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On reduced n-cubic spline interpolation
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1. Introduction

The object of this paper is to construct a continuous spline approx-
imational method on rectangular grid for functions in several variables.
This method is a local one and it will be called reduced n-cubic spline
interpolation of Hermite-type, because it is a special piecewise polynomial
which is cubic polynomial in each variable defined on each rectangle by
prescribing the function values and the values of the first order partial
derivatives at the knots. It is called reduced because we have not as much
conditions for the partial derivatives at the knots as it would be possible
if we generalized the one dimensional case by tensor product (Melkes
[17], Delvos, Posdorf [8], Baszenski, Schumaker [3]). In this case
this polynomial is of degree at most n + 2 instead of 3n on each rectan-
gle, so we need less arithmetic operations to compute its values. We give
a recursive formula to compute the spline function in higher dimensions.
By this recursive formula we prove approximation theorems, which show
that the order of this approximation is the best possible (in the sense of
the Jackson theory for the best approximation by polynomials), depend-
ing on the smoothness of the function. We show that this spline function
minimalizes a special functional which is a possible generalization of the
curvature in two dimensions. We remark, that for n = 2 this spline is
the so-called ADINI element on each subrectangle (Gordon [10], Lan-
caster, Watkins [13], Melkes [17]).

Various multidimensional spline approximational methods have been
worked out, for references see the monumental bibliography by Franke,
Schumaker [9] and Chui, Schumaker, Utreras (eds) [7]. To gen-
eralize the one dimensional methods on rectangular grid the most useful
methods are the tensor product methods (Baszenski, Schumaker [3])
and the blending methods (Baszenski, Delvos, Posdorf [2]). For fur-
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ther details on spline approximation see e.g. Ahlberg, Nilson, Walsh
[1], de Boor [5], Korneichuk [12], Schumaker [20], Stečkin, Sub-
botin[21], Zavialov, Kvasov, Miroshničenko [22], etc.

A similar construction of reduced n-quadratic spline interpolation of
Hermite-type can be found in [15]. As possible applications of these re-
duced n-cubic and n-quadratic spline interpolations we mention the mul-
tiple quadrature formulas ([16]) and the approximate solution of partial
differential equations ([4], [15]).

2. Notations

In what follows R,Z and N denote the set of reals, the set of integers
and the set of the natural numbers (including zero). For any vector x in Rn

we denote its j-th component by (x)j = xj , that is x = (x1, x2, . . . , xn).
Addition, multiplication and inequality between vectors will be defined
componentwise and elsewhere for x ∈ Rn we use the Euclidean norm

‖x‖ =
( n∑

j=1

x2
j

) 1
2 ,

and let

|x| =
n∑

j=1

|xj |.

If a,b ∈ Rn, then let
[a,b] = {x ∈ Rn : a ≤ x ≤ b}

and

ab =
n∏

j=1

(aj)bj (bj ∈ Z, j = 1, . . . , n),

where 00 = 1. The zero vector will be denoted by 0, further e = (1, 1, . . . , 1)
and ej denotes the vector whose j-th coordinate equals to 1, the others
being zero (j = 1, 2, . . . , n). The modulus of continuity of the function
u : Rn → R will be denoted by ω(d;u), that is

ω(d; u) = supt,t̃∈[a,b]

‖t−t̃‖≤d

|u(t)− u(t̃)|,

where d denotes the (Euclidean) diameter of the set, on which the os-
cillation of u is considered. The differential operators for multivariable
functions will be denoted as usual by

∂α1
1 ∂α2

2 . . . ∂αn
n .

or by
Dα = Dα1,α2,...,αn .
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3. Construction of the spline function

Let {ti}i∈Zn be an equidistant subdivision of Rn with h = (h1, h2,

. . . , hn), that is (ti+ej − ti)j
= hj . Let {ui}i∈Zn and {u(ej)

i }
i∈Zn (j =

1, 2, . . . , n) be given systems of real numbers. Let d = ‖h‖ denote the
diameter corresponding to this subdivision.

