Additive uniqueness sets for multiplicative functions

By PHAM VAN CHUNG (Eger) and BUI MINH PHONG (Budapest)

Abstract. We prove that if a multiplicative function f satisfies the equation

$$
f(a+b)=f(a)+f(b)
$$

for all $a, b \in H_{2}$ or for all $a, b \in H_{3}$, then $f(n)=n$ for all positive integers n, where $H_{k}:=\left\{\left.\frac{n(n+1) \ldots(n+k-1)}{1 \cdot 2 \cdots k} \right\rvert\, n=1,2, \ldots\right\}$.

Throughout this note, let \mathbb{N} denote the set of positive integers and let \mathcal{M} be the set of complex valued multiplicative functions f with $f(1)=1$.

In 1992, C. Spiro [4] showed that if a function $f \in \mathcal{M}$ satisfying $f(p+q)=f(p)+f(q)$ for all primes p and q, then $f(n)=n$ for all $n \in \mathbb{N}$. Recently, in [2] the identity function was characterized as the multiplicative function f for which $f\left(p+n^{2}\right)=f(p)+f\left(n^{2}\right)$ holds for all primes p and for all $n \in \mathbb{N}$. It follows from the results of [1] that a completely multiplicative function f satisfies the equation $f\left(n^{2}+m^{2}\right)=f\left(n^{2}\right)+f\left(m^{2}\right)$ for all $n, m \in \mathbb{N}$ if and only if $f(2)=2, f(p)=p$ for all primes $p \equiv 1$ $(\bmod 4)$ and $f(q)=q$ or $f(q)=-q$ for all primes $p \equiv 3(\bmod 4)$. In [3] the second named author proved that if a multiplicative function f satisfies the equation $f\left(n^{2}+m^{2}+3\right)=f\left(n^{2}+1\right)+f\left(m^{2}+2\right)$ for all positive integers n and m, then either $f(n)=n$ or $f\left(n^{2}+1\right)=f\left(m^{2}+2\right)=f\left(n^{2}+m^{2}+3\right)=0$ holds for all $n, m \in \mathbb{N}$.

[^0]Following C. Spiro, we call a subset E of \mathbb{N} is an additive uniqueness set for \mathcal{M} if there is exactly one element f of \mathcal{M} which satisfies

$$
f(a+b)=f(a)+f(b) \quad \text { for all } a \in E \quad \text { and } b \in E .
$$

For each $k \in \mathbb{N}$ let

$$
H_{k}:=\left\{\left.\frac{n(n+1) \ldots(n+k-1)}{1 \cdot 2 \cdots k} \right\rvert\, n \in \mathbb{N}\right\}
$$

The set $H_{1}=\mathbb{N}$ is clearly a uniqueness set for \mathcal{M}. In this note we prove the same result for the sets H_{2} and H_{3}.

Theorem 1. The set

$$
H_{2}=\left\{t_{n}: \left.=\frac{n(n+1)}{2} \right\rvert\, n \in \mathbb{N}\right\}
$$

is an additive uniqueness set for \mathcal{M}. In other words, if $f \in \mathcal{M}$ satisfies the condition

$$
\begin{equation*}
f\left(t_{n}+t_{m}\right)=f\left(t_{n}\right)+f\left(t_{m}\right) \tag{1}
\end{equation*}
$$

for all $n, m \in \mathbb{N}$, then $f(n)$ is the identity function, i.e. $f(n)=n$ for all $n \in \mathbb{N}$.

Theorem 2. The set

$$
H_{3}=\left\{\mathcal{L}_{n}: \left.=\frac{n(n+1)(n+2)}{6} \right\rvert\, n \in \mathbb{N}\right\}
$$

is an additive uniqueness set for \mathcal{M}. In other words, if $f \in \mathcal{M}$ satisfies the condition

$$
\begin{equation*}
f\left(\mathcal{L}_{n}+\mathcal{L}_{m}\right)=f\left(\mathcal{L}_{n}\right)+f\left(\mathcal{L}_{m}\right) \tag{2}
\end{equation*}
$$

for all $n, m \in \mathbb{N}$, then $f(n)$ is the identity function, i.e. $f(n)=n$ for all $n \in \mathbb{N}$.

