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On space-time manifolds carrying two exterior
concurrent skew symmetric killing vector fields

By FILIP DEFEVER (Leuven) and RADU ROSCA (Paris)

Abstract. We analyse the structural properties, from a geometrical point of view,
of space-time manifolds carrying two exterior concurrent skew symmetric Killing vector
fields.

1. Introduction

Let (M, g) be a general space-time with usual differentiability condi-
tions, and normed hyperbolic metric g. We assume in this paper that M
carries two space-like skew-symmetric Killing vector fields X and Y [R],
such that:
a) X and Y are exterior concurrent [2],
b) both X and Y have as generative the timelike vector field e4 of an

orthonormal vector basis

O = vect{eA | A = 1, . . . , 4}.
It is proved that any such manifold M is a space form of curvature

−1 and that M is foliated by hypersurfaces MS tangent to X, Y and e4

and such that the normal of MS is a timelike concircular vector field. In
addition, the following properties are pointed out:
(i) If U is any vector field of M and V is any vector field of the exterior

concurrent distribution {X,Y, e4}, then the Ricci curvature R(U, V )
satisfies:

R(U, V ) = 3g(U, V ).
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(ii) The square of the length of X and Y define an isoparametric system
[11] on M .

(iii) (e4)[ is a harmonic form and X[ and Y [ form an eigenspace E1(M)
of eigenvalue 3.

Killing vector fields X (or infinitesimal isometries) play in many as-
pects a distinguished role in differential geometry [10]. They also play an
important role when dealing with manifolds having indefinite metrics [20]
(as for instance space-time C∞-manifolds).

A vector field X whose covariant differential ∇X (∇ is supposed to
be symmetric) satisfies ∇X = X ∧ U (∧: wedge product of vector fields)
has been defined [1] as a skew symmetric Killing vector field and U is
called the generator of X. For manifolds M carrying such a vector field
X, as for instance solutions to Einstein’s equations containing massless
fields, like electromagnetic or gravitational waves, this property typically
reflects intrinsic features. We will see that in connection with the electro-
magnetic Faraday 2-form F when expressed in terms of Pfaffians [6] a
skew symmetric Killing vector field appears in a quite natural manner.

It is well known that in special relativity, electromagnetism is de-
scribed in the 4-vector formalism by the Maxwell tensor (Fµν), which
incorporates both the electric and magnetic field [9]. Equivalently, in the
language of forms, there thus exists a 2-form F on R4

F =
3∑

α=1

Eadua ∧ du4 + (B1du2 ∧ du3 + B2du3 ∧ du1 + B3du1 ∧ du2),

where ui (i = 1, 2, 3, 4) are coordinates in Minkowski space [13].
Therefore, in general relativity on a space-time manifold M , electro-

magnetism is introduced by a 2-form on M

F = (Eaωa) ∧ ω4 +
∑

cycl

Baωb ∧ ωc,

or, in intrinsic manner

F = −(e4)[ ∧ E[ + ∗(e4)[ ∧ B[,

where {ωA | A = 1, . . . , 4} is a local field of orthonormal coframes over
M ; F is called the generalized Faraday 2-form. On the space-time man-
ifold (M, g) [6] (Ea and Ba represent the components of the electric and
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the magnetic vector fields respectively associated with F ; a, b, c are the
spacelike indices).

Then if E and B coincide with X and Y respectively, one finds that F
is a conformal symplectic form having 3(e4)[ as covector of Lee and 3X[

as source form. One also finds that the Poynting covector S[ is expressed
by S[ = ∗(B[ ∧ E[ ∧ (e4)[) and is an exterior recurrent form [19], having
2(e4)[ as recurrence form.

Finally, some properties of the Lie algebra induced by X, Y and e4

are pointed out. We are quoting here:

(i) X, Y and e4 define a perfect symmetric group;

(ii) X and Y are affine Killing vector fields;

(iii) if X = E , Y = B, then F is a relative integral invariant of X and
an invariant of Y . By interchanging the physical interpretations of X

and Y one obtains similar results.

2. Preliminaries

Let (M, g) be a Riemannian or pseudo-Riemannian C∞-manifold and
let ∇ be the covariant differential operator defined by the metric tensor g

(we assume that ∇ is the Levi-Civita connection). Let ΓTM be the set of
sections of the tangent bundle, and

TM
b−→ T ∗M and TM

]←− T ∗M

the classical isomorphism defined by g (i.e. [ is the index lowering operator,
and ] is the index raising operator).