For all t ∈ [ti, ti+e] we define

(1)n Si(t) =
∑

k∈K

A
(k)
i (t− ti)k,

where K is the set of all n-dimensional multi-indices k (0 ≤ k ≤ 3e)
satisfying the following condition: if kj = 2 or kj = 3 for any j, then
kl ≤ 1 for all l 6= j; that is, Si is a special polynomial of degree at most
n + 2, which is cubic polynomial in each variable. Further the unknown
coefficients A

(k)
i are to be chosen satisfying the conditions

(2)n

Si(ti+l) = ui+l, 0 ≤ l ≤ e,

∂jSi(ti+l) = u
(ej)
i+l , j = 1, . . . , n.

The number of the coefficients A
(k)
i is equal to the number of the

conditions (equations) and it is 2n(n + 1).

Lemma 1. There exist unique constants A
(k)
i such that the functions

Si of form (1)n satisfy (2)n.

Proof. We show by induction with respect to the dimension n, that
the coefficients A

(k)
i are uniquely determined by conditions (2)n. If n = 1,

then then the polynomial (1)1 is the Hermite interpolational cubic poly-
nomial satisfying the prescribed conditions. In the n + 1-dimensional case
it follows by induction, that all those coefficients A

(k)
i are uniquely deter-

mined, where k has at least one zero coordinate. For the remaining 2n+1
coefficients

A
(k)
i (k = e, e + e1, . . . , e + en, e + 2e1, . . . e + 2en)

we have the following system of linear equations

Si(ti+e) = ui+e,

∂jSi(ti+e) = u
(ej)
i+e (j = 1, . . . , n),

∂jSi(ti+e−ej ) = u
(ej)
i+e−ej

(j = 1, . . . , n).
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By elementary transformations the matrix of this linear system can be
reduced to the following one:




1 1 1 . . . 1 1 1 . . . 1
1 2 1 . . . 1 3 1 . . . 1
1 1 2 . . . 1 1 3 . . . 1
...

...
...

. . .
...

...
...

. . .
...

1 1 1 . . . 2 1 1 . . . 3
1 0 1 . . . 1 0 1 . . . 1
1 1 0 . . . 1 1 0 . . . 1
...

...
...

. . .
...

...
...

. . .
...

1 1 1 . . . 0 1 1 . . . 0




which is of order 2n+1. It is easy to see that this matrix is regular, hence
the existence and uniqueness are proved.

For instance, in the two dimensional case, the function Si,j satisfying
the conditions (1)2-(2)2 can be expressed as follows: for all x ∈ [xi, xi+1]
and y ∈ [yj , yj+1]

Si,j(x, y) =

= (1− s)
{
φ1(t)ui,j + φ2(t)ui+1,j + φ3(t)hu

(1,0)
i,j + φ4(t)hu

(1,0)
i+1,j

}
+

+ s
{
φ1(t)ui,j+1 + φ2(t)ui+1,j+1 + φ3(t)hu

(1,0)
i,j+1 + φ4(t)hu

(1,0)
i+1,j+1

}
+

+ (1− s)s2 ·
· {

(ui,j+1−ui,j−lu
(0,1)
i,j+1)(1−t)+(ui+1,j+1−ui+1,j−lu

(0,1)
i+1,j+1)t

}
+

+ (1− s)(s− 1)s ·
· {

(ui,j+1 − ui,j − lu
(0,1)
i,j )(1− t) + (ui+1,j+1 − ui+1,j − lu

(0,1)
i+1,j)t

}
,

where

φ1(t) = (1− t)2(1 + 2t), φ2(t) = t2(3− 2t),

φ3(t) = t(1− t)2, φ4(t) = −t2(1− t),

and we have used the notations h = xi+1−xi, l = yj+1−yj , t = (x−xi)/h
and s = (y − yj)/l.

We remark that Si,j(x, y) is the so called ADINI element (see e.g. [8],
[13], [17]).

