Publ. Math. Debrecen

Star-Menger and related spaces

By LJUBIŠA D. KOČINAC (Niš)

Abstract

In this paper we introduce and study some notions related to the classical concepts of being a Menger space or a Rothberger space.

1. Introduction and definitions

Let \mathcal{A} and \mathcal{B} be collections of open covers of a topological space X. Then the symbol $\mathrm{S}_{1}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence $\left(U_{n}: n \in \mathbb{N}\right)$ such that for each $n, U_{n} \in \mathcal{U}_{n}$ and $\left\{U_{n}: n \in \mathbb{N}\right\}$ is an element of \mathcal{B}. The symbol $\mathrm{S}_{\mathrm{fin}}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there is a sequence $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, \mathcal{V}_{n}$ is a finite subset of \mathcal{U}_{n} and $\bigcup_{n \in \mathbb{N}} \mathcal{V}_{n}$ is an element of \mathcal{B} (see [7], [12]).

We are going now to introduce new selection hypotheses similar to the previous ones. As usual, for a subset A of a space X and a collection \mathcal{P} of subsets of $X, \operatorname{St}(A, \mathcal{P})$ denotes the star of A with respect to \mathcal{P}, that is the set $\cup\{P \in \mathcal{P}: A \cap P \neq \emptyset\}$; for $A=\{x\}, x \in X$, we write $\operatorname{St}(x, \mathcal{P})$ instead of $\operatorname{St}(\{x\}, \mathcal{P})$. We assume that all spaces are Hausdorff.
1.1. Definition. Let \mathcal{A} and \mathcal{B} be collections of open covers of a space X. Then:
(a) The symbol $\mathrm{S}_{1}^{*}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence ($U_{n}: n \in \mathbb{N}$) such that for each $n, U_{n} \in \mathcal{U}_{n}$ and $\left\{\operatorname{St}\left(U_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\}$ is an element of \mathcal{B};
(b) The symbol $\mathrm{S}_{\mathrm{fin}}^{*}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there is a sequence $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, \mathcal{V}_{n}$ is a finite subset of \mathcal{U}_{n}, and $\bigcup_{n \in \mathbb{N}}\left\{\operatorname{St}\left(V, \mathcal{U}_{n}\right)\right.$: $\left.V \in \mathcal{V}_{n}\right\} \in \mathcal{B}$;
(c) By $\mathrm{U}_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B})$ we denote the selection hypothesis: for every sequence ($\mathcal{U}_{n}: n \in \mathbb{N}$) of members of \mathcal{A} there exists a sequence ($\mathcal{V}_{n}: n \in \mathbb{N}$) such that for every n, \mathcal{V}_{n} is a finite subset of \mathcal{U}_{n} and $\left\{\operatorname{St}\left(\cup \mathcal{V}_{n}, \mathcal{U}_{n}\right): n \in\right.$ $\mathbb{N}\} \in \mathcal{B}$ or there is some $n \in \mathbb{N}$ such that $\operatorname{St}\left(\cup \mathcal{V}_{n}, \mathcal{U}_{n}\right)=X$.
1.2. Definition. Let \mathcal{A} and \mathcal{B} be collections of open covers of a space X and let \mathcal{K} be a family of subsets of X. Then we say that X belongs to the class $\mathrm{SS}_{\mathcal{K}}^{*}(\mathcal{A}, \mathcal{B})$ if X satisfies the following selection hypothesis: for every sequence ($\mathcal{U}_{n}: n \in \mathbb{N}$) of elements of \mathcal{A} there exists a sequence $\left(K_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{K} such that $\left\{\operatorname{St}\left(K_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\} \in \mathcal{B}$.

