Publ. Math. Debrecen 55 / 1-2 (1999), 199–210

Finsler spaces with the h-curvature tensor dependent on position alone

By S. BÁCSÓ (Debrecen) and M. MATSUMOTO (Kyoto)

Abstract. In a Finsler space the components of a tensor field are usually functions of position (x^i) and direction (y^i) . The main purpose of the present paper is to consider Finsler spaces having *h*-curvature tensor whose components are functions of position alone.

1. Introduction

When we have devoted ourselves to the theory of Douglas spaces [3], we were greatly surprised and delighted at the discovery of the following remarkable fact: For a Douglas space the components $W_i^{h}{}_{jk}$ of the projective Weyl tensor are functions of position (x^i) alone.

In a Finsler space almost all tensor fields depend on E. Cartan's supporting element (x^i, y^i) , that is, they are functions not on the underlying manifold but on the tangent bundle. We have obtained the rigorous definition of such a Finslerian tensor field ([1, 2.2.3]; [4, Definition 6.2]), and it is well-known that it is a singular case for a Finsler space to have some tensor fields dependent on position alone.

The main purpose of the present paper is to consider Finsler spaces whose h-curvature tensor depends on position alone.

Let $F^n = \{M^n, L(x, y)\}$ be an *n*-dimensional Finsler space on a smooth *n*-manifold M^n , equipped with the fundamental metric func-

Mathematics Subject Classification: 53B40.

Key words and phrases: Finsler space, h-curvature tensor, stretch curvature, Douglas space.

tion L(x, y). When considering the extremals of the length integral $\int L(x, dx/dt)dt$, we obtain the functions

$$G^{i}(x,y) = g^{ij}\{(\dot{\partial}_{j}\partial_{r}F)y^{r} - \partial_{j}F\}, \qquad F = L^{2}/2$$

and $G^{i}{}_{j}(x,y) = \dot{\partial}_{j}G^{i}$ constitute a nonlinear connection (or spray connection, [1, p. 72]). Then we get the Berwald connection $B\Gamma = \{G^{i}{}_{j}, G^{i}{}_{j}{}^{k}, 0\}$, where $G_{j}{}^{i}{}_{k} = \dot{\partial}_{k}G^{i}{}_{j}$ and the last term $\dot{\partial}$ means that the *v*-covariant differentiation ∇^{v} in $B\Gamma$ is nothing but $\partial/\partial y$.

 F^n is called a Berwald space if the *h*-connection coefficients $G_j{}^i{}_k$ of $B\Gamma$ are functions of position (x^i) alone, that is, $G^i(x, y)$ are homogeneous polynomials in (y^i) of degree two. A Berwald space is similar to a Riemannian space and has certain characteristics as follows:

(1) The *hv*-curvature tensor $G_i{}^h{}_{jk} = \dot{\partial} G_i{}^h{}_j$ of $B\Gamma$ vanishes identically.

- (2) The *h*-connection coefficients F_{jk}^{i} of the Cartan connection $C\Gamma = \{G_{j}^{i}, F_{jk}^{i}, C_{jk}^{i}\}$ are functions of position alone [4, Proposition 25.1].
- (3) The C-tensor $(C_j{}^i{}_k)$ is h-covariant constant $(C_j{}^i{}_{k|h} = 0)$ in $C\Gamma$.
- (4) The *hv*-curvature tensor $F_i{}^{h}{}_{jk} = \dot{\partial}_k F_i{}^{h}{}_{j}$ of the Rund connection $R\Gamma = \{G^i{}_j, F_j{}^i{}_k, 0\}$ vanishes identically.

Thus the *hv*-curvature tensors of a Berwald space vanish in $B\Gamma$ and $R\Gamma$. On the other hand, a Landsberg space is characterized by the vanishing of the *hv*-curvature tensor $P_i^{h}{}_{jk}$ of $C\Gamma$.

Let us consider the *h*-curvature tensors in these Finsler connections. The *h*-curvature tensor $H = (H_i{}^h{}_{jk})$ in $B\Gamma$ is given by

$$H: H_i{}^{h}{}_{jk} = \delta_k G_i{}^{h}{}_{j} + G_i{}^{r}{}_{j} G_r{}^{h}{}_{k} - (j/k),$$

where $\delta_k = \partial_k - G^r{}_k \dot{\partial}_r$ and the symbol (j/k) denotes the interchange of the indices j, k. The *h*-curvature tensor $K = (K_i{}^h{}_{jk})$ in $R\Gamma$ is given by

$$K: \qquad K_{i}{}^{h}{}_{jk} = \delta_k F_{i}{}^{h}{}_{j} + F_{i}{}^{r}{}_{j} F_{r}{}^{h}{}_{k} - (j/k).$$

Hence (1) and (2) as above show that both H and K are functions of position alone for a Berwald space.