Using this formula we need only 22 multiplicative and 34 additive
operations to compute the value of Si,j(x, y) [14].

For comparison purposes, if we use the tensor-product interpolant
which not only the first order partial derivatives but also the mixed second
order partial derivatives at the knots (this is the generalization of the one
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dimensional case by direct product), then we need 34 multiplicative and
22 additive operations [22].

More generally, it is easy to see by the uniqueness part of Lemma 1,
that the n+1-dimensional function S

(n+1)
i can be expressed with the help

of the n-dimensional S
(n+1)
i as follows:

S
(n+1)
i (t1, . . . , tn, tn+1) =

= vn+1S
(n)
i+en+1

(t1, . . . , tn) + (1− vn+1)S
(n)
i (t1, . . . , tn)+

+(1− vn+1)v2
n+1

∑

0≤l≤e
ln+1=0

n∏

j=1

wj

[
ui+l+en+1 − ui+l − hn+1u

(en+1)
i+l+en+1

]
+

+(1− vn+1)(vn+1 − 1)vn+1

∑

0≤l≤e
ln+1=0

n∏

j=1

wj

[
ui+l+en+1 − ui+l − hn+1u

(en+1)
i+l

]
,

where

vj =
(t)j − (ti)j

hj
, wj =

{
vj , if lj = 1
1− vj , if lj = 0

for j = 1, 2, . . . , n, n + 1. In what follows, we shall call this formula as the
recursive formula of the n-cubic spline function.

Now we define the n-cubic spline function S (corresponding to the
knots {ti} and the systems {ui} and {u(ej)

i }) on Rn: for all t ∈ [ti, ti+e]
let

(3)n S(t) = Si(t).

Theorem 2. The n-cubic spline function S defined by (1)n-(3)n is
continuous.

Proof. The statement follows by induction from the uniqueness part
of Lemma 1.

In the theory of spline approximation it is well-known that spline
functions of different kinds minimize special functionals. For example,
the classical cubic spline has minimal curvature ([11]), it minimizes the
functional

f →
∫ b

a

|f ′′(t)|2dt

on the class of functions which are twice differentiable on [a, b], interpo-
late at the knots and satisfy some boundary conditions. There are more
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possibilities to generalize this functional in more dimensional case. Let us
consider the following functional in the two dimensional case ([22])

J(u) =
∫ b

a

∫ d

c

[D2,2u(x, y)]2dxdy+

+
N∑

i=0

1
ρi

∫ d

c

[D0,2u(xi, y)]2dy +
M∑

j=0

1
σj

∫ b

a

[D2,0u(x, yj)]2dx,

where ρi (i = 0, . . . , N), σj (j = 0, . . . ,M) are positive constants and
we divided the interval [a, b] into N , and the interval [c, d] into M equal
subintervals. Let M denote the class of all periodic functions u which have
continuous partial derivatives ∂2

1u, ∂2
2u, ∂1∂2u on all open subrectangles

and their partial derivatives up to the second order can be extended on the
closed subrectangles. For the sake of the unique definition of the partial
derivatives let ∂α

1 ∂β
2 u(x, y) be the value of the partial derivative of u at

the point (x, y) ∈ [xi, xi+1) × [yj , yj+1). Further let us assume that all
functions u ∈M satisfy the following conditions:

u(xi, yj) = ui,j ,

∂1u(xi, yj) = u
(1,0)
i,j ,

∂2u(xi, yj) = u
(0,1)
i,j

for i = 0, . . . , N , j = 0, . . . ,M , and for the periodicity

u
(α,β)
0,j = u

(α,β)
N,j , j = 0, . . . , M,

u
(α,β)
i,0 = u

(α,β)
i,M , i = 0, . . . , N.

It is obviously that the for the n-cubic spline function satisfies S ∈M.