When \mathcal{K} is the collection of all one-point [resp., finite, compact] subspaces of X we write $\operatorname{SS}_{1}^{*}(\mathcal{A}, \mathcal{B})$ [resp., $\left.\mathrm{SS}_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B}), \mathrm{SS}_{\text {comp }}^{*}(\mathcal{A}, \mathcal{B})\right]$ instead of $S S_{\mathcal{K}}^{*}(\mathcal{A}, \mathcal{B})$.
1.3. Remark. The following games are naturally corresponded to the selection hypotheses introduced above.
(1) For $S_{1}^{*}(\mathcal{A}, \mathcal{B})$ we have the game $\mathrm{G}_{1}^{*}(\mathcal{A}, \mathcal{B})$ played (on a space X) as follows: Two players, ONE and TWO, play an inning per positive integer. In the n-th inning ONE chooses an $\mathcal{U}_{n} \in \mathcal{A}$, to which TWO responds by choosing a $U_{n} \in \mathcal{U}_{n}$. The play $\mathcal{U}_{1}, U_{1} ; \ldots ; \mathcal{U}_{n}, U_{n} ; \ldots$ is won by TWO if $\left\{\operatorname{St}\left(U_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\}$ is an element of \mathcal{B}; otherwise, ONE wins;
(2) The game $\mathrm{G}_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B})$ is played similarly, except that in the n-th inning TWO chooses a finite subset \mathcal{V}_{n} of \mathcal{U}_{n}. The play $\mathcal{U}_{1}, \mathcal{V}_{1} ; \ldots ; \mathcal{U}_{n}, \mathcal{V}_{n} ; \ldots$ is won by TWO if $\bigcup_{n \in \mathbb{N}}\left\{\operatorname{St}\left(V, \mathcal{U}_{n}\right): V \in \mathcal{V}_{n}\right\} \in \mathcal{B}$; otherwise, ONE wins;
(3) The game $\mathrm{S} G_{1}^{*}(\mathcal{A}, \mathcal{B})$ is played in the following way: in the n-th inning ONE chooses some $\mathcal{U}_{n} \in \mathcal{A}$ and TWO responds by choosing a point $x_{n} \in X$. The play $\mathcal{U}_{1}, x_{1} ; \ldots ; \mathcal{U}_{n}, x_{n} ; \ldots$ is won by TWO if $\left\{\operatorname{St}\left(x_{n}, A_{n}\right)\right.$: $n \in \mathbb{N}\}$ belongs to \mathcal{B}; otherwise, ONE wins;
(4) The game $\operatorname{SG} G_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B})$ is played similarly, except that in the n th inning TWO chooses a finite subset F_{n} of X. The play $\mathcal{U}_{1}, F_{1} ; \ldots ; \mathcal{U}_{n}$, $F_{n} ; \ldots$ is won by TWO if $\left\{\operatorname{St}\left(F_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\}$ is a member of \mathcal{B}; otherwise, ONE wins;
(5) The game $\mathrm{SG}_{\text {comp }}^{*}(\mathcal{A}, \mathcal{B})$ is played as the previous game, but in the n-th inning TWO chooses a compact subset K_{n} of X. TWO wins if $\left\{\operatorname{St}\left(K_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\} \in \mathcal{B}$; otherwise, the play is won by ONE.

In this paper \mathcal{A} and \mathcal{B} will be collections of topologically significant open covers of a space X :
\mathcal{O} - the collection of all open covers of X;
Ω - the collection of ω-covers of X. An open cover \mathcal{U} of X is an ω-cover [4] if X does not belong to \mathcal{U} and every finite subset of X is contained in a member of \mathcal{U};
Γ - the collection of γ-covers of X. An open cover \mathcal{U} of X is a γ-cover [4] if it is infinite and for every $x \in X$ the set $\{U \in \mathcal{U}: x \notin U\}$ is finite.

Recall that a space X is said to have the Menger property [9], [5], [6] (resp. the Rothberger property [11]) if the selection hypothesis $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$ (resp. $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$) is true for X (see also [10], [7], [12]).