Consequenly, if we introduce three sets of a special kind of n-dimensional Finsler spaces as follows:

B(n) ... Berwald spaces,

Hx(n) ... spaces with the H dependent on position alone,

Kx(n) ... spaces with the K dependent on position alone,

then we obtain the inclusion relations

(1.1) (1)
$$B(n) \subset Hx(n),$$
 (2) $B(n) \subset Kx(n).$

2. Hx(n) and Kx(n)

The three connections, the Berwald connection $B\Gamma = \{G^{i}_{j}, G_{j}^{i}_{k}, 0\}$, the Cartan connection $C\Gamma = \{G^{i}_{j}, F_{j}^{i}_{k}, C_{j}^{i}_{k}\}$, and the Rund connection $R\Gamma = \{G^{i}_{j}, F_{j}^{i}_{k}, 0\}$, have the same nonlinear connection (G^{i}_{j}) , and hence their (v)h-torsion tensors

$$R^1: \qquad R^h{}_{jk} = \delta_k G^i{}_j - (j/k)$$

coincide. The *h*-curvature tensor $R = (R_i {}^{h}_{jk})$ in $C\Gamma$ is written as [4, (18.2)]

(2.1)
$$R: \qquad R_{i\ jk}^{\ h} = K_{i\ jk}^{\ h} + C_{i\ r}^{\ h} R^{r}_{\ jk}.$$

On the other hand, the *h*-curvature tensor H in $B\Gamma$ is given by [1, (18.16)]

(2.2)
$$H_{i\,jk}^{\ h} = K_{i\,jk}^{\ h} + \{P^{h}_{\ ij|k} + P^{r}_{\ ij}P^{r}_{\ rk} - (j/k)\},$$

where $P^{h}_{ij} = C_i{}^{h}_{j|0}$ are components of the (v)hv-torsion tensor of $C\Gamma$. We have the well-known relations:

(2.3)
$$y^{i}H_{i\ jk}^{\ h} = y^{i}K_{i\ jk}^{\ h} = y^{i}R_{i\ jk}^{\ h} = R^{h}_{\ jk},$$

and the H is simply constructed by [4, (18.22)]

(2.4)
$$H_i{}^h{}_{jk} = \dot{\partial}_i R^h{}_{jk}.$$

Now we consider an $F^n \in Kx(n)$. Then we have from (2.3) and (2.4)

$$R^{h}{}_{jk} = y^{r} K_{r}{}^{h}{}_{jk}(x), \qquad H_{i}{}^{h}{}_{jk} = \dot{\partial}_{i}(y^{r} K_{r}{}^{h}{}_{jk}(x)) = K_{i}{}^{h}{}_{jk}(x),$$

which implies that H of F^n depends on position alone. Therefore

Theorem 1. We have the inclusion relation $Kx(n) \subset Hx(n)$. For $F^n \in Kx(n), H = K$ holds.

Let us define further two sets:

L(n) ... Landsberg spaces,

S(n) ... spaces with vanishing stretch curvature.

The inclusion relations

$$(2.5) B(n) \subset L(n) \subset S(n)$$

have already been given by L. BERWALD in 1926 [4], [5], but the notion of stretch curvature has faded out of memory, except for C. SHIBATA's work in 1978 [6].

The stretch curvature tensor $\Sigma = (\Sigma_{hijk})$, reflecting the non-metrical property of $B\Gamma$, is written in the form [5]:

(2.6)
$$\Sigma_{hijk} = -y_r H_h^r{}_{jk.i} = 2(P_{hij|k} - P_{hik|j}),$$

where $i = \dot{\partial}/\partial y^i$ and $P_{hij} = g_{hr}P^r{}_{ij}$. The latter gives $L(n) \subset S(n)$, because $F^n \in L(n)$ has $P^h{}_{ij} = 0$ and the former gives $Hx(n) \subset S(n)$, because $F^n \in Hx(n)$ has $H_h^r{}_{jk,i} = 0$. Therefore