Theorem 3. The n-cubic spline function S defined by (1)2 − (3)2
minimizes the functional

J(u) =
∫ b

a

∫ d

c

[D2,2u(x, y)]2dxdy+

+
N∑

i=0

1
ρi

∫ d

c

[D0,2u(xi, y)]2dy +
M∑

j=0

1
σj

∫ b

a

[D2,0u(x, yj)]2dx

on the class M, that is

J(u) ≥ J(S) for all u ∈M,



On reduced n-cubic spline interpolation Hermite type 249

where ρi (i = 0, . . . , N), σj (j = 0, . . . ,M) are positive constants.

Proof. Let u ∈ M be arbitrary and S be n-cubic spline function
defined by (1)2 − (3)2. Then

J(u− S) = J(u)− J(S)− 2
(
I∆ +

N∑

i=0

1
ρi

Ii +
M∑

j=0

1
σj

Ĩj

)
,

where

I∆ =
∫ b

a

∫ d

c

D2,2[u(x, y)− S(x, y)]D2,2S(x, y)dxdy,

Ii =
∫ d

c

D0,2[u(xi, y)− S(xi, y)]D0,2S(xi, y)dy,

Ĩj =
∫ b

a

D2,0[u(x, yj)− S(x, yj)]D2,0S(x, yj)dx.

Hence A
(2,2)
i,j = 0 for all i, j, so D2,2S(x, y) = 0 on all rectanglar, and it

follows I∆ = 0.
By partial integration we have:

Ii =
M−1∑

j=0

∫ yj+1

yj

D0,2[u(xi, y)− S(xi, y)]D0,2S(xi, y)dy =

=
M−1∑

j=0

{
D0,1[u(xi, yj+1)− S(xi, yj+1)]D0,2S(xi, yj+1)−

−D0,1[u(xi, yj)− S(xi, yj)]D0,2S(xi, yj)−

−
∫ yj+1

yj

D0,1[u(xi, y)− S(xi, y)]cj(xi)dy
}

=

= −
M−1∑

j=0

cj(xi)
[
u(xi, y)− S(xi, y)]

]yj+1

yj
= 0,

because the spline function S is a piecewise cubic polinomial in each vari-
able, that is, D0,3S(xi, y) = cj(xi). We get similarly, that Ĩj = 0 for all j.
Finally,

J(u− S) = J(u)− J(S),

that is
J(u) = J(S) + J(u− S),

where J(u− S) ≥ 0, so J(u) ≥ J(S), which was to be proved.
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4. Approximation properties of the spline function

Let u : Rn → R be a function having first order partial derivatives
with respect to each variable. We define for all i ∈ Zn and j = 1, 2, . . . , n

(4)n ui = u(ti)

and

(5)n u
(ej)
i = ∂ju(ti).

In the following theorems we study the approximating properties of
this n-cubic spline function (defined by the conditions (1)n − (5)n ) de-
pending on the smoothness of the function u. Although this n-cubic spline
function S is only continuous, by defining (uniquely) its first order partial
derivatives, for example

∂kS(t) = ∂kSi(t) t ∈ [ti, ti+e], (t)j 6= (ti)j + hj (j = 1, . . . , n),

respectively

∂k∂lS(t) = ∂k∂lSi(t) t ∈ [ti, ti+e], (t)j 6= (ti)j + hj (j = 1, . . . , n),

the spline function approximates not only the function u but also its partial
derivatives.

Lemma 4. Let f : R → R be differentiable function and for t ∈
[ti, ti+1] let

(6) Si(t) = φ1(v)f(ti) + φ2(v)f(ti+1) + φ3(v)hf ′(ti) + φ4(v)hf ′(ti+1),

where

φ1(v) = (1− v)2(1 + 2v), φ2(v) = v2(3− 2v),

φ3(v) = v(1− v)2, φ4(v) = −v2(1− v),

and h = ti+1 − ti, v = (t− ti)/h. If f ∈ C1(R), then

|f(t)− Si(t)| ≤ 3
8
hω(h; f ′),

|f ′(t)− S′i(t)| ≤
3
2
ω(h; f ′),

if f ∈ C2(R), then

|f(t)− Si(t)| ≤ 1
32

h2ω(h; f ′′),

|f ′(t)− S′i(t)| ≤ 0.12375hω(h; f ′′),

|f ′′(t)− S′′i (t)| ≤ 4
3
ω(h; f ′′)
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for all t ∈ [ti, ti+1].