Following this terminology we introduce the following definition.
1.4. Definition. A space X is said to have: (1) the star-Rothberger property, (2) the star-Menger property, (3) the strongly star-Rothberger property, (4) the strongly star-Menger property, (5) star-K-Menger property if it satisfies the selection hypothesis: $\left(1^{\prime}\right) \mathrm{S}_{1}^{*}(\mathcal{O}, \mathcal{O}),\left(2^{\prime}\right) \mathrm{S}_{\text {fin }}^{*}(\mathcal{O}, \mathcal{O})$, $\left(3^{\prime}\right) \mathrm{SS}_{1}^{*}(\mathcal{O}, \mathcal{O}),\left(4^{\prime}\right) \mathrm{SS}_{\text {fin }}^{*}(\mathcal{O}, \mathcal{O}),\left(5^{\prime}\right) \mathrm{SS}_{\text {comp }}^{*}(\mathcal{O}, \mathcal{O})$.

2. Relations between star covering properties

We give first the following diagram which illustrates relationships between here defined properties and some other star covering properties, whose definitions can be found in [2]. Most of the implications follow almost directly from the definitions; we give a simple one in Proposition 2.1. Recall that a space X is said to be strongly starcompact [strongly starLindelöf, star-L-Lindelöf] if for every open cover \mathcal{U} of X there is a finite [countable, Lindelöf] subset A of X such that $\operatorname{St}(A, \mathcal{U})=X . X$ is starcompact [star-Lindelöf] if for every open cover \mathcal{U} of X there exists a finite [countable] $\mathcal{V} \subset \mathcal{U}$ such that $\operatorname{St}(\cup \mathcal{V}, \mathcal{U})=X$.

We will also give some examples and assertions in order to compare the properties (and their combinations) from this diagram and to clarify it.

Observe a simple fact that any property from the diagram is an invariant of contunuous mappings and is inherited by closed-and-open subspaces.

Diagram 1
2.1. Proposition. Every (strongly)star-Menger space X is (strongly) star-Lindelöf.

Proof. Consider only the case when X is a star-Menger space. Let \mathcal{U} be an open cover of X. Then, by definition, there is a sequence $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ such that for every n, \mathcal{V}_{n} is a finite subset of \mathcal{U} and $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(\cup \mathcal{V}_{n}, \mathcal{U}\right)=X$. Then $\mathcal{V}=\bigcup_{n \in \mathbb{N}} \mathcal{V}_{n}$ is a countable subfamily of \mathcal{U} satisfying $\operatorname{St}(\cup \mathcal{V}, \mathcal{U})=X$, i.e. X is a star-Lindelöf space.
2.2. (Matveev [8]) Example. Let \mathcal{A} be an almost disjoint family of infinite subsets of ω (i.e. the intersection of every two distinct elements of \mathcal{A} is finite) and let $X=\omega \cup \mathcal{A}$ be the Mrówka-Isbell space constructed from \mathcal{A} [3], [2]. Then:
(i) X is strongly star-Menger $\Longleftrightarrow|\mathcal{A}|<\mathbf{d}$;
(ii) If $|\mathcal{A}|=\mathbf{c}$, then X is not star-Menger,
where \mathbf{d} is the dominating number (see [2]).
2.3. Example. There is a strongly star-Menger space X which is not strongly starcompact.

Let $X=\left[0, \omega_{1}\right] \times[0, \omega] \backslash\left\{\left(\omega_{1}, \omega\right)\right\}$ be the Tychonoff plank. It is shown in [2] that X is not strongly starcompact. We prove that X is strongly star-Menger.

Let $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of open covers of X and let $\mathbb{N}=$ $N_{1} \cup N_{2} \cup \ldots$ be a partition of \mathbb{N} into infinitely many finite pairwise disjoint subsets. Fix $n \in \mathbb{N}$. For each $k \in N_{n}$ there is an $\alpha_{k}<\omega_{1}$ such that the set $\left\{(\beta, k): \alpha_{k}<\beta \leq \omega_{1}\right\}$ is contained in some member U of \mathcal{U}_{n}, which means that for $x_{k}=\left(\omega_{1}, k\right)$ one has $\operatorname{St}\left(x_{k}, \mathcal{U}_{n}\right) \supset U$. Let $A_{n}=\left\{x_{k}: k \in N_{n}\right\}$, $\alpha_{n}=\sup \left\{\alpha_{k}: k \in N_{n}\right\}$ and $\alpha=\sup \left\{\alpha_{n}: n \in \mathbb{N}\right\}$. Then $\alpha<\omega_{1}$ and $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(A_{n}, \mathcal{U}_{n}\right) \supset\left(\alpha, \omega_{1}\right] \times[0, \omega)$.