Remark. Is it true that for every $k \geq 4$ the set H_{k} is an additive uniqueness set for \mathcal{M} ? We think that this question can be treated similarly as the above theorems for small fixed values of k.

Proof of Theorem 1. First we prove

$$
\begin{equation*}
f(n)=n \quad \text { for all positive integers } n \leq 16 \tag{3}
\end{equation*}
$$

Let $t_{n}:=\frac{n(n+1)}{2}$ and $f(3):=x$. Repeated use of (1) gives $f(2)=$ $f(1+1)=f\left(t_{1}+t_{1}\right)=f(1)+f(1)=2, f(4)=f(1+3)=f\left(t_{1}+\right.$ $\left.t_{2}\right)=1+x$ and thus $x(1+x)=f(3) f(4)=f(12)=f(6+6)=f\left(t_{3}+\right.$ $\left.t_{3}\right)=2 f(6)=4 x$. Then either $x=0$ or $x=3$. Moreover $f(22)=$ $f(2) f(11)=2 f(1+10)=2 f\left(t_{1}+t_{4}\right)=2+4 f(5)$, while also $f(22)=$ $f(1+21)=f\left(t_{1}+t_{6}\right)=1+x f(7)=1+x(1+2 x)$. These imply that $4 f(5)=2 x^{2}+x-1$, therefore since $x=0$ or $x=3, f(5) \neq 0$. Finally, $f(4) f(5)=f(20)=f(10+10)=f\left(t_{4}+t_{4}\right)=2 f(10)=4 f(5)$, consequently $f(4)=4$ and $f(3)=3$. It easily follows that $f(n)=n$ successively for $n=5,6,7,8,9,10,11,12,13,14,15,16$, because $7=t_{1}+t_{3}, 3.8=t_{2}+t_{6}=$ $3+3.7,9=t_{2}+t_{3}, 11=t_{1}+t_{4}, 13=t_{2}+t_{4}, 16=t_{3}+t_{5}$. Thus (3) is proved.

It is clear that the theorem will follow if we can prove the following assertion: If T is a positive integer such that $f(n)=n$ for all $n<T$, then $f(T)=T$. Because of (3), we can assume that $T \geq 17$.

Assume that $T \geq 17$ is a positive integer satisfying the condition

$$
\begin{equation*}
f(n)=n \quad \text { for all positive integers } n<T \tag{4}
\end{equation*}
$$

We shall prove:

$$
\begin{equation*}
f(T)=T . \tag{5}
\end{equation*}
$$

It is obvious that (5) holds if T is not a prime power. We must therefore have $T=q^{\alpha}$, where q is a prime and $\alpha \in \mathbb{N}$. We note that (5) is valid for $q=2$. Indeed, if $q=2$, then by using the multiplicativity of f, we have

$$
\begin{aligned}
f\left(2^{\alpha}\left(2^{\alpha}-1\right)\right) & =f\left(\left(2^{\alpha}-1\right) 2^{\alpha-1}+\left(2^{\alpha}-1\right) 2^{\alpha-1}\right) \\
& =2 f\left(\left(2^{\alpha}-1\right) 2^{\alpha-1}\right)=2^{\alpha}\left(2^{\alpha}-1\right),
\end{aligned}
$$

which implies $f\left(2^{\alpha}\right)=2^{\alpha}$.
For $T=q^{\alpha}$, where q is an odd prime and $\alpha \in \mathbb{N}$ we now show

$$
\begin{equation*}
f\left(m^{2}\right)=m^{2} \quad \text { for all } m \leq T-2 . \tag{6}
\end{equation*}
$$