Proof. See e.g. [22] Theorem 5 in Chapter 2.

Theorem 5. Let u : Rn → R be continuously differentiable. Then the
n-cubic spline function S defined by the conditions (1)n-(5)n satisfies

|u(t)− S(t)| ≤ 1
2

n∑

j=1

hjω(d; ∂ju),

and

|∂ku(t)− ∂kS(t)| ≤ nω(d; ∂ku) +
1

2hk

n∑

j=1

hjω(d; ∂ju)

for all t ∈ Rn and k = 1, 2, . . . , n, where d is the diameter of the subdivi-
sion.

Proof. We prove this statement by induction on the dimension, the
case of n = 1 is true by the previous lemma. Let us suppose, that the
statement is true for n and now let us see the case of Rn+1. Let t ∈
[ti, ti+e], then by induction and the Lagrange theorem we have

|u(t)− S(t)| = |u(t1, . . . , tn, tn+1)− S
(n+1)
i (t1, . . . , tn, tn+1)| ≤

≤ vn+1|u(t1, . . . , tn, (ti+e)n+1)− S
(n)
i+en+1

(t1, . . . , tn)|+
+ (1− vn+1)|u(t1, . . . , tn, (ti)n+1)− S

(n)
i (t1, . . . , tn)|+

+ |vn+1[u(t1, . . . , tn, tn+1)− u(t1, . . . , tn, (ti+e)n+1)]+

+ (1− vn+1)[u(t1, . . . , tn, tn+1)− u(t1, . . . , tn, (ti)n+1)]|+

+ hn+1(1− vn+1)vn+1

∑

0≤l≤e
ln+1=0

n∏

j=1

wj ·

· {
vn+1|∂n+1u(t1, . . . , tn, θn+1)− u

(en+1)
i+l+en+1

|+
− (1− vn+1)|∂n+1u(t1, . . . , tn, θn+1)− u

(en+1)
i+l |} ≤

≤ 1
2

n∑

j=1

hjω(d; ∂ju) + +(1− vn+1)vn+1hn+1 ·

· |∂n+1u(t1, . . . , tn, ξn+1)− ∂n+1u(t1, . . . , tn, ϑn+1)|+

+ (1− vn+1)vn+1hn+1ω(d; ∂n+1u)
∑

0≤l≤e
ln+1=0

n∏

j=1

wj ≤
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≤ 1
2

n∑

j=1

hjω(d; ∂ju) +
1
4
hn+1ω(d; ∂n+1u) +

1
4
hn+1ω(d; ∂n+1u) =

=
1
2

n+1∑

j=1

hjω(d; ∂ju),

where (ti)n+1 < ξn+1, ϑn+1, θn+1 < (ti+e)n+1, ti ≤ t̄ ≤ ti+e. Here we
used the simple identity

∑

0≤l≤e

ln+1=0

n∏

j=1

wj = 1.

The respective statement for the derivatives can be proved similarly,
and without loss of generality we prove only the case k = 1. Let t ∈
[ti, ti+e], then by induction and by the definition of the modulus of conti-
nuity we have

