i = v, 0, 1, 2, . . . ). Our purpose is to find these mean
values.

3. Theorems

We formulate the results of the paper in the following theorems.

Theorem 1. In the M/G/1 system

ξ0 = τ, ξ1 =
1− a0

a0
τ, ξ2 =

1− a0 − a1

a0
(ξ0 + ξ1)

and the mean values of time ξk (k ≥ 3) spent in different states for a busy
period satisfy the recurrence relation

ξk =
k−2∑

i=1

1− a0 − a1 − · · · − ai

a0
ξk−i +

1− a0 − a1 − · · · − ak−1

a0
(ξ0 + ξ1).

Lemma. The mean value of duration of a cycle in the M/G/1 system
with vacation is

ζ ′ =
τ

1− ρ
+

η

d0(1− ρ)
.

Theorem 2. The mean values of time spent on the k-th level ξ′k for
a cycle in the M/G/1 system with vacation satisfy the relations

ξ′v =
τ

d0
, ξ′0 = η, ξ′1 =

τ

a0d0
− τ +

d1

d0
(η − τ),

ξ′k = ξk +
k−2∑

i=0

1− d0 − · · · − di

d0
ξk−i

+
1− d0 − · · · − dk−1

d0
(ξ0 + ξ1) +

dk

d0
(η − τ) (k ≥ 2),
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where ξi (i ≥ 0) are the mean values of time spent on the i-th level for

a busy period in the M/G/1 system without vacation and are determined

by Theorem 1.

4. Proof of Theorem 1

Let j requests be present in the system, one of them on service. Af-
ter having serviced the actual one with probability a1 the same number
of requests remain there. With probability 1 − a1 we come to another
level, more exactly, with probability

a0

1− a1
to j − 1 and with probability

1− a0 − a1

1− a1
to a level above j.

We consider the structure of a busy period. First we shall investigate
the periods during which there is only one request in the system and
periods during which there are more than one request there. For us it
is more convenient to characterize the system with the number of requests
at the starting moment of service of a concrete one which does not change
till completion. The such defined notions of state and number of present
requests must be distinguished, the difference is clear from the following
reasoning. If one considers service periods of requests when at the starting
moment there is no another one, they correspond to the state 1 excluding
two cases. The first case is the jump to a level above the first, then
the service of last request from this period from the viewpoint of states
corresponds to the new level (from the viewpoint of the number of present
requests of course to the first). But the whole duration of time spent on
the first level does not change because coming from the second level to
the first the inverse situation takes place. The picture is analogous for the
levels above the first, too. The second case is the service of the last request
in the busy period, it corresponds to the zero state (after its service there
will be no request in the system), so it must be excluded from the number
of requests serviced on the first level.

We determine the mean value of a period during which there is only
one request in the system. Since a1 is the probability that during the
service of a request a new one occurs, this state continues with probability
a1 and finishes with probability 1−a1 (no request enters or more requests
enter). For such a period with probability 1 − a1 is serviced one request,
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with probability a1(1−a1) two requests, . . . , with probability ak−1
1 (1−a1)

k ones. The mean number of requests serviced for such a period is

∞∑

k=1

kak−1
1 (1− a1) =

1
1− a1

.

Now let us determine the mean value of a period above the first level
(in this case we will have the aforementioned deviation concerning the
states and numbers of present requests, but finally we get the correct value
without any exclusion). Assume that at the beginning of this period there
are k requests in the system (during the service of last request on the first
level with probability 1−a0−a1 at least two new ones have occured, with
probability

ak

1− a0 − a1
(k = 2, 3, . . . ) we will have k ones). In order to

reach again the first level we have to complete k − 1 present and all other
requests occuring for their service time. Since the service of each present
k − 1 requests with the entering ones has the same structure as the entire
busy period and for a busy period one serves on average (1−ρ)−1 requests,
the mean value of duration of this period is

∞∑

k=2

ak

1− a0 − a1
(k − 1)

τ

1− ρ

=
τ

(1− ρ)(1− a0 − a1)
[ρ− a1 − (1− a0 − a1)] =

ρ− 1 + a0

(1− ρ)(1− a0 − a1)
τ,

where we have used the equalities

ρ =
∞∑

k=1

kak and
∞∑

k=0

ak = 1.