Further, the subspace $T=\left[0, \omega_{1}\right) \times\{\omega\}$ of X is homeomorphic to $\left[0, \omega_{1}\right)$ and consequently T is strongly star-Menger. Thus there is a sequence $\left(B_{n}: n \in \mathbb{N}\right)$ of finite subsets of T such that $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(B_{n}, \mathcal{U}_{n}\right) \supset T$.

Finally, the subspace $K=[0, \alpha] \times[0, \omega]$ of X is compact and thus strongly star-Menger. There exists a sequence ($C_{n}: n \in \mathbb{N}$) of finite subsets of K so that $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(C_{n}, \mathcal{U}_{n}\right) \supset K$.

For each $n \in \mathbb{N}$ put $F_{n}=A_{n} \cup B_{n} \cup C_{n}$. Then the sequence ($F_{n}: n \in$ $\mathbb{N})$ witnesses for $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ that X is a strongly star-Menger space.

Recall that a space X is said to be meta-compact [meta-Lindelöf] if every open cover \mathcal{U} of X has a point-finite [point-countable] open refinement \mathcal{V} (i.e., every point of X belongs to at most finitely many [countably many] members of \mathcal{V}).
2.4. Theorem. Every strongly star-Menger metacompact space is a Menger space.

Proof. Let $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of open covers of a strongly star-Menger metacompact space X. For every $n \in \mathbb{N}$ let \mathcal{V}_{n} be a pointfinite open refinement of \mathcal{U}_{n}. As X is strongly star-Menger, there is a sequence $\left(F_{n}: n \in \mathbb{N}\right)$ of finite subsets of X such that $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(F_{n}, \mathcal{V}_{n}\right)=$ X. Elements of each F_{n} belong to finitely many members $V_{n, 1}, \ldots, V_{n, k(n)}$ of \mathcal{V}_{n}; let $\mathcal{V}_{n}^{\prime}=\left\{V_{n, 1}, \ldots, V_{n, k(n)}\right\}$. Then $\operatorname{St}\left(F_{n}, \mathcal{V}_{n}\right)=\bigcup \mathcal{V}_{n}^{\prime}$, so that we have $\bigcup_{n \in \mathbb{N}} \cup \mathcal{V}_{n}^{\prime}=X$. For every $V \in \mathcal{V}_{n}^{\prime}$ choose a member U_{V} of \mathcal{U}_{n} such that $V \subset U_{V}$. Then, for every $n, \mathcal{W}_{n}=\left\{U_{V}: V \in \mathcal{V}_{n}^{\prime}\right\}$ is a finite subfamily of \mathcal{U}_{n} and $\bigcup_{n \in \mathbb{N}} \mathcal{W}_{n}=X$, i.e. X is a Menger space.
2.5. Theorem. Every strongly star-Menger meta-Lindelöf space X is Lindelöf.

Proof. Let \mathcal{U} be an open cover of X and let \mathcal{V} be a point-countable refinement of \mathcal{U}. Since X is strongly star-Menger there exists a sequence $\left\{F_{n}: n \in \mathbb{N}\right\}$ of finite subsets of X such that $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(F_{n}, \mathcal{V}\right)=X$. For every $n \in \mathbb{N}$ denote by \mathcal{W}_{n} the collection of all members of \mathcal{V} which intersect F_{n}. Since \mathcal{V} is point-countable and F_{n} is finite, \mathcal{W}_{n} is countable. So the collection $\mathcal{W}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{n}$ is a countable subfamily of \mathcal{V} and is a cover of X. For every $W \in \mathcal{W}$ pick a member $U_{W} \in \mathcal{U}$ such that $W \subset U_{W}$. Then $\left\{U_{W}: W \in \mathcal{W}\right\}$ is a countable subcover of \mathcal{U} and X is a Lindelöf space.