|∂1u(t)− ∂1S(t)| =
= |∂1u(t1, . . . , tn, tn+1)− ∂1S

(n+1)
i (t1, . . . , tn, tn+1)| ≤

≤ vn+1|∂1u(t1, . . . , tn, (ti+e)n+1)− ∂1S
(n)
i+en+1

(t1, . . . , tn)| +

+ (1− vn+1)|∂1u(t1, . . . , tn, (ti)n+1)− ∂1S
(n)
i (t1, . . . , tn)| +

+ vn+1|∂1u(t1, . . . , tn+1)− ∂1u(t1, . . . , tn, (ti+e)n+1)| +

+ (1− vn+1)|∂1u(t1, . . . , tn, tn+1)− ∂1u(t1, . . . , tn, (ti)n+1)| +

+ (1− vn+1)vn+1hn+1

∑

0≤l≤e

ln+1=0

n∏

j=1

wj
2
h1

·

· {
vn+1|∂n+1u(t1, . . . , θn+1)− u

(en+1)
i+l+en+1

| +

+ (1− vn+1)|∂n+1u(t1, . . . , θn+1)− u
(en+1)
i+l |} ≤

≤ nω(d; ∂1u) +
1

2h1

n∑

j=1

hjω(d; ∂ju) + ω(d; ∂1u) +

+ (1− vn+1)vn+1hn+1

∑

0≤l≤e

ln+1=0

l1=0

n∏

j=2

wj
2
h1

ω(d; ∂n+1u) ≤
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≤ nω(d; ∂1u) +
1

2h1

n∑

j=1

hjω(d; ∂ju) + ω(d; ∂1u) +
hn+1

2h1
ω(d; ∂n+1u) =

= (n + 1)ω(d; ∂1u) +
1

2h1

n+1∑

j=1

hjω(d; ∂ju),

which is our statement.
Theorem 6. Let u : Rn → R be twice continuously differentiable.

Then the n-cubic spline function S defined by the conditions (1)n-(5)n
satisties

|u(t)− S(t)| ≤ 1
4

n∑

j=1

h2
jω(d; ∂2

j u),

|∂ku(t)− ∂kS(t)| ≤ 1
4

n∑

j=1

hjω(d; ∂k∂ju) +
1
8

n∑

j=1

h2
j

hk
ω(d; ∂2

j u),

|∂2
ku(t)− ∂2

kS(t)| ≤ (n + 1)ω(d; ∂2
ku),

and

|∂k∂lu(t)− ∂k∂lS(t)| ≤ (n +
5
2
)ω(d; ∂k∂lu) +

1
2

n∑

j=1

j 6=k

hj

hl
ω(d; ∂k∂ju)

for all t ∈ Rn and k, l = 1, 2, . . . , n, where d is the diameter corresponding
to the subdivision.

Proof. Now we apply induction again with respect to the dimension.
The case n = 1 follows from the Lemma 4. In the n + 1 dimensional case
let t ∈ [ti, ti+e], then by induction and by the second order Taylor-formula
we have

|u(t)− S(t)| = |u(t1, . . . , tn, tn+1)− S
(n+1)
i (t1, . . . , tn, tn+1)| ≤

≤ vn+1|u(t1, . . . , tn, (ti+e)n+1)− S
(n)
i+en+1

(t1, . . . , tn)| +

+ (1− vn+1)|u(t1, . . . , tn, (ti)n+1)− S
(n)
i (t1, . . . , tn)|+

+
∣∣∣∣vn+1[u(t1, . . . , tn, tn+1)− u(t1, . . . , tn, (ti+e)n+1)] +

+ (1− vn+1)[u(t1, . . . , tn, tn+1)− u(t1, . . . , tn, (ti)n+1)] +

+ (1− vn+1)vn+1

∑

0≤l≤e

ln+1=0

n∏

j=1

wj ·
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·
{

vn+1

[
ui+l+en+1 − ui+l − hn+1u

(en+1)
i+l+en+1

]