For the busy period we have a certain number of periods during which
there is only one request, this period ends when no request enters (this
is the end of the busy period), or two or more requests appear. So with

probabilities
a0

1− a1
,

1− a0 − a1

1− a1

a0

1− a1
, . . . ,

(1− a0 − a1)k

(1− a1)k

a0

1− a1
, . . . we

will have 0, 1, . . . , k, . . . periods during which there are more than one
request in the system. Consequently, the mean number of requests serviced
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for the periods of two types are

∞∑

k=1

k
(1− a0 − a1)k−1

(1− a1)k−1

a0

1− a1

1
1− a1

=
1
a0

,

∞∑

k=1

k
(1− a0 − a1)k

(1− a1)k

a0

1− a1

ρ− 1 + a0

(1− ρ)(1− a0 − a1)
=

ρ− 1 + a0

a0(1− ρ)
.

We derive a recurrence relation concerning the mean value of time
spent above the k-th level for a busy period. Let us consider the case of
second level. We have two possibilities:

1. from the first level we come to the second level;
2. from the first level we come at least to the third one.
If from the first level we come to the second one, we are in the same

situation as in the case of first level. We service a certain number of
requests on the second level, after it we come either to the first one or to
a level above the second. In the first case the sojourns on and above the
second level change, and spending on average ζ1 above it we return to the
first one. In the second case the period above the second level begins with
a jump from the first level to a level above the second, the mean value of
time to return to the second one is equal to

∞∑

k=3

ak

1− a0 − a1 − a2
(k − 2)

τ

1− ρ
=

ρ− 2 + 2a0 + a1

(1− ρ)(1− a0 − a1 − a2)
τ = ε2.

After this moment we are in the previous situation, i.e. we spend above
the second level on average ζ1 time. The probabilities of two cases are cor-

respondingly
a2

1− a0 − a1
and

1− a0 − a1 − a2

1− a0 − a1
, so for a period beginning

and ending on the first level we spend above the second level on average

a2

1− a0 − a1
ζ1 +

1− a0 − a1 − a2

1− a0 − a1
(ζ1 + ε2) = ζ1 + ε′2

time, where

ε′2 =
ρ− 2 + 2a0 + a1

(1− ρ)(1− a0 − a1)
τ.
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We have i such periods with probability
(1− a0 − a1)i

(1− a1)i

a0

1− a1
, so finally

ζ2 =
∞∑

i=1

i
(1− a0 − a1)i

(1− a1)i

a0

1− a1
(ζ1 + ε′2)

=
1− a0 − a1

a0
ζ1 +

1− a0 − a1 − a2

a0
ε2.

Suppose that our reasoning is valid for the k− 1-st level and we want
to determine ζk. We consider again a period which begins and ends with
the presence of one request in the system. From the first level we can come
to the second, . . . , k − 1-st, k-th and to a level above the k-th. In case of
the second level we are in the same situation as considering the time spent
above the k− 1-st level from the viewpoint of first one, so the mean value
is ζk−1. In case of third level at first we have a period starting with the
presence of three requests and ending with the presence of two ones. The
first period coincides with the case of the k−2-nd level above the first, the
corresponding mean value is ζk−2. After this period we are in the previous
situation (there are two requests) and the mean value of remaining part
will be equal to ζk−1. So under condition that from the first level we come
at once to the third one the desired mean value is ζk−2 + ζk−1. Let us
consider the last possibility. It takes place when from the first level we
have a jump to a level above the k-th one. Computing the mean value of
time spent above the k-th level at the beginning we obtain

∞∑

i=k+1

ai

1− a0 − · · · − ak
(i− k)

τ

1− ρ

=
ρ− k + ka0 + (k − 1)a1 + · · ·+ 2ak−2 + ak−1

(1− ρ)(1− a0 − a1 − · · · − ak)
τ = εk.

After this period we will be at the k-th level, and according to our reasoning
spending ζ1 time above the k-th level we come to the k−1-st, spending ζ2

above the k-th we will be at the level k−2, . . . , and finally starting from the
second level and spending ζk−1 above the k-th one we arrive at the first, so
in the last case the desired mean value is ζ1+ζ2+· · ·+ζk−1+εk. The proba-
bility of first possibility is

a2

1− a0 − a1
, the probability of second possibility
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a3

1− a0 − a1
, . . . , the probability of last possibility

1− a0 − a1 − · · · − ak

1− a0 − a1
,

so summing up the conditional mean values multiplied by the correspond-
ing probabilities we obtain

ζk−1 +
1− a0 − a1 − a2

1− a0 − a1
ζk−2 + · · ·+ 1− a0 − · · · − ak−1

1− a0 − a1
ζ1

+
1− a0 − · · · − ak

1− a0 − a1
εk.