It is known that in the class of Hausdorff spaces strongly starcompactness and countable compactness coincide, so that countable compact Hausdorff spaces are strongly star-Menger. From the previous theorem we obtain the next well known result [1]:
2.6. Corollary. A countably compact meta-Lindelöf space is compact.
2.7. Example. There is a strongly star-Menger space which is not Menger.

Let $X=\left[0, \omega_{1}\right)$ be the set of all countable ordinals with the order topology. Since X is a Hausdorff countably compact space, i.e. a strongly starcompact space, it is strongly star-Menger. On the other hand, X cannot have the Menger property because it is even not Lindelöf.

The following theorem gives an information when star-Menger spaces satisfy the Menger property.
2.8. Theorem. For a paracompact (Hausdorff) space X the following are equivalent:
(a) X is a star-Menger space;
(b) X is a star- K-Menger space;
(c) X is a strongly star-Menger space;
(d) X is a Menger space.

Proof. We have to prove only that (a) implies (d). Let $\left\{\mathcal{U}_{n}: n \in \mathbb{N}\right\}$ be a sequence of open covers of a paracompact star-Menger space X. By the well known Stone characterization of paracompactness [3] for every
$n \in \mathbb{N}$ let \mathcal{V}_{n} be an open star-refinement of \mathcal{U}_{n}. Since X is star-Menger there exists a sequence $\left\{\mathcal{W}_{n}: n \in \mathbb{N}\right\}$ such that for each $n \in \mathbb{N}, \mathcal{W}_{n}$ is a finite subfamily of \mathcal{V}_{n} and $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(\cup \mathcal{W}_{n}, \mathcal{V}_{n}\right)=X$. For every $W \in \mathcal{W}_{n}$ let U_{W} be a member of \mathcal{U}_{n} such that $\operatorname{St}\left(W, \mathcal{V}_{n}\right) \subset U_{W}$. Then $\mathcal{U}_{n}^{\prime}=\left\{U_{W}\right.$: $\left.W \in \mathcal{W}_{n}\right\}$ is a finite subfamily of \mathcal{U}_{n} for each $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} \cup \mathcal{U}_{n}^{\prime}=X$ which means that X is a Menger space.

In a similar way we obtain
2.9. Theorem. A paracompact space X is Rothberger iff it is starRothberger iff it is strongly star-Rothberger.

From Theorem 2.5, Theorem 2.8 and the fact that regular Lindelöf spaces are paracompact we have

2.10. Corollary. A regular strongly star-Menger meta-Lindelöf space

 is a Menger space.Let us observe that the following result is true without any separation axiom.
2.11. Theorem. A paracompact space X is star- K-Menger if and only if it is a Menger space.

Proof. Let $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of open covers of X and let for each $n \in \mathbb{N}, \mathcal{V}_{n}$ be an open locally finite refinement of \mathcal{U}_{n}. Since X is star- K-Menger, there exists a sequence ($K_{n}: n \in \mathbb{N}$) of compact subspaces of X satisfying $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(K_{n}, \mathcal{V}_{n}\right)=X$. The set \mathcal{V}_{n}^{\prime} of all members of \mathcal{V}_{n} which meet K_{n} is finite because \mathcal{V}_{n} is locally finite and $\bigcup \mathcal{V}_{n}^{\prime}=\operatorname{St}\left(K_{n}, \mathcal{V}_{n}\right)$. Therefore, $\bigcup_{n \in \mathbb{N}} \cup \mathcal{V}_{n}^{\prime}=X$. For every $V \in \mathcal{V}_{n}^{\prime}$ pick a $U_{V} \in \mathcal{U}_{n}$ with $V \subset U_{V}$ and let $\mathcal{W}_{n}=\left\{U_{V}: V \in \mathcal{V}_{n}^{\prime}\right\}$. Then the sequence $\left(\mathcal{W}_{n}: n \in \mathbb{N}\right)$ guarantees that X is a Menger space.