Theorem 2. We have the inclusion relations

$$B(n) \subset Kx(n) \subset Hx(n) \subset S(n).$$

Next we deal with the intersections $L(n) \cap Hx(n)$ and $L(n) \cap Kx(n)$. We have the well-known relation [4, (18.14)]

$$G_j{}^i_k - F_j{}^i_k = P^i{}_{jk}.$$

From the characteristic $P^i{}_{jk} = 0$ of $F^n \in L(n)$ it follows that $B\Gamma = \{G^i{}_j, G^i{}_j{}^k, 0\} = \{G^i{}_j, F^i{}_j{}^k, 0\} = R\Gamma$, and hence

Theorem 3. $L(n) \cap Hx(n) = L(n) \cap Kx(n)$.

3.
$$Hx(2)$$
 and $Kx(2)$

The theory of two-dimensional Finsler spaces can be treated in terms of Berwald's orthonormal frame field (l, m) ([1, 3.5]; [4, §28]; [2]). The main scalar I and the *h*-scalar curvature R of a space F^2 are defined as

(3.1)
$$LC_{hij} = Im_h m_i m_j, \qquad R_{ihjk} = \varepsilon RG_{ih}G_{jk},$$

where ε is the signature, the angular metric tensor $h_{ij} = \varepsilon m_i m_j$, and $G_{ij} = l_i m_j - l_j m_i$. Then we have the following expressions of the *H*- and of the *K*-tensor:

(3.2)
$$H_{ihjk} = \varepsilon (RG_{ih} + R_{;2}m_im_h)G_{jk},$$
$$K_{ihjk} = (\varepsilon RG_{ih} - RIm_im_h)G_{jk}.$$

In the two-dimensional case all the Bianchi identities in $C\Gamma$ are reduced to the trivial one, except (17.15) of [4] ([1, (3.5.2.4)]):

(3.3)
$$\varepsilon R_{;2} + RI + I_{,1,1} = 0.$$

Now the stretch curvature tensor Σ is written as $\Sigma_{hijk} = -2I_{,1,1}m_im_jG_{jk}$. Therefore

Proposition 1. A Finsler space F^2 belongs to S(n), if and only if the main scalar I satisfies $I_{1,1} = 0$.

Thus (3.3) is reduced to $\varepsilon R_{;2} + RI = 0$ for an $F^2 \in S(2)$, and hence (3.2) shows

Theorem 4. Kx(2) = Hx(2).

Now we deal with Hx(2) only. First we recall two-dimensional Berwald spaces. $F^2 \in B(2)$ is characterized by $C_{hij|k} = 0$, that is, $I_{,1} = I_{,2} = 0$. Then one of the Ricci identities shows $I_{,1,2} - I_{,2,1} = -RI_{,2} = 0$. Consequently $F^2 \in B(2)$ is characterized by $I_{,1} = I_{,2} = 0$ and B(2) is the disjoint union

(3.4)
$$B(2) = B_1(2) + B_2(2) + B_3(2),$$

(3.4a)
$$\begin{cases} B_1(2)\dots R = 0, & I_{;2} \neq 0, \\ B_2(2)\dots R = 0, & I_{;2} = 0, \\ B_3(2)\dots R \neq 0, & I_{;2} = 0. \end{cases}$$

Thus we have

(3.4b)
$$B_1(2) + B_2(2) \dots$$
 locally Minkowski spaces,
 $B_2(2) + B_3(2) \dots$ spaces with constant *I*.

Now we deal with Hx(2). Applying the formulae

$$\begin{split} Ll_{i,j} &= \varepsilon m_i m_j, \qquad Ll^i{}_{.j} &= \varepsilon m^i m_j, \qquad LG_{hk,j} &= \varepsilon G_{hk} m_j, \\ Lm_{i,j} &= -(l_i - \varepsilon I m_i) m_j, \qquad Lm^i{}_{.j} &= -(l^i + \varepsilon I m^i) m_j, \end{split}$$

to $H_i{}^h{}_{jk} = \varepsilon \{ R(l_i m^h - l^h m_i) + R_{;2} m_i m^h \} G_{jk}$, we obtain

$$LH_{i}{}^{h}{}_{jk,l} = \varepsilon \{ (R_{;2;2} + \varepsilon IR_{;2})m^{h} - 2(R_{;2} + \varepsilon IR)l^{h} \} m_{i}m_{j}G_{jk}.$$