Following [10], we denote by

Aq(M, TM) = ΓHom(ΛqTM, TM)

the set of vector valued q-forms (q < dim M), and we write for the covariant
derivative operator with respect to ∇

(1) d∇ : Aq(M, TM) → Aq+1(M, TM)

(it should be noticed that in general d∇
2
= d∇◦d∇ 6=0 unlike d2 = d◦d = 0).

If p ∈ M then the vector valued 1-form dp ∈ A1(M, TM) is the identity
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vector valued 1-form and is also called the soldering form of M [7]. Since
∇ is symmetric one has that d∇(dp) = 0. A vector field Z which satisfies

(2) d∇(∇Z) = ∇2Z = π ∧ dp ∈ A2(M, TM); π ∈ Λ1M

is defined to be an exterior concurrent vector field [1] (see also [3], [4]). In
(2) π is called the concurrence form and is defined by

(3) π = λZ[, λ ∈ Λ0M.

In this case, if R is the Ricci tensor, one has

(4) R(Z, V ) = ε(n− 1)λg(Z, V )

(ε = ±1, V ∈ ΞM, n = dim M).
If f ∈ Λ0M , then we set grad f = (df)].
Consider the function F (f1, . . . , fq). Then if

(5)

〈
(dfi)], (dfj)]

〉
= Aij(F ),∆fi = Bi(F ) and

[
(dfi)], (dfj)]

]
=

∑
Ck

ij(F )∇fk,

where Aij , Bi, Ck
ij are smooth functions, one says following [11], that

f1, . . . , fq define an isoparametric system.
Let O = {eA | A = 1, . . . , n} be a local field of orthonormal frames

over M and let O∗ = covect{ωA} be its associated coframe. Then E.
Cartans structure equations written in indexless manner are

∇e = θ ⊗ e,(6)

dω = −θ ∧ ω,(7)

dθ = −θ ∧ θ + Θ.(8)

In the above equations θ (resp. Θ) are the local connection forms in the
tangent bundle TM (resp. the curvature forms on M).

3. Exterior concurrent Killing vector fields

Let (M, g) be a space-time manifold with metric tensor g and let
O = {eA | A = 1, . . . , 4} be a local field of orthonormal frames over M
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and O∗ = covect{ωA} its associated coframe. We assume that the indices
a, b ∈ {1, 2, 3} correspond to the spacelike vector fields of O, whilst e4

corresponds to the timelike vector field of O. Then according to [12] (see
also [4]), the soldering form dp is expressed by:

(9) dp = −
∑

ωa ⊗ ea + ω4 ⊗ e4.

By reference to [8] and in consequence of (9) one has the following structure
equations:

(10)
∇ea = −θb

a ⊗ eb + θ4
a ⊗ e4,

∇e4 = −θa
4 ⊗ ea;

(11)
dωa = −ωb ∧ θa

b + ω4 ∧ θa
4 ,

dω4 = −ωa ∧ θ4
a;

and

(12)
dθa

b = Θa
b − θc

b ∧ θa
c + θ4

b ∧ θa
4 ,

dθa
4 = Θa

4 − θb
4 ∧ θa

b .

Let now

(13) X = −Xaea, and Y = −Y aea; Xa, Y a ∈ Λ0M,

be two skewsymmetric Killing vector fields (in the sense of [1], see also [4])
and assume in a first step that both X and Y have as generative the unit
timelike vector field e4. Hence, the covariant differentials of X and Y are
expressed by

(14)
∇X = X ∧ e4 ⇐⇒ ∇X = ω4 ⊗X −X[ ⊗ e4,

∇Y = Y ∧ e4 ⇐⇒ ∇Y = ω4 ⊗ Y − Y [ ⊗ e4.

In order to simplify, we agree in the following to set: X[ = α, Y [ = β. On
the other hand, if Z is any spacelike vector field on M , then making use
of the structure equations (10), one finds:

(15) ∇Z = −(dZa − Zbθa
b )⊗ ea − (Zaθ4

a)⊗ e4.
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Then by (14) and (15) one calculates

(16)
dXa = Xbθa

b + Xaω4,

dY a = Y bθa
b + Y aω4,

and

(17)
dα = 2ω4 ∧ α,

dβ = 2ω4 ∧ β,

which shows that α and β are exterior recurrent forms [19] having e [
4 = ω4

as recurrence form. We recall [1] that equations (17) are consequences of
(14). In addition, it can be seen from (17) that one has

(18) dω4 = 0 ⇒ θ a
4 = λωa, λ ∈ Λ0M.