It is easy to check that the star-Menger property is preserved by countable topological sums. However, the product of two star-Menger spaces need not be star-Menger as simple examples show. The same holds for strongly star-Menger spaces.
2.12. Example. The product of a strongly star-Menger space and a strongly star-Lindelöf space which is not strongly star-Menger.

The ordinal space $X=\left[0, \omega_{1}\right)$ is strongly star-Menger. Let Y be the set $\left[0, \omega_{1}\right]$ with the following topology: for every $\alpha<\omega_{1}$ the set $\{\alpha\}$ is open; a set containing ω_{1} is open iff its complement in Y is countable. Then Y is a Lindelöf space, hence a strongly star-Lindelöf space. The space $X \times Y$ is not strongly star-Menger because it is not strongly star-Lindelöf as it was shown in [2; Ex. 3.3.3].

However, we have the following result.
2.13. Theorem. If X is a star-Menger (star-Rothberger) space and Y is a compact space, then $X \times Y$ is a star-Menger (star-Rothberger) space.

Proof. We shall prove the star-Menger case. Let $\left\{\mathcal{W}_{n}: n \in \mathbb{N}\right\}$ be a sequence of open covers of $X \times Y$; without loss of generality one can suppose that every \mathcal{W}_{n} is a basic open cover of the form $\mathcal{U}_{n} \times \mathcal{V}_{n}, \mathcal{U}_{n}$ an open cover of X and \mathcal{V}_{n} an open cover of Y. For a fixed $x \in X$, each \mathcal{W}_{n} is an open cover for the compact subspace $\{x\} \times Y$ of $X \times Y$. Therefore, there exists a finite subfamily $\mathcal{U}_{n, x} \times \mathcal{V}_{n, x}$ of \mathcal{W}_{n} such that $\cup\left(\mathcal{U}_{n, x} \times \mathcal{V}_{n, x}\right) \supset\{x\} \times Y$. Let $U_{n, x}=\cap \mathcal{U}_{n, x}$. Then $\mathcal{G}_{n}=\left\{U_{n, x}: x \in X\right\}$ is an open cover of X for every $n \in \mathbb{N}$. Since X has the star-Menger property there are finite $\mathcal{H}_{n}=\left\{U_{n, x_{1}}, \ldots, U_{n, x_{k(n)}}\right\} \subset \mathcal{G}_{n}, n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(\cup \mathcal{H}_{n}, \mathcal{G}_{n}\right)=$ X. Denote $\mathcal{W}_{n}^{\prime}=\left(\mathcal{U}_{n, x_{1}} \times \mathcal{V}_{n, x_{1}}\right) \cup \cdots \cup\left(\mathcal{U}_{n, x_{k(n)}} \times \mathcal{V}_{n, x_{k(n)}}\right)$. We have that for every $n \in \mathbb{N}, \mathcal{W}_{n}^{\prime}$ is a finite subfamily of \mathcal{W}_{n} and

$$
\bigcup_{n \in \mathbb{N}} \operatorname{St}\left(\cup \mathcal{W}_{n}^{\prime}, \mathcal{W}_{n}\right) \supset \bigcup_{n \in \mathbb{N}} \operatorname{St}\left(\cup \mathcal{H}_{n}, \mathcal{G}_{n}\right) \times Y=X \times Y
$$

Matveev observed in [8] that there is a consistent example of a strongly star-Menger space X whose product with a compact space Y is not strongly star-Menger. By Theorem $2.13 X \times Y$ is a star-Menger space, so that we have a consistent example of a star-Menger space which is not strongly star-Menger.

We close this section by the following three questions.
2.14. Question. Characterize hereditarily (strongly) star-Menger [(strongly) star-Rothberger] spaces.
2.15. Question. Find out a space X such that all finite powers of X are (strongly) star-Menger [resp. (strongly) star-Rothberger] spaces but X^{ω} is not. Characterize spaces X such that X^{ω} (resp. every finite power of X) is (strongly) star-Menger [(strongly) star-Rothberger].
2.16. Question. Let \mathcal{M} be the class of spaces X such that for every (strongly) star-Menger [(strongly) star-Rothberger] space Y the product $X \times Y$ is (strongly) star-Menger [(strongly) star-Rothberger]. Describe the class \mathcal{M}.