S. Bácsó and M. Matsumoto

Consequently it is necessary and sufficient for an $F^2 \in Hx(2)$ that

(1)
$$R_{;2;2} + \varepsilon I R_{;2} = 0,$$
 (2) $R_{;2} + \varepsilon I R = 0.$

The latter holds, as mentioned above, and the former reduces to $I_{;2}R = 0$ by (2). Thus, similarly to the case of B(2), we have

Theorem 5. $F^2 \in Hx(2)$ satisfies $I_{,1,1} = 0$ and $I_{;2}R = 0$. Hx(2) is the disjoint union

$$Hx(2) = H_1(2) + H_2(2) + H_3(2),$$

$$\begin{cases}
H_1(2) \dots R = 0, & I_{;2} \neq 0, \\
H_2(2) \dots R = 0, & I_{;2} = 0, \\
H_3(2) \dots R \neq 0, & I_{;2} = 0.
\end{cases}$$

Corollary 1. The sets $B_i(2)$, i = 1, 2, 3, coincide with the intersections $H_i(2) \cap B(2)$, respectively.

The *T*-tensor (T_{hijk}) ([1, (3.5.3.1)]; [4, (28.20)]) of F^2 is written as $LT_{hijk} = I_{;2}m_hm_im_jm_k$. Then we have

Corollary 2. An $F^2 \in H_i(2)$, i = 2, 3, has vanishing T-tensor.

Remark. Since $L\dot{\partial}_i I = I_{;2}m_i, T = 0$ means that I depends on position alone.

We consider an $F^2 \in L(2) \cap Hx(2)$. F^2 is a Landsberg space if and only if $LC_{hij|0} = I_{,1}m_hm_im_j = 0$, that is, $I_{,1} = 0$. Theorem 5 shows that

$$\begin{cases} L(2) \cap H_1(2) \dots R = 0, & I_{,1} = 0, \ I_{;2} \neq 0, \\ L(2) \cap H_2(2) \dots R = 0, & I_{,1} = 0, \ I_{;2} = 0, \\ L(2) \cap H_3(2) \dots R \neq 0, & I_{,1} = 0, \ I_{;2} = 0. \end{cases}$$

On the other hand, one of the Ricci formulae gives $I_{,1;2} - I_{;2,1} = I_{,2}$. Hence $I_{,1} = I_{;2} = 0$ implies I = constant, and hence (3.4) shows that $L(2) \cap H_i(2)$ is equal to $B_i(2)$ for i = 2, 3. Therefore

Theorem 6. (1) $L(2) \cap H_1(2) = B_i(2), i = 2, 3.$ (2) $L(2) \cap H_1(2) \supset B_1(2)$, and $F^2 \in L(2) \cap H_1(2)$ belongs to $B_1(2)$, if and only if $I_{,2} = 0$.

4.
$$Rx(n)$$

We consider the *h*-curvature tensor $R = (R_i{}^h{}_{jk})$ of the Cartan connection $C\Gamma = \{G^i{}_j, F_j{}^i{}_k, C_j{}^i{}_k\}$ and define the set

Rx(n)... spaces with the R dependent on position alone.

First let us define the Q-tensor as

$$Q_m{}^h{}_{kij} = P_m{}^h{}_{jk|i} + P_m{}^h{}_{ir}P^r{}_{jk} - (i/j).$$

Then, rewriting $|(=\nabla^v)$ by $(=\partial/\partial y)$, one of the Bianchi identities (17.15) of [1] is written in the form

(4.1)
$$R_m{}^h{}_{ij.k} + S_m{}^h{}_{kr}R^r{}_{ij} + R_m{}^r{}_{ij}C_r{}^h{}_k - R_r{}^h{}_{ij}C_m{}^r{}_k + Q_m{}^h{}_{kij} = 0.$$

Consequently we have directly

Proposition 2. A Finsler space F^n belongs to Rx(n), if and only if

$$S_m{}^h{}_{kr}R^r{}_{ij} + R_m{}^r{}_{ij}C_r{}^h{}_k - R_r{}^h{}_{ij}C_m{}^r{}_k + Q_m{}^h{}_{kij} = 0.$$

For an $F^n \in Rx(n)$ we have from (2.3) and (2.4)

$$H_i{}^{h}{}_{jk} = R^{h}{}_{jk,i} = (y^r R_r{}^{h}{}_{jk}(x))_{.i} = R_i{}^{h}{}_{jk}(x).$$

Thus we have

Theorem 7.
$$Rx(n) \subset Hx(n)$$
, and $F^n \in Rx(n)$ has $H_i^{\ h}{}_{jk} = R_i^{\ h}{}_{jk}(x)$.