For a busy period we have i periods of sojourn above the first level with

probability
(1− a0 − a1)i

(1− a1)i

a0

1− a1
, the desired mean value is equal to

ζk =
∞∑

i=1

i
(1− a0 − a1)i

(1− a1)i

a0

1− a1

{
ζk−1 +

1− a0 − a1 − a2

1− a0 − a1
ζk−2 + . . .

+
1− a0 − a1 − · · · − ak−1

1− a0 − a1
ζ1 +

1− a0 − a1 − · · · − ak

1− a0 − a1
εk

}

=
k−1∑

i=1

1− a0 − a1 − · · · − ai

a0
ζk−i +

1− a0 − a1 − · · · − ak

a0
εk.

From this expression we derive a formula for the mean value of the
number of requests serviced on the level k. Obviously,

ζk = ζ − ξ0 − ξ1 − · · · − ξk.

Consequently, the previous formula may be rewritten in the following
form:

ζ − ξ0 − ξ1 − · · · − ξk =
1− a0 − a1

a0
(ζ − ξ0 − ξ1 − · · · − ξk−1)

+
1− a0 − a1 − a2

a0
(ζ − ξ0 − ξ1 − · · · − ξk−2)

+ · · ·+ 1− a0 − a1 − · · · − ak−2

a0
(ζ − ξ0 − ξ1 − ξ2)

+
1− a0 − a1 − · · · − ak−1

a0
(ζ − ξ0 − ξ1) +

ρ− 1 + a0

a0(1− ρ)
τ
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− 1− a0 − a1

a0(1− ρ)
τ − 1− a0 − a1 − a2

a0(1− ρ)
τ − · · · − 1− a0 − a1 − · · · − ak−2

a0(1− ρ)
τ

− 1− a0 − a1 − · · · − ak−1

a0(1− ρ)
τ.

Using the equalities

ρ− 1 + a0

a0(1− ρ)
τ = ζ − ξ0 − ξ1, ζ =

τ

1− ρ

we get

−ξ2 − · · · − ξk =
1− a0 − a1

a0
(−ξ0 − ξ1 − · · · − ξk−1)

+
1− a0 − a1 − a2

a0
(−ξ0 − ξ1 − · · · − ξk−2) + . . .

+
1− a0 − a1 − · · · − ak−2

a0
(−ξ0 − ξ1 − ξ2)

+
1− a0 − a1 − · · · − ak−1

a0
(−ξ0 − ξ1).

Substituting here a similar expression for ξk−1 we finally obtain

ξk =
k−2∑

i=1

1− a0 − a1 − · · · − ai

a0
ξk−i +

1− a0 − a1 − · · · − ak−1

a0
(ξ0 + ξ1)

(k ≥ 2),

where
0∑

i=1

= 0 and ξ0 + ξ1 = τ/a0. The theorem is proved.

Remark 1. At the derivation of recursive formula we take advantage
of the mechanism of functioning of the system. It does not change even
in case of bulk arrivals, so the same reasoning may be used, the concrete
transition probabilities will differ of course.

Remark 2. Using the notation

1− a0 − a1 − · · · − ai

a0
= fi,
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all ξk (k ≥ 2) may be expressed via ξ0 + ξ1. We have

ξ0 + ξ1 = (ξ0 + ξ1) · 1,

ξ2 = (ξ0 + ξ1)f1,

ξ3 = (ξ0 + ξ1)(f2
1 + f2),

ξ4 = (ξ0 + ξ1)(f3
1 + 2f1f2 + f3),

ξ5 = (ξ0 + ξ1)(f4
1 + 3f2

1 f2 + 2f1f3 + f2
2 + f4),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One can easily show, by induction, that the coefficients at ξ0 + ξ1 in the
expression for ξk+1 give the different possibilities how k can be represented
as the sum of natural numbers (it is the partition problem of number
theory, the lower indices give the summands, the powers the multiplicities).
The coefficients of summands are the polynomial coefficients, namely

(n1 + n2 + · · ·+ nj)!
n1!n2! . . . nj !

,

where ni are the powers of fi.