With the help of (18) one quickly finds

(19) ∇e4 = λ(dp− ω4 ⊗ e4),

which shows that e4 is torse forming (see also [4]) [14].
In a second step, operating on∇X and∇Y by the covariant derivative

operator d∇, one derives by (17) and (19)

(20)
d∇(∇X) = ∇2X = λα ∧ dp + (λ− 1)(ω4 ∧ α)⊗ e4,

d∇(∇Y ) = ∇2Y = λβ ∧ dp + (λ− 1)(ω4 ∧ β)⊗ e4.

Hence, by (2) the necessary and sufficient condition in order that X and Y
be exterior concurrent vector fields is that λ = 1, and in this case equations
(20) go over into

(21)
∇2X = α ∧ dp,

∇2Y = β ∧ dp.

Since α = X[, β = Y [, one may develop equations (21) as:

(22)

Xa(θb
a ⊗ eb − θ4

a ⊗ e4) =
(∑

a

Xaωa
)
∧ (ωb ⊗ eb − ω4⊗4),

Y a(θb
a ⊗ eb − θ4

a ⊗ e4) =
(∑

a

Y aωa
)
∧ (ωb ⊗ eb − ω4⊗4),
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and one gets

(23) ΘA
B = −ωA ∧ ωB .

Hence, according to a well known formula, equation (23) shows the fact
that the manifold M under consideration is a space form of curvature
−1. In this condition (λ = 1) one easily finds that e4 is also an exterior
concurrent vector field. Since this property is preserved by linearity, one
may say that D = {X, Y, e4} defines an exterior concurrent distribution
on M . Now, one can check that D is also involutive. It should also
be noticed that the existence of the exterior concurrent skew symmetric
Killing vector fields X and Y is determined by the closed differential system
defined by (17) and (18). Further, it is not hard to show that if N =∑

Naea is a vector field orthogonal toD = {X, Y, e4}, then the differentials
of Na satisfy

dNa = N bθa
b .

Then with the help of the first equations (10) one derives by (15) that

(24) ∇N = −N [ ⊗ e4,

which shows that N is a timelike concircular vector field. Therefore, one
may say that the manifold M under consideration is foliated by hypersur-
faces MD whose normals are timelike concircular.

Next, taking into account the signature of g, and making use of the
general formula

R(U,Z) =
∑

〈R(eA, U | Z, eA〉, U, Z ∈ ΞM,

(R (resp. R) denotes the Ricci tensor field of ∇ (resp. the curvature tensor
field)), one derives:

(25) R(U, V ) = 3g(U, V ),

where V is any vector field of the distribution D. On the other hand recall
that the covariant derivative ∇ω of a 1-form ω = ωAωA, ωA ∈ Λ0M is
expressed by

(26) ∇ω = (dωA − ωBθB
A)⊗ ωA,



402 Filip Defever and Radu Rosca

(see also [20]) and following [15], ω is a Killing form if

(27) ∇ω = 0, δω = 0.

Coming back to the case under discussion, one finds by (17) that α and β

satisfy conditions (27), which means that they are Killing 1-forms.
Finally, setting

2lx = ‖X‖2, 2ly = ‖Y ‖2,

one gets by (14)

(28)
(d2lx)] = 4lxe4 ⇒ ‖(d2lx)]‖2 = 16l2x,

(d2ly)] = 4lye4 ⇒ ‖(d2ly)]‖2 = 16l2y,

and

(29)
∇(d2lx)] = −4lxω4 ⊗ e4,

∇(d2ly)] = −4lyω4 ⊗ e4.

Next, taking into account the signature of g, one derives from (28)

(30)
div(d2lx)] = −10(2lx),

div(d2ly)] = −10(2ly),

and

(31)
[
(d2lx)], (d2ly)]

]
= 0.