We consider an F^n with vanishing Q-tensor. Then Proposition 2 gives

(4.2)
$$S_m{}^h{}_{kr}R^r{}_{ij} + R_m{}^r{}_{ij}C_r{}^h{}_k - R_r{}^h{}_{ij}C_m{}^r{}_k = 0.$$

Transvection by y^m yields $R^r{}_{ij}C_r{}^h{}_k = 0$, and consequently $S_m{}^h{}_{kr}R^r{}_{ij} = (C_m{}^s{}_rC_s{}^h{}_k - C_m{}^s{}_kC_s{}^h{}_r)R^r{}_{ij} = 0$. Thus (4.2) is reduced to

(4.3)
$$R_m{}^r{}_{ij}C_r{}^h{}_k - R_r{}^h{}_{ij}C_m{}^r{}_k = 0.$$

Conversely, if F^n with Q = 0 satisfies (4.3), then we have (4.2). Therefore

Theorem 8. Let a Finsler space F^n satisfy $Q_m{}^h{}_{kij} = 0$. Then F^n belongs to Rx(n), if and only if (4.3) holds identically.

A Landsberg space is characterized by $P_i^{\ h}{}_{jk} = 0$ or $P^i{}_{jk} = 0$, and hence Q = 0. Therefore

Corollary 3. The intersection $L(n) \cap Rx(n)$ is characterized by (4.3).

We are specially interested in the two-dimensional case. We have in general

$$P^{h}{}_{ij} = I_{,1}m^{h}m_{i}m_{j}, \qquad LP^{h}{}_{ijk} = I_{,1}(l_{i}m^{h} - l^{h}m_{i})m_{j}m_{k},$$

which gives $LQ_m{}^h_{kij} = I_{,1,1}(l_m m^h - l^h m_m)G_{ij}m_k$. Thus

Lemma. The Q-tensor of the two-dimensional case vanishes, if and only if $F^2 \in S(2)$.

The condition (4.3) of the two-dimensional case is written as $\varepsilon RIG_{ij}m_k(l_mm_h+l_hm_m)=0$, that is, RI=0. Therefore

Theorem 9. $F^2 \in Rx(2)$ is a Riemannian space, provided that the *h*-scalar curvature *R* does not vanish.

5.
$$D(n), W(n)$$
 and $Wx(n)$

We have two projectively invariant tensors which play a leading role in the projective theory of paths and Finsler spaces [1, Chapter 0]. One is the *Douglas tensor* $D = (D_i{}^h{}_{jk})$:

(5.1)
$$D_i{}^h{}_{jk} = G_i{}^h{}_{jk} - [G_{ijk}y^h + \{G_{ij}\delta^h{}_k + (i,j,k)\}]/(n+1),$$

where $G = (G_i{}^{h}{}_{jk})$ is the *hv*-curvature tensor in $B\Gamma$, $G_{ij} = G_i{}^{r}{}_{jr}$ the *hv*-Ricci tensor, $G_{ijk} = G_{ij,k}$, and the symbol (i, j, k) denotes the cyclic permutation of the indices i, j and k.

The other is the Weyl tensor $W = (W_i{}^h{}_{ik})$:

(5.2)
$$W_i^{\ h}{}_{jk} = H_i^{\ h}{}_{jk} + \{\delta^h{}_iH_{jk} + y^hH_{jki} + \delta^h{}_jH_{k.i} - (j/k)\}/(n+1),$$

where $H_{jk} = H_j^r{}_{kr}$ is the *h*-Ricci tensor in $B\Gamma$, $H_{jki} = H_{jk.i}$ and $H_k = (nH_{rk} + H_{kr})y^r/(n-1)$.

The notion of Douglas space, arising from the problem of the equations of the geodesics, has been proposed by the present authors [3] and yields interesting topics in Finsler geometry. A Finsler space is a Douglas space, if and only if the Douglas tensor D vanishes identically. Let us define the set

$$D(n)\ldots$$
 Douglas spaces.