Indeed, (1) and the facts $m^{2}=t_{m-1}+t_{m}=\frac{(m-1) m}{2}+\frac{m(m+1)}{2},(m, m-1)=$ $(m, m+1)=1$ with the condition (4) lead to

$$
f\left(m^{2}\right)=f\left(\frac{(m-1) m}{2}\right)+f\left(\frac{m(m+1)}{2}\right)=m^{2}
$$

when $m+1<T$. Therefore (6) follows immediately.
First we consider the case when $T-1 \neq 2^{\beta}, \beta \in \mathbb{N}$. In this case (1), (4) and $q>2$ imply $f\left[(T-1)^{2}\right]=(T-1)^{2}$ and

$$
\begin{gathered}
\frac{(T-2)(T-1)}{2}+\frac{T-1}{2} f(T)=f\left(\frac{(T-2)(T-1)}{2}\right)+f\left(\frac{(T-1) T}{2}\right) \\
=f\left(\frac{(T-2)(T-1)}{2}+\frac{(T-1) T}{2}\right)=f\left[(T-1)^{2}\right]=(T-1)^{2},
\end{gathered}
$$

which gives (5).
Next we assume $T=q^{\alpha}=2^{\beta}+1$, where $\alpha, \beta \in \mathbb{N}$. This together with $T \geq 17$ implies $\alpha=1, \beta=2^{h}$, and so $T=q=2^{2^{h}}+1$ is a Fermat-prime.

It is clear that $T=2^{2^{h}}+1 \equiv 2(\bmod 3)$, consequently

$$
\begin{array}{lll}
3 \mid T+1 & \text { and } & T+1=2^{2^{h}}+2 \neq 3^{\gamma} \\
4 \mid T+3 & \text { and } & T+3=2^{2^{h}}+4 \neq 2^{\delta}
\end{array}
$$

and

$$
3 \mid T+4 \quad \text { and } \quad T+4=2^{2^{h}}+5 \neq 3^{\nu},
$$

where $\gamma, \delta, \nu \in \mathbb{N}$. Together with (4) and (6) we obtain
(7) $f\left((T+1)^{2}\right)=(T+1)^{2}, \quad f\left((T+3)^{2}\right)=(T+3)^{2} \quad$ and $f(T+4)=T+4$.

Finally, let us consider the relation

$$
f\left(\frac{(m-1) m}{2}\right)+f\left(\frac{m(m+1)}{2}\right)=f\left(m^{2}\right)
$$

for $m=T+1$ and for $m=T+3$. By (1), (4) and (7) we have

$$
f(T+2)=T+2 \quad \text { and } f(T)=T
$$

Thus Theorem 1 is proved.

Proof of Theorem 2. We first deduce from (2)

$$
\begin{equation*}
f(n)=n \quad \text { for } n \leq 8 . \tag{8}
\end{equation*}
$$

We have $f(2)=f(1+1)=f\left(\mathcal{L}_{1}+\mathcal{L}_{1}\right)=2 f(1)=2, f(5)=f(1+$ 4) $=f\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right)=f(1)+f(4)=1+f(4)$, consequently $f(4)+f(4)^{2}=$ $f(4) f(5)=f(20)=f(10+10)=f\left(\mathcal{L}_{3}+\mathcal{L}_{3}\right)=2 f(10)=4 f(5)=4+4 f(4)$, which implies $f(4)=4$ or $f(4)=-1$. On the other hand, we get from (2) that $f(8)=f(4+4)=f\left(\mathcal{L}_{2}+\mathcal{L}_{2}\right)=2 f(4), 2 f(3) f(4)=f(3) f(8)=$ $f(24)=f(4+20)=f\left(\mathcal{L}_{2}+\mathcal{L}_{3}\right)=f(4)+f(4) f(5)=2 f(4)+f(4)^{2}$, which together with the fact $f(4) \neq 0$ show that $2 f(3)=2+f(4)$. Furthermore, we also get from (2) that $2 f(7)=f(2) f(7)=f(14)=f(4+10)=f\left(\mathcal{L}_{2}+\right.$ $\left.\mathcal{L}_{3}\right)=f(4)+2 f(5)=2+3 f(4)$ and $f(3) f(7)=f(21)=f(1+20)=$ $f\left(\mathcal{L}_{1}+\mathcal{L}_{4}\right)=1+f(4) f(5)=1+f(4)+f(4)^{2}$, consequently $f(4)^{2}=4 f(4)$. This, compared with $f(4) \neq 0$, shows that $f(4)=4$. Thus, (8) is proved.