Hence, by reference to (5), equations (28), (30) and (31) show that ‖X‖2
and ‖Y ‖2 define an isoparametric system on M . Summarizing, we can
formulate the following

Theorem 3.1. Let (M, g) be a space-time manifold carrying two space-

like vector fields X and Y which have the property to be exterior concur-

rent skewsymmetric Killing vector fields. If the generatives of X and Y

coincide with the unit timelike vector field e4 of M , then M is a space

form of curvature −1. In addition, one has the following properties:
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(i) (M, g) is foliated by hypersurfaces MD tangent to the exterior con-

current distribution D = {X,Y, e4} and the normal N of MD is a

timelike concircular vector field, i.e.

∇N = −N [ ⊗ e4;

(ii) if U is any vector field of M and V ∈ D, then the Ricci curvature

R(U, V ) satisfies:

R(U, V ) = 3g(U, V );

(iii) X[ and Y [ are Killing forms;

(iv) the square of the length of X and Y define an isoparametric system

on M .

4. Harmonic properties on M

Let σ be the volume element of the manifold M under discussion, and
let ∗ be the star operator determined by a local orientation of M . One has

(32) ∗ω4 = ω1 ∧ ω2 ∧ ω3,

and taking into account (18) (remember that λ = 1), one finds by (11)

(33) d ∗ ω4 = −3σ.

Next, according to the general formula

(34) δu = (−1)n(p+1)+1 ∗ d ∗ u, u ∈ ΛpM,

one finds with (33) that δω4 = 0 and therefore by (18) one derives that

∆ω4 = 0,

which shows that ω4 is a harmonic form.
Next, since α = X[ = −∑

a Xaωa, one deduces by (16) and with the
help of (11) that

δα = d ∗ α = 0,

and taking account of (17) one deduces

(35) ∆α = δ(2ω4 ∧ α) = 3α.
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Clearly, in a similar way, one has

(36) ∆β = 3β,

and the above equations show that α and β are eigenfunctions of ∆ having
3 as eigenvalue (see also [16]). Therefore, one may state that α and β define
an eigenspace E1(M) of eigenvalue 3.

Consequently, we have

Proposition 4.1. The dual forms X[, Y [ of the exterior concurrent
skewsymmetric Killing vector fields X and Y of M , define an eigenspace
E1(M) of eigenvalue 3.

5. Generalized Faraday form

Following [6] the 2-form

(37) F = (Eaωa) ∧ ω4 +
∑

cycl

Baωb ∧ ωc,

where Ea (resp. Ba) are the components of the electric field E (resp. the
components of the magnetic vector field) is called the generalized Faraday
form of a space-time manifold M . In order to agree with (13) one may
express (37) in an intrinsic manner as

F = −(e4)[ ∧ E[ + ∗(e4)[ ∧ B[.

It should be noticed that the above expression of F is in accordance with
the expression of F in case M is a Minkowski manifold [18].

Assume now that E(Ea) and B(Ba) coincide with the Killing vector
field X and the Killing vector field Y , respectively. Then setting

φ =
∑

cycl

Baωb ∧ ωc =
∑

cycl

Y aωb ∧ ωc,

(
∑

cycl: cyclic permutation of the spacelike indices a, b, c) one may write

(38) F = X ∧ ω4 + φ.

Making use of the equations (11), one gets by the equations (16) that

(39) dφ = 3ω4 ∧ φ,
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i.e. φ is an exterior recurrent 2-form having 3ω4 as recurrence form [19].
We notice that, since d(α ∧ ω4) = 0, (see 17), one may write

dF = dφ ⇐⇒ F ∼ φ,

i.e. F and φ belong to the same class of homology. Therefore one may
write

(40) dF = 3ω4 ∧ F , (remember ω4 = (e4)[),

which shows that F is a conformal symplectic form, having 3ω4 as covector
of Lee.

Setting
ψ =

∑

cycl

Xaωb ∧ ωc,

one obtains by (34)

(41) ∗F = −β ∧ ω4 + ψ (β = Y [).

Then by a standard calculation and with the help of the equations (16)
one gets

(42) δF = 3α.

Consequently, as a generalization of the concept of source, in case M is a
Minkowski manifold, one may consider in the case under discussion 3α as
being the source of the considered generalized Faraday form. Clearly by
interchanging the role of X = E and Y = B, the corresponding Faraday
form will have as source 3β. Further, as a generalization of the concept
of Poynting covector S[ associated with F , one may write in an intrinsic
manner

(43) S[ = ∗(B[ ∧ E[ ∧ (e4)[.