It has been proved that $L(n) \cap D(n) = B(n)$ [3, I]. As a consequence, from (2.5) we may say that D(n) is a generalization of B(n) in a completely different direction from L(n).

On the other hand, according to Z. SZABÓ's theorem [7], a Finsler space F^n , n > 2, is of scalar curvature if and only if the Weyl tensor Wvanishes identically. Thus, if we define the sets

$$W(n), n > 2, \dots$$
 spaces of scalar curvature,
 $W_0(n), n > 2, \dots$ spaces of non-zero scalar curvature,

then we may state one of the fundamental theorems of the projective theory [3, II] as follows: F^n , n > 2, is with rectilinear extremals or projectively flat, if and only if $F^n \in D(n) \cap W(n)$.

It is well-known from S. NUMATA's theorem [4, Theorem 30.6] that $L(n) \cap W_0(n) \ni F^n$ is nothing but a Riemannian space of non-zero constant curvature. This theorem has been generalized by C. SHIBATA [6], to whom we referred in §2: $S(n) \cap W_0(n)$ is still the set of Riemannian spaces of non-zero constant curvature.

Therefore we already know the following inclusion relations:

Proposition 3.

- (1) $D(n) \cap L(n) = B(n),$
- (2) $n > 2, D(n) \cap W(n) =$ (spaces with rectilinear extremals),
- (3) $n > 2, S(n) \cap W_0(n) = L(n) \cap W_0(n) =$ (Riemannian spaces of non-zero constant curvature).

Now we observe (5.2) for an $F^n \in Hx(n)$.

$$H_{jk} = H_i^r{}_{kr}(x), \qquad H_{jki} = 0, \qquad H_{k.i} = \{nH_{ik}(x) + H_{ki}(x)\}/(n-1).$$

Hence the tensor W depends on position alone. Thus we define

 $Wx(n)\dots$ spaces with the W dependent on position alone, and we have $Hx(n) \subset Wx(n)$.

S. Bácsó and M. Matsumoto

Next we have proved $D(n) \subset Wx(n)$ [3, II] making use of the characteristics $Q_i^{j_k}(x)$ of $F^n \in D(n)$. Consequently we have

Proposition 4. $Hx(n) \subset Wx(n)$ and $D(n) \subset Wx(n)$.

Now we have an interesting problem, namely to consider the intersection $Hx(n) \cap D(n)$.

To deal with this problem, we first consider a Douglas space $F^n \in D(n)$. It follows from (5.1) that D = 0 gives

$$(n+1)G_i{}^{h}{}_{jk} = G_{ijk}y^h + \{G_{ij}\delta^h{}_k + (i,j,k)\}.$$

Transvection by the angular metric tensor $h^l{}_h = \delta^l{}_h - y^l y_h / L^2$ leads to

$$G_{i\,jk}^{\ l} = G_{i\,jk}^{\ 0} y^l / L^2 + \{G_{ij}h^l_{\ k} + (i,j,k)\} / (n+1).$$

Consequently we obtain

(5.3)
$$G_{i}{}^{l}{}_{jk;h} - G_{i}{}^{l}{}_{jh;k} = \{G_{i}{}^{0}{}_{jk;h} - (k/h)\}y^{l}/L^{2} + [\{G_{ij;h}h^{l}{}_{k} - (k/h)\} + \{G_{jk;h}h^{l}{}_{i} + G_{ik;h}h^{l}{}_{j} - (k/h)\}]/(n+1),$$

where $:= \nabla^h$ in $B\Gamma$.

Secondly we shall recall one of the Bianchi identities in $B\Gamma$ ([1, (2.5.2.12]; [4, (18.21)]), corresponding to (4.1) in $C\Gamma$:

(5.4)
$$H_{i\ hk.j}^{\ l} + G_{i\ jk;h}^{\ l} - G_{i\ jh;k}^{\ l} = 0.$$

This yields directly

Proposition 5. A Finsler space F^n belongs to Hx(n), if and only if in $B\Gamma$

$$G_{i\,jk;h}^{\ l} - G_{i\,jh;k}^{\ l} = 0.$$

Now we consider an $F^n \in D(n) \cap Hx(n)$. Then the above gives

$$G_{jk;h} - G_{jh;k} = 0, \quad G_i^{\ 0}{}_{jk;h} - G_i^{\ 0}{}_{jh;k} = 0.$$

Hence (5.3) reduces to $G_{ij;h}h^l_k - G_{ij;k}h^l_h = 0$, which implies $(n-2)G_{ij;h} + G_{ij;0}y_h/L^2 = 0$ and $G_{ij;0} = 0$. Thus we get $G_{ij;h} = 0$, provided n > 2.