3. Other properties

In [7; Th. 1.1], it was shown that a Lindelöf space X satisfies $S_{1}(\Gamma, \Gamma)$ if and only if X satisfies $S_{\mathrm{fin}}(\Gamma, \Gamma)$. Closely following the line of reasoning from the proof of that result we have:
3.1. Theorem. For a Lindelöf space X we have $S_{1}^{*}(\Gamma, \Gamma)=S_{\text {fin }}^{*}(\Gamma, \Gamma)$.

Proof. Clearly, $S_{1}^{*}(\Gamma, \Gamma)$ implies $S_{\text {fin }}^{*}(\Gamma, \Gamma)$. Let X satisfies $S_{\text {fin }}^{*}(\Gamma, \Gamma)$ and let $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of γ-covers of X. Suppose that $\mathcal{U}_{n}=\left\{U_{n, 1}, U_{n, 2}, \ldots\right\}$. We shall define a new sequence ($\left.\mathcal{V}_{n}: n \in \mathbb{N}\right)$ of γ-covers of X as follows:

$$
\mathcal{V}_{n}=\left\{V_{n, 1}, V_{n, 2}, \ldots\right\}, \text { where } V_{n, k}=U_{1, k} \cap U_{2, k} \cap \cdots \cap U_{n, k}
$$

We see that $\mathcal{V}_{1}=\mathcal{U}_{1}, \mathcal{V}_{i}$ refines \mathcal{U}_{i} for $i \geq 2$ and $V_{n, k} \subset V_{m, k}$ whenever $n \geq m$. Let us check that every \mathcal{V}_{n} is a γ-cover for X. Let $x \in X$. For every $i=1,2, \ldots, n$ there is some $m_{i} \in \mathbb{N}$ such that $x \in U_{i, k}$ for all $k>m_{i}$. If $m_{0}=\max \left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$, then $x \in V_{n, k}$ for all $k>m_{0}$.

Since X satisfies $S_{\text {fin }}^{*}(\Gamma, \Gamma)$ there exists a sequence $\left(\mathcal{W}_{n}: n \in \mathbb{N}\right)$, each \mathcal{W}_{n} a finite subset of \mathcal{V}_{n}, such that $\left\{\operatorname{St}\left(W, \mathcal{V}_{n}\right): W \in \mathcal{W}_{n}, n \in \mathbb{N}\right\}$ is a γ-cover of X. Now, we use tha fact that every $\left\{\operatorname{St}\left(W, \mathcal{V}_{n}\right): W \in \mathcal{W}_{n}\right\}$ is finite while $\left\{\operatorname{St}\left(W, \mathcal{V}_{n}\right): W \in \mathcal{W}_{n}, n \in \mathbb{N}\right\}$ is infinite being a γ-cover.

Pick a member $V_{1, k_{1}} \in \mathcal{W}_{1}$. Then $X \backslash \operatorname{St}\left(V_{1, k_{1}}, \mathcal{V}_{1}\right) \neq \emptyset$. Take now some $V_{2, k_{2}} \in \mathcal{W}_{2}$ such that $\operatorname{St}\left(V_{2, k_{2}}, \mathcal{V}_{2}\right) \neq \operatorname{St}\left(V, \mathcal{V}_{1}\right)$ for all $V \in \mathcal{W}_{1}$; we can suppose this because of the fact mentioned above. Then $X \backslash\left(\operatorname{St}\left(V_{1, k_{1}}, \mathcal{V}_{1}\right) \cup\right.$ $\left.\operatorname{St}\left(V_{2, k_{2}}, \mathcal{V}_{2}\right)\right) \neq \emptyset$. We continue this procedure and obtain a sequnce

$$
\left(V_{n, k_{n}}: n \in \mathbb{N}\right), \quad V_{n, k_{n}} \in \mathcal{W}_{n}
$$

such that, by construction, $\left\{\operatorname{St}\left(V_{n, k_{n}}, \mathcal{V}_{n}\right): n \in \mathbb{N}\right\}$ is a γ-cover of X. It is understood, $\left\{\operatorname{St}\left(U_{n, k_{n}}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\}$ is a γ-cover of X witnessing membership of X to the class $S_{1}^{*}(\Gamma, \Gamma)$.