Proof of the Lemma. We determine the desired mean value on
the basis of the distribution function of a cycle and find it using the
Laplace–Stieltjes transform. The cycle consists of the first busy period
with Laplace–Stieltjes transform Γ(s); it is followed by a certain number
of periods including a vacation and a busy period (for the vacation at
least one request obligatorily enters), the corresponding Laplace–Stieltjes
transform is d(s + λ− λΓ(s))− d(s + λ); and finally there will be the last
vacation without entry of any request, its transform is d(s + λ). So the
Laplace–Stieltjes transform of the distribution function of a cycle is

∞∑
n=0

Γ(s)[d(s + λ− λΓ(s))− d(s + λ)]nd(s + λ)

=
Γ(s)d(s + λ)

1− d(s + λ− λΓ(s)) + d(s + λ)
,

from it on the usual way we obtain

ζ ′ =
τ

1− ρ
+

η

d0(1− ρ)
. ¤
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5. Proof of Theorem 2

We will distinguish the free state, the vacation and the states 1, 2, . . .
To the free state corresponds the last vacation of the cycle, its mean

value is η.
By the definition of states to the vacation will correspond the services

of last requests in all the busy periods, the mean value is

τd0 + 2τ(1− d0)d0 + · · · =
∞∑

i=1

iτ(1− d0)i−1d0 =
τ

d0
.

As in the proof of Theorem 1 we will consider the time spent on and
above the first level. For the first busy period according to our previous
result the mean value of time spent on the first level is equal to

τ

a0
−τ . For

the other busy periods we have two possibilities. The busy period starts
with one present request with probability d1/(1−d0), in this case the mean
value is equal to

τ

a0
− τ + η (the service time on the first level is τ/a0, it is

necessary to add the previous vacation and to subtract the service of last
request, it already belongs to the state of vacation). In another case we

have at least two requests with probability
1− d0 − d1

1− d0
, the mean value is

τ

a0
− τ + τ =

τ

a0
(after having serviced a certain number of requests above

the first level we come to it and we are in the previous situation, but the
modification must be done both at the beginning and end with τ). They
give

d1

1− d0

(
τ

a0
+ η − τ

)
+

1− d0 − d1

1− d0

τ

a0
=

τ

a0
+

d1

1− d0
(η − τ).

So the mean value of time spent on the first level for a cycle

∞∑

i=0

{[
τ

a0
− τ

]
+ i

[
τ

a0
+

d1

1− d0
(η − τ)

]}
(1− d0)id0

=
τ

a0d0
− τ +

d1

1− d0
(η − τ) = ξ′1.

Now we find the mean value of time spent above the first level for a

cycle. By the Theorem 1 for the first busy period it is ζ1 =
ρ− 1 + a0

a0(1− ρ)
τ .
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For the other busy periods we have to distinguish two possibilities. The

busy period starts with probability
d1

1− d0
on the first level, the mean

value is
ρ− 1 + a0

a0(1− ρ)
τ ; it starts with probability

1− d0 − d1

1− d0
above the first

level, on average for

∞∑

k=2

dk

1− d0 − d1
(k − 1)

τ

1− ρ
=

ρv − 1 + d0

(1− ρ)(1− d0 − d1)
τ

we come to the first level (by analogy we use the notation
∞∑

k=1

kdk = ρv),

and after it we are in the previous situation. So in this case the mean
value, taking into account the necessary correction, is equal to

ρv − 1 + d0

(1− ρ)(1− d0 − d1)
τ + η − τ +

ρ− 1 + a0

a0(1− ρ)
τ,

and the mean value of time spent above the first level for a busy period
(excluding the first one)

ρ− 1 + a0

a0(1− ρ)
τ +

ρv − 1 + d0

(1− ρ)(1− d0)
τ +

1− d0 − d1

1− d0
(η − τ).

For a cycle it will be

ζ ′1 =
ρ− 1 + a0

a0(1− ρ)
τ [d0 + 2(1− d0)d0 + 3(1− d0)2d0 + . . . ]

+
[

ρv − 1 + d0

(1− ρ)(1− d0)
τ +

1− d0 − d1

1− d0
(η − τ)

]

× [(1− d0)d0 + 2(1− d0)2d0 + 3(1− d0)3d0 + . . . ]

=
ρ− 1 + a0

a0d0(1− ρ)
τ +

ρv − 1 + d0

d0(1− ρ)
τ +

1− d0 − d1

d0
(η − τ).