+ (vn+1 − 1)
[
ui+l+en+1 − ui+l − hn+1u

(en+1)
i+l

]}∣∣∣∣ ≤

≤ 1
4

n∑

j=1

h2
jω(d; ∂2

j u) +

+ (1− vn+1)vn+1hn+1

∣∣∣∣∂n+1u(t1, . . . , tn, (ti)n+1) +

+
1
2
hn+1vn+1∂

2
n+1u(t1, . . . , tn, ξn+1)− ∂n+1u(t1, . . . , tn, (ti+e)n+1) +

+
1
2
hn+1(1− vn+1)∂2

n+1u(t1, . . . , tn, ϑn+1) +

+
∑

0≤l≤e

ln+1=0

n∏

j=1

wj
1
2
hn+1

{
vn+1∂

2
n+1u(t̄l) + (1− vn+1)∂2

n+1u(¯̄tl)
}∣∣∣∣ ≤

≤ 1
4

n∑

j=1

h2
jω(d; ∂2

j u) + (1− vn+1)vn+1h
2
n+1·

·
∣∣∣∣
1
2
∂2

n+1u(t1, . . . , tn, θn+1)− ∂2
n+1u(t1, . . . , tn, θ̄n+1)+

+
∑

0≤l≤e

ln+1=0

n∏

j=1

wj
1
2
∂2

n+1u(t̃l)
∣∣∣∣ ≤

≤ 1
4

n∑

j=1

h2
jω(d; ∂2

j u) +

+ (1− vn+1)vn+1h
2
n+1|∂2

n+1u(t̄)− ∂2
n+1u(t1, . . . , tn, θ̄n+1)| ≤

≤ 1
4

n+1∑

j=1

h2
jω(d; ∂2

j u),

where ξn+1, ϑn+1, θn+1, θ̄n+1 ∈ (tn+1, tn+1 + hn+1), t̄l, ¯̄tl, t̄, t̃l ∈ [ti, ti+e],
and so we’ve proved the first statement. For the partial derivatives (with-
out loss of generality we prove in order to the first variable) we get the
following estimates:

|∂1u(t)− ∂1S(t)| = |∂1u(t1, . . . , tn, tn+1)− ∂1S
(n+1)
i (t1, . . . , tn, tn+1)| ≤
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≤vn+1|∂1u(t1, . . . , tn, (ti+e)n+1)− ∂1S
(n)
i+en+1

(t1, . . . , tn)| +

+ (1− vn+1)|∂1u(t1, . . . , tn, (ti)n+1)− ∂1S
(n)
i (t1, . . . , tn)| +

+ vn+1(1− vn+1) ·
· hn+1|∂1∂n+1u(t1, . . . , tn, ξn+1)− ∂1∂n+1u(t1, . . . , tn, θn+1)| +

+ (1− vn+1)vn+1

∑

0≤l≤e

ln+1=0

l1=0

n∏

j=2

wj
h2

n+1

2h1
·

· {vn+1|∂2
n+1u(t̄l)− ∂2

n+1u(¯̄tl)|+ (1− vn+1)|∂2
n+1u(t̃l)− ∂2

n+1u(˜̃tl)|
}≤

≤1
4

n∑

j=1

hjω(d; ∂k∂ju) +
1
8

n∑

j=1

h2
j

h1
ω(d; ∂2

j u) +

+
1
4
hn+1ω(d; ∂1∂n+1u) +

h2
n+1

8h1
ω(d; ∂2

n+1u),

for some ξn+1, θn+1, t̄l, ¯̄tl, t̃l, ˜̃tl. For the second order partial derivatives
we have the following estimates:

|∂2
1u(t)− ∂2

1S(t)| = |∂2
1u(t1, . . . , tn, tn+1)− ∂2

1S
(n+1)
i (t1, . . . , tn, tn+1)| ≤

≤ vn+1|∂2
1u(t1, . . . , tn, (ti+e)n+1)− ∂2

1S
(n)
i+en+1

(t1, . . . , tn)| +

+ (1− vn+1)|∂2
1u(t1, ṡ, tn, (ti)n+1)− ∂2

1S
(n)
i (t1, . . . , tn)| +

+ vn+1|∂2
1u(t1, . . . , tn, tn+1)− ∂2

1u(t1, . . . , tn, (ti+e)n+1)| +

+ (1− vn+1)|∂2
1u(t1, . . . , tn, tn+1)− ∂2

1u(t1, . . . , tn, (ti)n+1)| ≤
≤ (n + 1)ω(d; ∂2

1u) + ω(d; ∂2
1u) = (n + 2)ω(d; ∂2

1u).