As in the proof of Theorem 1, we assume that $T \geq 9$ is a positive integer for which

$$
\begin{equation*}
f(n)=n \quad \text { for all positive integers } n<T \tag{9}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
f(T)=T \tag{10}
\end{equation*}
$$

It is obvious that (10) holds if T is not a prime power. We must therefore have $T=q^{\alpha}$, where q is a prime and $\alpha \in \mathbb{N}$. We note that (10) is valid for $q=2$. Indeed, if $q=2$, then $\alpha \geq 4$ and by (2), (9) we have

$$
\begin{aligned}
& 2^{\alpha} \frac{\left(2^{\alpha-1}-1\right)\left(2^{\alpha-2}-1\right)}{3}=2 f\left(2^{\alpha-1} \frac{\left(2^{\alpha-1}-1\right)\left(2^{\alpha-1}-2\right)}{6}\right) \\
& \quad=f\left(\mathcal{L}_{2^{\alpha-1}-2}+\mathcal{L}_{2^{\alpha-1}-2}\right)=f\left(2^{\alpha} \frac{\left(2^{\alpha-1}-1\right)\left(2^{\alpha-2}-1\right)}{3}\right) \\
& \quad=f\left(2^{\alpha}\right) \frac{\left(2^{\alpha-1}-1\right)\left(2^{\alpha-2}-1\right)}{3},
\end{aligned}
$$

and so $f\left(2^{\alpha}\right)=2^{\alpha}$ as asserted.
We now consider the case when $T=3^{\alpha}, \alpha \geq 2$. The proof of (10) depends on the relation

$$
\begin{equation*}
\mathcal{L}_{n-1}+\mathcal{L}_{n}=\frac{(n-1) n(n+1)}{6}+\frac{n(n+1)(n+2)}{6}=\frac{n(n+1)(2 n+1)}{6} \tag{11}
\end{equation*}
$$

and on the fact:

$$
\begin{equation*}
\text { if } x, y \in \mathbb{N} \text { satisfy } 3^{x}+1=2^{y}, \quad \text { then }(x, y)=(1,2) . \tag{12}
\end{equation*}
$$

Let $n=(3 T-1) / 2=\left(3^{\alpha+1}-1\right) / 2$. Then by (11), we have

$$
\begin{gather*}
\frac{(T-1)(3 T-1)(3 T+1)}{16}+\frac{(3 T-1)(3 T+1)(T+1)}{16} \tag{13}\\
=\frac{(3 T-1)(3 T+1) T}{8} .
\end{gather*}
$$

If $4 \mid 3 T-1$, then $\left(\frac{3 T-1}{4}, \frac{T-1}{2} \frac{3 T+1}{2}\right)=1$ and $\left(\frac{T-1}{2}, \frac{3 T+1}{2}\right)=1$, therefore it follows from (2), (9), (12) and (13) that

$$
\begin{gather*}
\frac{T-1}{2} \frac{3 T-1}{4} f\left(\frac{3 T+1}{2}\right)+\frac{3 T-1}{4} \frac{T+1}{2} f\left(\frac{3 T+1}{2}\right) \tag{14}\\
=\frac{3 T-1}{4} f\left(\frac{3 T+1}{2}\right) f(T) .
\end{gather*}
$$

An application of (11) for $n=\frac{3 T-1}{4}$ leads us to $\frac{1}{2} \frac{3 T-5}{4} \frac{3 T-1}{4} \frac{T+1}{4}+\frac{1}{2} \frac{3 T-1}{4} \frac{T+1}{4} \frac{3 T+7}{4}=\frac{1}{2} \frac{3 T-1}{4} \frac{T+1}{4} \frac{3 T+1}{2}$, which, compared with (2) and (9), implies $f\left(\frac{3 T+1}{2}\right)=\frac{3 T+1}{2}$. This together with (14) proves (10). So, (10) holds for the case $T=3^{\alpha}$ and $4 \mid 3 T-1$.