We find a formula for the mean value of time spent above the second
level for a cycle. For the first busy period it is equal to ζ2. For the further
busy periods we have three possibilities:

– for the previous vacation one new request appeared, the mean value
is ζ2;
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– for the previous vacation two new requests appeared, the desired

mean value is ζ1 + ζ2 (spending on average ζ1 time above the second level

we come to the first one, after that spending ζ2 above the second level the

busy period is terminated);

– for the previous vacation at least three new requests appeared, on

average for

ε2 =
∞∑

k=3

dk

1− d0 − d1 − d2
(k − 2)

τ

1− ρ
=

ρv − 2 + 2d0 + d1

(1− ρ)(1− d0 − d1 − d2)
τ

we come to the second level, and so we are in the previous situation. By

modifying this period with η and τ , multiplying the three values with the

corresponding probabilities, for the mean value of time spent above the

second level we obtain

d1

1− d0
ζ2 +

d2

1− d0
(ζ1 + ζ2)(∗)

+
1− d0 − d1 − d2

1− d0
(ε2 + η − τ + ζ1 + ζ2) = ζ2 +

1− d0 − d1

1− d0
ζ1

+
1− d0 − d1 − d2

1− d0
(η − τ) +

ρv − 2 + 2d0 + d1

(1− ρ)(1− d0)
τ = ω2.

For a cycle above the second level we stay on average

ζ ′2 =
∞∑

i=0

(ζ2 + iω2)(1− d0)id0 = ζ2 +
1− d0

d0
ζ2

+
1−d0 − d1

d0
ζ1 +

1−d0 − d1 − d2

d0
(η − τ) +

ρv − 2 + 2d0 + d1

d0(1− ρ)
τ.

Let us now consider the mean value of time spent above the k-th level

for a cycle. For the first busy period it is equal to ζk. For the other busy

periods depending on the number of requests occuring for the previous
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vacation we have the following possibilities:

ζk

ζk−1 + ζk

. . . . . . . . .

ζk−i+1 + · · ·+ ζk

. . . . . . . . . . . . . . .

ζ1 + ζ2 + · · ·+ ζk

εk + η − τ + ζ1 + · · ·+ ζk.

Using this representation by means of the same reasoning as above one
can get the expression

ζ ′k =
∞∑

i=0

(ζk + iωk)(1− d0)id0 = ζk +
1− d0

d0
ζk

+
1− d0 − d1

d0
ζk−1 + · · ·+ 1− d0 − · · · − di−1

d0
ζk−i+1 + · · ·

+
1− d0 − · · · − dk−1

d0
ζ1 +

1− d0 − d1 − · · · − dk

d0
(η − τ)

+
ρ− k + kd0 + (k − 1)d1 + · · ·+ 2dk−2 + dk−1

d0(1− ρ)
τ,

where ωk is an analogous to (∗) expression. Having a similar expression
for the level k − 1 and taking their difference we finally obtain

ξ′k = ζ ′k−1 − ζ ′k = ζk−1 − ζk +
1− d0

d0
(ζk−1 − ζk)

+
1− d0 − d1

d0
(ζk−2 − ζk−1)

+ · · ·+ 1− d0 − · · · − di−1

d0
(ζk−i − ζk−i+1) + · · ·

+
1− d0 − · · · − dk−2

d0
(ζ1 − ζ2)− 1− d0 − d1 − · · · − dk−1

d0
ζ1
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+
[
1− d0 − · · · − dk−1

d0
− 1− d0 − · · · − dk

d0

]
(η − τ)

+

[
ρv − (k − 1) + (k − 1)d0 + (k − 2)d1 + · · ·+ 2dk−3 + dk−2

d0(1− ρ)

− ρv − k + kd0 + (k − 1)d1 + · · ·+ 2dk−2 + dk−1

d0(1− ρ)

]
τ

= ξk +
1− d0

d0
ξk

+
1− d0 − d1

d0
ξk−1 + · · ·+ 1− d0 − · · · − di−1

d0
ξk−i+1

+ · · ·+ 1− d0 − · · · − dk−2

d0
ξ2

− 1− d0 − d1 − · · · − dk−1

d0

ρ− 1 + a0

a0(1− ρ)
+

dk

d0
(η − τ)

+
1− d0 − d1 − · · · − dk−1

d0(1− ρ)
τ = ξk +

k−2∑

i=0

1− d0 − · · · − di

d0
ξk−i

+
1− d0 − d1 − · · · − dk−1

d0
(ξ0 + ξ1) +

dk

d0
(η − τ),

what proves the theorem. ¤
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