Since in the case under discussion, one has

B[ = β, E[ = α, (e4)[ = ω4,

one finds by a standard calculation

(44) S[ =
∑

cycl

(XaY b −XbY a)ωc.
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Further, it is worth to emphasize that one may write

(45) iXF = −2lxω4 + S[.

Making in additon use of the relations (16) and with the help of the equa-
tions (12), exterior derivation of (44) gives

(46) dS[ = 2ω4 ∧ S[.

This shows that the Poynting covector S[ is exterior recurrent [19], and
has 2ω4 as recurrence form.

Theorem 5.1. Let F be the generalized Faraday form, such that the

electric vector field E (respectively the magnetic vector field B) coincides

with the Killing vector field X (respectively the Killing vector field Y ).

Then F is a conformal symplectic form, having 3ω4 as covector of Lee,

and 3α as associated source. Further if S[ denotes the Poynting covector

associated with F , then S[ is exterior recurrent and has 2ω4 as recurrence

form. By interchanging the physical interpretation of X and Y one finds

similar results.

6. Lie algebra induced
by the Killing vector fields X and Y

As is known there exists an isomorphism between the Lie algebra G
of the Lie group, and the space of Killing vector fields. If ω ∈ Λ1M , then
if U and V are any vector fields, we have

(47) dω(V, U) = 2ω [V, U ] .

Coming back to the case under consideration, one derives from (14) and
(19), since λ = 1

(48) [X, Y ] = 0, [X, e4] = 0, [Y, e4] = 0,

which shows that the vector fields X, Y and e4 define a commutative triple.
We notice by (47) that one has dω(X, Y ) = 0, for any ω ∈ Λ1M .

Moreover one finds by (17)

(49) LXα = 0, LY β = 0,



On space-time manifolds carrying two exterior concurrent . . . 407

and since α = X[, β = Y [ one may say that the dual form of X and Y

are self-invariant.
Next, taking the Lie derivatives of ∇X and ∇Y , one gets by (14)

and (49)

(50) LX(∇X) = 0, LY (∇Y ) = 0.

This proves the fact that X and Y are affine Killing vector fields (see
also [10]).

Further, by (45) one calculates

(51) LXF = −3ω4 ∧ iXF = −ω4 ∧ S[,

which by (46) gives

(52) d(LXF) = 0.

Hence according to [17] the above equation confirms the fact that F is a
relative integral invariant of X. Moreover, let L be the (1.1) type operator
on forms defined by [5], that is:

Lu = u1 = u ∧ Ω,

where Ω is an almost symplectic form. In the case under discussion we set

α1 = α ∧ F ,

and by (49) we deduce by exterior differentiation

d(LXα1) = 0.

Therefore, we may assert that the property of integral invariance of X is
preserved by the operator L.

Finally, setting s = g(X, Y ), one quickly derives by (14)

(53) ds = 2sω4.

Next, since by (38) and (51) we deduce

(54) iY F = sω4 ⇒ d(iY F) = 0,
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it quickly follows by (40)

(55) LY F = 0.

This proves the fact that the generalized Faraday form having X as as-
sociated electric vector field is invariant by the magnetic vector field Y .
Moreover, making use of the operator L, i.e.

Lβ = β1 = β ∧ F ,

then one calculates that
LY β1 = 0.

Hence the property of F to be invariant under Y is preserved by the
operator L. Clearly, the above properties hold by interchanging the role
of the Killing vector fields X and Y .

We state the

Theorem 6.1. Let (M, g) be the space-time manifold carrying two
spacelike Killing vector fields X and Y defined in Section 3. Then regarding
the Lie algebra induced by X and Y , we have the following properties:

(i) X[ and Y [ are selfinvariant, i.e.

LXX[ = 0, LY Y [ = 0;

(ii) X and Y are affine Killing vector fields, i.e.

LX(∇X) = 0, LY (∇Y ) = 0;

(iii) let F be the generalized Faraday form on M , and assume that X and
Y coincide with the electric vector field E and the magnetic vector
field B respectively, associated with F .
Then the following properties hold:
(a) F is a relative integral invariant of X and this property is pre-

served by Weyl’s operator L, i.e.

d(LXF) = 0, d(LX(LX[)) = 0, (LX[ = X[ ∧ F);

(b) F is invariant by Y and the same property is preserved by L, i.e.

LY F = 0, LY (LY [) = 0, (LY [ = Y [ ∧ F).

By interchanging the physical interpretations of X and Y one obtains
similar properties.
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