Two minimal clones whose join is gigantic

By GÁBOR CZÉDLI (Szeged)

Dedicated to Professor Ferenc Móricz on his sixtieth birthday

Abstract

Let A be a finite set such that the greatest prime divisor of $|A|$ is at least 5. Then two minimal clones are constructed on A such that their join contains all operations.

Given a finite set A with at least two elements, the clones on A form an atomic algebraic lattice \mathbf{L}_{A}. The atoms of \mathbf{L}_{A} are called minimal clones. Szabó [5] raised the question that what is the minimal number $n=n(|A|)$ such that the greatest element $\mathbf{1}_{A}$ of \mathbf{L}_{A} is the join of n atoms. In other words, how many minimal clones are necessary to generate the clone of all operations on A ? He proved $2 \leq n(|A|) \leq 3$ and $n(p)=2$ for p prime, cf. [5]. Later in [6] he also showed $n(2 p)=2$ for primes $p \geq 5$. Our goal is not only to extend these results but also to simplify the proof in [6] for the $2 p$ case. Many of Szabó's ideas from [5] and [6] will be used in the present paper.

Theorem 1. Let A be a finite set, and let p divide the number of elements of A for some prime $p \geq 5$. Then there exist two minimal clones on A whose join contains all operations on A.

The proof relies on the following lemma.

[^0]Lemma 2. Let $|A|=p k$ for a prime $p \geq 5$ and an integer $k \geq 2$. Then there are a lattice structure (A, \vee, \wedge) and a fixed point free permutation $g: A \rightarrow A$ of order p such that, with the notation m for the ternary majority operation $m: A^{3} \rightarrow A,(x, y, z) \mapsto(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)$, the algebra $\mathcal{A}=(A, m, g)$ is simple, it has no proper subalgebra and it has no nontrivial automorphism.

Proof of Lemma 2. Let $A=\left\{0=a_{0,1}, 1=a_{k+1, p}, a_{1,1}, \ldots, a_{1, p-1}\right.$, $\left.a_{2,1}, \ldots, a_{2, p-1}, a_{3,1}, \ldots, a_{3, p}, \ldots, a_{k, 1}, \ldots, a_{k, p}\right\}$. Consider the lattice structure (A, \vee, \wedge) on A as depicted in Figure 1. (Notice that this lattice is a Hall-Dilworth gluing of k modular nondistributive lattices of length 2.)

Figure 1

Let g be the following permutation:

$$
\begin{gathered}
\left(0 a_{k, 1} a_{k, 2} \ldots a_{k, p-2} 1\right)\left(a_{1,1} \ldots a_{1, p-1} a_{2, p-1}\right) \\
\times\left(a_{2,1} \ldots a_{2, p-2} a_{3, p} a_{3, p-1}\right)\left(a_{3,1} \ldots a_{3, p-2} a_{4, p} a_{4, p-1}\right) \\
\times\left(a_{4,1} \ldots a_{4, p-2} a_{5, p} a_{5, p-1}\right) \ldots\left(a_{k-1,1} \ldots a_{k-1, p-2} a_{k, p} a_{k, p-1}\right) .
\end{gathered}
$$

In Figure 1 the g-orbits are indicated by dotted lines.
Now if Θ is a congruence of \mathcal{A} then $x \wedge y=m(x, y, 0)$ and $x \vee y=$ $m(x, y, 1)$ preserve Θ, so Θ is a lattice congruence as well. But our lattice is simple, whence so is \mathcal{A}.

Now let S be a subalgebra of \mathcal{A}. Clearly, S is the union of some g-orbits. From $m\left(a_{i, 1}, a_{i, 2}, a_{i, 3}\right)=a_{i-1,1} \quad(1 \leq i \leq k)$ we infer that if S includes the g-orbit of $a_{i, 1}$ then it includes the g-orbit of $a_{i-1,1}$. Since $a_{k, 1}$ and $a_{0,1}=0$ belong to the same orbit, S includes all orbits. This shows that \mathcal{A} has no proper subalgebra.