Finally, for the second order mixed partial derivatives we prove the state-
ment first in the case n = 2. Substituting the following derivatives

φ′1(t) = −6t(1− t), φ′2(t) = 6t(1− t),

φ′3(t) = 3t2 − 4t + 1, φ′4(t) = 3t2 − 2t,

we have
|∂1∂2u(x, y)− ∂1∂2Si,j(x, y)| =
=

∣∣∂1∂2u(x, y) + (6t2−6t)
1
hl

∆1,1ui,j + (−1+4t−3t2)
1
l

(
u

(1,0)
i,j+1 − u

(1,0)
i,j

)
+

+ (2t− 3t2)
1
l

(
u

(1,0)
i+1,j+1 − u

(1,0)
i+1,j

)
+
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+ (2s− 3s2)
[ 1
hl

∆1,1ui,j − 1
h

(
u

(0,1)
i+1,j+1 − u

(0,1)
i,j+1

)]
+

+ (−1 + 4s− 3s2)
[ 1
hl

∆1,1ui,j − 1
hl

(
u

(0,1)
i+1,j − u

(0,1)
i,j

)]∣∣ ≤

≤ |∂1∂2u(x, y)− 1
hl

∆1,1ui,j |+

+ |3t2 − 4t + 1|| 1
hl

∆1,1ui,j − 1
l
(u(1,0)

i,j+1 − u
(1,0)
i,j )|+

+ |3t2 − 2t|| 1
hl

∆1,1ui,j − 1
l
(u(1,0)

i+1,j+1 − u
(1,0)
i+1,j)|+

+ |2s− 3s2|
∣∣ 1
hl

∆1,1ui,j − 1
h

(
u

(0,1)
i+1,j+1 − u

(0,1)
i,j+1

)∣∣ +

+ | − 1 + 4s− 3s2|
∣∣ 1
hl

∆1,1ui,j − 1
hl

(
u

(0,1)
i+1,j − u

(0,1)
i,j

)∣∣ ≤
≤ (1 + 1 + 1 + 1 + 1)ω(d; ∂1∂2u) = 5ω(d; ∂1∂2u).

Now we suppose that the statement is true f or n and by induction and
by the recursive formula (without loss of generality) we prove the case
k = 1, l = 2:
|∂1∂2u(t)− ∂1∂2S(t)| =
= |∂1∂2u(t1, . . . , tn, tn+1)− ∂1∂2S

(n+1)
i (t1, . . . , tn, tn+1)| ≤

≤ vn+1|∂1∂2u(t1, . . . , tn, (ti+e)n+1)− ∂1∂2S
(n)
i+en+1

(t1, . . . , tn)|+
+ (1− vn+1)|∂1∂2u(t1, . . . , tn, (ti)n+1)− ∂1∂2S

(n)
i (t1, . . . , tn)|+

+ vn+1|∂1∂2u(t1, . . . , tn, tn+1)− ∂1∂2u(t1, . . . , tn, (ti+e)n+1)|+
+ (1− vn+1)|∂1∂2u(t1, . . . , tn, tn+1)− ∂1∂2u(t1, . . . , tn, (ti)n+1)|+

+ (1− vn+1)vn+1
hn+1

h2

∑

0≤l≤e

l1=0,l2=0

n∏

j=3

wj2ω(d; ∂1∂n+1u) ≤

≤ (n +
5
2
)ω(d; ∂1∂2u) +

1
2

n∑

j=2

hj

h2
ω(d; ∂1∂ju)+

+ ω(d; ∂1∂2u) +
1
2

hn+1

h2
ω(d; ∂1∂n+1u),

and this proves our last statement.
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INSTITUTE OF MATHEMATICS
LAJOS KOSSUTH UNIVERSITY DEBRECEN
H–4010 DEBRECEN PF.12. HUNGARY