Assume that $T=3^{\alpha}$ and $4 \nmid 3 T-1$. Then, by applying (2),(9), (12) and (13), we have

$$
\begin{gathered}
\frac{(T-1)(3 T+1)}{8} f\left(\frac{3 T-1}{2}\right)+\frac{(3 T+1)(T+1)}{8} f\left(\frac{3 T-1}{2}\right) \\
=\frac{3 T+1}{4} f\left(\frac{3 T-1}{2}\right) f(T) .
\end{gathered}
$$

Finally, an application of (11) for $n=\frac{3 T-1}{4}$, using (2) and (9), shows that $f\left(\frac{3 T-1}{2}\right)=\frac{3 T-1}{2}$. This with the last relation proves (10) for the case when $T=3^{\alpha}$ 。

Now we complete the proof of Theorem 2 by showing (10) for $T=q^{\alpha}$, where $(T, 6)=1$. Let us consider (11) for $n=\frac{T-1}{2}$. We have

$$
\begin{equation*}
\frac{T-3}{2} \frac{(T-1)(T+1)}{24}+\frac{(T-1)(T+1)}{24} \frac{T+3}{2}=\frac{(T-1)(T+1)}{24} T, \tag{15}
\end{equation*}
$$

where $\frac{(T-1)(T+1)}{24}$ is a positive integer. It is clear by (9) that

$$
\begin{aligned}
& f\left(\frac{T-3}{2} \frac{(T-1)(T+1)}{24}\right)=\frac{T-3}{2} \frac{(T-1)(T+1)}{24}, \\
& f\left(\frac{(T-1)(T+1)}{24} \frac{T+3}{2}\right)=\frac{(T-1)(T+1)}{24} \frac{T+3}{2}
\end{aligned}
$$

and

$$
f\left(\frac{(T-1)(T+1)}{24} T\right)=\frac{(T-1)(T+1)}{24} f(T),
$$

which together with (2) and (15) imply $f(T)=T$.
The proof of Theorem 2 is finished.

References

[1] P. V. Chung, Multiplicative functions satisfying the equation $f\left(m^{2}+n^{2}\right)=f\left(m^{2}\right)+f\left(n^{2}\right)$, Math. Slovaca 46 no. 2-3 (1996), 165-171.
[2] J.-M. De Koninck, I. Kátai and B. M. Phong, A new charateristic of the identity function, Journal of Number Theory 63 (1997), 325-338.
[3] B. M. Phong, A characterization of the identity function, Acta Acad. Paedag. Agriensis (Eger), Sec. Matematicae (1997), 1-9.
[4] C. Spiro, Additive uniqueness set for arithmetic functions, J. Number Theory 42 (1992), 232-246.

BUI MINH PHONG
DEPARTMENT OF COMPUTER ALGEBRA
EÖTVÖS LORÁND UNIVERSITY
MÚZEUM KRT. 6-8
H-1088 BUDAPEST
HUNGARY

```
PHAM VAN CHUNG
```

DEPARTMENT OF MATHEMATICS
TEACHER'S TRAINING COLLEGE
LEÁNYKA U. 4
H-3301 EGER
HUNGARY
(Received June 20, 1998; revised September 30, 1998)

[^0]: Mathematics Subject Classification: 11A25.
 Key words and phrases: multiplicative function, additive uniqueness sets.
 Research (partially) supported by the Hungarian National Foundation for Scientific Research, grant No. 2153 and T 020295.