An element $x \in A$ is called m-irreducible if $A \backslash\{x\}$ is closed with respect to m. Using the monotonicity of m we easily conclude that 1 is m-irreducible. The doubly (i.e., both meet and join) irreducible elements are m-irreducible as well. The computational rules

$$
\begin{array}{ll}
m\left(a_{i, 1}, a_{i, 2}, a_{i, 3}\right)=a_{i-1,0} & (1 \leq i \leq k), \\
m\left(a_{1,1}, a_{1,2}, 1\right)=a_{2, p-1}, \\
m\left(a_{j-1,1}, a_{j-1,2}, 1\right)=a_{j, p} & (3 \leq j \leq k)
\end{array}
$$

imply that the rest of elements are m-reducible. Now 0 is the only m reducible element with the property that all other elements in its g-orbit are m-irreducible. Hence 0 is a fixed point of every automorphism τ of \mathcal{A}. Since the set of fixed points of τ is either empty or a subalgebra, all elements are fixed points and τ is the identity map of A. Hence \mathcal{A} has no nontrivial automorphism. This proves Lemma 2.

The transition from Lemma 2 to Theorem 1 is essentially the same as that in Szabó [6].

Proof of Theorem 1. Since the case when $|A|$ is a prime is settled in [5], we can assume that $|A|=k p$ for $k \geq 2$ and $p \geq 5$. The clone [m] generated by m (in case of any lattice) is known to be a minimal

Figure 2
one, cf. e.g. Kalouznin and Pöschel [3, page 115, 4.4.5.(ii)]. Clearly, the permutation g also generates a minimal clone. To prove that $[m] \vee$ $[g]=\mathbf{1}_{A}$ it suffices to show that no relation from the six types in the famous Rosenberg Theorem [4] is preserved both by m and g. (Note that Rosenberg Theorem is cited in [2] as Thm. A.) Since m is a majority operation, it does not preserve linear relations and h-regular relations by [2, Lemma 6]. It is easy to check that if a central relation is preserved by m and g then its centrum elements form a subalgebra of \mathcal{A}. So the lack of proper subalgebras excludes central relations. Since the simplicity of \mathcal{A} and the lack of nontrivial automorphisms obviously exclude two further kinds of Rosenberg's relations, we are left with the case of a bounded partial order $\rho \subseteq A^{2}$ preserved by m and g. If u is the smallest element with respect to ρ then $(u, g(u)) \in \rho$ gives $\left(g^{p-1}(u), g^{p}(u)\right)=\left(g^{p-1}(u), u\right) \in \rho$, which contradicts $g^{p-1}(u) \neq u$. (Alternatively, $x \wedge y=m(x, y, 0)$ and $x \vee y=m(x, y, 1)$ also preserve ρ. Since (A, \vee, \wedge) is a simple lattice, ρ is
the original lattice order or its dual by [1, Cor. 1], so ρ is evidently not preserved by g.) This proves Theorem 1.

Concluding remarks. While we do not know if $n(|A|)=2$ holds for all finite sets A with at least two elements, Lemma 2 surely fails when $|A|=2^{k}, k>1$. (Indeed, then $\{0, g(0)\}$ is a proper subalgebra.) The case when 3 is the greatest prime divisor of $|A|>3$ is less clear. All we know at present is that Lemma 2 fails for $|A|=6$ but holds for $|A| \in\{9,12,18\}$. For example, the lattice we used for $|A|=18$ is given in Figure 2, the corresponding permutation g is

$$
(0,16,15)(1,4,5)(2,3,9)(6,7,14)(8,10,17)(11,12,13)
$$

and the reasoning is considerably longer than in the proof of Lemma 2. Unfortunately, the particular arguments for 9,12 and 18 have not given a clue to more generality.

References

[1] G. Czédli and L. Szabó, Quasiorders of lattices versus pairs of congruences, Acta Sci. Math. (Szeged) 60 (1995), 207-211.
[2] P. P. Pálfy, L. Szabó and Á. Szendrei, Automorphism groups and functional completeness, Algebra Universalis 15 (1982), 385-400.
[3] R. Pöschel and L. A. Kalouznin, Functionen- und Relationenalgebren, VEB Deutscher Verlag d. Wissenschaften, Berlin, 1979.
[4] I. G. Rosenberg, La structure des fonctions de plusiers variables sur un ensemble fini, C. R. Acad. Sci. Paris, Ser. A. B. 260 (1965), 3817-3819.
[5] L. Szabó, On minimal and maximal clones, Acta Cybernetica 10 (1992), 322-327.
[6] L. Szabó, On minimal and maximal clones II, Acta Cybernetica, (submitted).

```
GÁbOR CZÉdLI
jate bolyai institute
6720 SZEGED
aradi vÉrtanúk tere 1
HUNGARY
E-mail: czedli@math.u-szeged.hu
```

(Received April 14, 1998)

[^0]: Mathematics Subject Classification: 08A40.
 Key words and phrases: clone, minimal clone, majority operation, lattice.
 Research partially supported by OTKA T023186, T022867 and T026243, and FKFP 1259/1997.