We need now the following simple lemma taken from [7; L. 3.2].
3.2. Lemma. If \mathcal{U} is an ω-cover of a space X, then $\left\{U^{2}: U \in \mathcal{U}\right\}$ is an ω-cover of X^{2}.
3.3. Theorem. If every finite power of a space X satisfies $S_{1}^{*}(\Omega, \mathcal{O})$, then X satisfies $\mathrm{S}_{1}^{*}(\Omega, \Omega)$.

Proof. Let $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of ω-covers of X. Let $\mathbb{N}=$ $N_{1} \cup N_{2} \cup \cdots \cup N_{n} \cup \ldots$ be a partition of \mathbb{N} into countably many pairwise disjoint infinite subsets. For every $i \in \mathbb{N}$ and every $j \in N_{i}$ let $\mathcal{V}_{j}=$ $\left\{U^{i}: U \in \mathcal{U}_{j}\right\}$. According to Lemma 3.2, for every $i \in \mathbb{N}$, the sequence $\left(\mathcal{V}_{j}: j \in N_{i}\right)$ is a sequence of ω-covers of X^{i}. By assumption, for every $i \in \mathbb{N}$ one can choose a sequence $\left(U_{j}{ }^{i}: j \in N_{i}\right)$ so that for each $j, U_{j} \in \mathcal{U}_{j}$ and $\left\{\operatorname{St}\left(U_{j}{ }^{i}, \mathcal{V}_{j}\right): j \in N_{i}\right\}$ is an open cover for X^{i}.

We shall prove that $\left\{\operatorname{St}\left(U_{j}, \mathcal{U}_{j}\right): j \in \mathbb{N}\right\}$ is an ω-cover for X which witnesses that X satisfies $\mathrm{S}_{1}^{*}(\Omega, \Omega)$. Indeed, let $A=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ be a finite subset of X. Then $\left(a_{1}, a_{2}, \ldots, a_{p}\right) \in X^{p}$ so that there is some $k \in N_{p}$ such that $\left(a_{1}, a_{2}, \ldots, a_{p}\right) \in \operatorname{St}\left(U_{k}^{p}, \mathcal{V}_{k}\right)$; it is clear that $A \subset \operatorname{St}\left(U_{k}, \mathcal{U}_{k}\right)$.

In a similar way one may prove:
3.4. Theorem. If every finite power of a space X is a star-Menger space, then X satisfies $\mathrm{S}_{\text {fin }}^{*}(\Omega, \Omega)$.

Acknowledgements. I would like to thank the referee and M.V. MatVEEV for helpful comments.

References

[1] G. Aquaro, Point countable coverings in countably compact spaces, Proc. II Prague Topological Symp., 1966, Academia Prague, 1967, 39-41.
[2] E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), 71-103.
[3] R. Engelking, General Topology, PWN, Warszawa, 1977.
[4] J. Gerlits and ZS. Nagy, Some properties of $C(X)$, I, Topology Appl. 14 (1982), 151-161.
[5] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421.
[6] W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193-204.
[7] W. Just, A. W. Miller, M. Scheepers and P. J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996), 241-266.
[8] M. V. Matveev, On the extent of SSM spaces, (preprint, July 1998).
[9] K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberischte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) 133 (1924), 421-444.
[10] A. W. Miller and D. H. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.
[11] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55.
[12] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.

LJUBIŠA D. KOČINAC
FACULTY OF PHILOSOPHY
UNIVERSITY OF NIŠ
18000 NIŠ
YUGOSLAVIA
E-mail: kocinac@archimed.filfak.ni.ac.yu
(Received March 3, 1998; revised September 28, 1998)