Conversely, if $F^n \in D(n)$, n > 2, satisfies $G_{ij;k} = 0$ and

(5.5)
$$G_i^{\ 0}{}_{jk;h} - G_i^{\ 0}{}_{jh;k} = 0,$$

then (5.3) leads to $G_i^{\ l}{}_{jk;h} - G_i^{\ l}{}_{jh;k} = 0$, hence (5.4) shows that $F^n \in Hx(n)$. The condition (5.5) is nothing but $F^n \in S(n)$ because of (5.4) and (2.6) (1). Therefore

Theorem 10. A Douglas space F^n , n > 2, belongs to Hx(n), if and only if the hv-Ricci tensor G_{ij} is h-covariant constant in $B\Gamma$ and $F^n \in S(n)$, that is, (5.5) holds.

We are concerned with the exceptional case n = 2 of Theorem 10. According to Theorem 5, $D(2) \cap Hx(2)$ is the direct sum

$$D(2) \cap Hx(2) = D(2) \cap H_1(2) + D(2) \cap H_2(2) + D(2) \cap H_3(2).$$

We have proved in our paper [3, I]: If a Douglas space F^2 has vanishing *T*tensor, it is a Berwald space with constant main scalar *I*. Then Corollary 2 together with (3.4b) shows that $D(2) \cap H_i(2)$ coincides with $B_i(2)$ for i = 2, 3. On the other hand, (1) of Proposition 3 shows $B_1(2) \subset D(2)$ and (1.1) gives $B_1(2) \subset Hx(2)$. Therefore

Theorem 11.

- (1) $D(2) \cap H_i(2) = B_i(2), i = 2, 3.$
- (2) $D(2) \cap H_1(2) \supset B_1(2)$ and $F^2 \in D(2) \cap H_1(2)$ belongs to $B_1(2)$, if and only if $I_{,1} = I_{,2} = 0$.

Finally we pay special attention to $F^2 \in Hx(2)$ having non-zero *h*-scalar curvature *R*. For these spaces Theorems 6 and 11 give a kind of reduction theorems to Berwald spaces as follows:

Theorem 12. Let F^2 be a two-dimensional Finsler space having nonzero h-curvature tensor H dependent on position alone. If F^2 is a Landsberg space or a Douglas space, then F^2 is a Berwald space. 210 S. Bácsó and M. Matsumoto : Finsler spaces with the *h*-curvature tensor...

References

- P. L. ANTONELLI, R. S. INGARDEN and M. MATSUMOTO, The theory of sprays and Finsler spaces with applications in physics and biology, *Kluwer Acad. Publ.*, *Dordrecht, Boston, London*, 1993.
- [2] S. BÁCSÓ and M. MATSUMOTO, Reduction theorems of certain Landsberg spaces to Berwald spaces, *Publ. Math. Debrecen* 48 (1996), 357–366.
- [3] S. BÁCSÓ and M. MATSUMOTO, On Finsler spaces of Douglas type, I, II, Publ. Math. Debrecen 51 (1997), 385–406 53 (1998), 423–438.
- [4] M. MATSUMOTO, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, Japan, 1986.
- [5] M. MATSUMOTO, On the stretch curvature of a Finsler space and certain open problem, *Progress of Mathematics (to appear)*.
- [6] C. SHIBATA, On the curvature tensor R_{hijk} of Finsler spaces of scalar curvature, *Tensor, N.S.* **32** (1978), 311–317.
- [7] Z. SZABÓ, Ein Finslersche Raum ist gerade von skalarer Krümmung, wenn seine Weylsche Projektivkrümmung verschwindet, Acta. Sci. Math. Szeged 39 (1977), 163–168.

```
S. BÁCSÓ
INSTITUTE OF MATHEMATICS AND INFORMATICS
LAJOS KOSSUTH UNIVERSITY
H–4010 DEBRECEN, P.O. BOX 12
HUNGARY
E-mail: bacsos@math.klte.hu
```

M. MATSUMOTO 15, ZENBU-CHO, SHIMOGAMO SAKYO-KU, KYOTO 606-0815 JAPAN

(Received February 22, 1999)