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Star-Menger and related spaces

By LJUBIŠA D. KOČINAC (Nǐs)

Abstract. In this paper we introduce and study some notions related to the
classical concepts of being a Menger space or a Rothberger space.

1. Introduction and definitions

Let A and B be collections of open covers of a topological space X.
Then the symbol S1(A,B) denotes the selection hypothesis that for each
sequence (Un : n ∈ N) of elements of A there exists a sequence (Un : n ∈ N)
such that for each n, Un ∈ Un and {Un : n ∈ N} is an element of B. The
symbol Sfin(A,B) denotes the selection hypothesis that for each sequence
(Un : n ∈ N) of elements of A there is a sequence (Vn : n ∈ N) such that
for each n ∈ N, Vn is a finite subset of Un and

⋃
n∈N Vn is an element of B

(see [7], [12]).

We are going now to introduce new selection hypotheses similar to
the previous ones. As usual, for a subset A of a space X and a collection
P of subsets of X, St(A,P) denotes the star of A with respect to P, that
is the set ∪{P ∈ P : A ∩ P 6= ∅}; for A = {x}, x ∈ X, we write St(x,P)
instead of St({x},P). We assume that all spaces are Hausdorff.

1.1. Definition. Let A and B be collections of open covers of a spa-
ce X. Then:

(a) The symbol S∗1(A,B) denotes the selection hypothesis that for each
sequence (Un : n ∈ N) of elements of A there exists a sequence (Un : n ∈ N)
such that for each n, Un ∈ Un and {St(Un,Un) : n ∈ N} is an element of B;
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(b) The symbol S∗fin(A,B) denotes the selection hypothesis: for each
sequence (Un : n ∈ N) of elements of A there is a sequence (Vn : n ∈ N)
such that for each n ∈ N, Vn is a finite subset of Un, and

⋃
n∈N{St(V,Un) :

V ∈ Vn} ∈ B;

(c) By U∗fin(A,B) we denote the selection hypothesis: for every se-
quence (Un : n ∈ N) of members of A there exists a sequence (Vn : n ∈ N)
such that for every n, Vn is a finite subset of Un and {St(∪Vn,Un) : n ∈
N} ∈ B or there is some n ∈ N such that St(∪Vn,Un) = X.

1.2. Definition. Let A and B be collections of open covers of a space X

and let K be a family of subsets of X. Then we say that X belongs to
the class SS∗K(A,B) if X satisfies the following selection hypothesis: for
every sequence (Un : n ∈ N) of elements of A there exists a sequence
(Kn : n ∈ N) of elements of K such that {St(Kn,Un) : n ∈ N} ∈ B.

When K is the collection of all one-point [resp., finite, compact] sub-
spaces of X we write SS∗1(A,B) [resp., SS∗fin(A,B), SS∗comp(A,B)] instead
of SS∗K(A,B).

1.3. Remark. The following games are naturally corresponded to the
selection hypotheses introduced above.

(1) For S∗1(A,B) we have the game G∗1(A,B) played (on a space X) as
follows: Two players, ONE and TWO, play an inning per positive integer.
In the n-th inning ONE chooses an Un ∈ A, to which TWO responds by
choosing a Un ∈ Un. The play U1, U1; . . . ;Un, Un; . . . is won by TWO if
{St(Un,Un) : n ∈ N} is an element of B; otherwise, ONE wins;

(2) The game G∗fin(A,B) is played similarly, except that in the n-th in-
ning TWO chooses a finite subset Vn of Un. The play U1,V1; . . . ;Un,Vn; . . .
is won by TWO if

⋃
n∈N{St(V,Un) : V ∈ Vn} ∈ B; otherwise, ONE wins;

(3) The game SG∗1(A,B) is played in the following way: in the n-th
inning ONE chooses some Un ∈ A and TWO responds by choosing a point
xn ∈ X. The play U1, x1; . . . ;Un, xn; . . . is won by TWO if {St(xn, An) :
n ∈ N} belongs to B; otherwise, ONE wins;

(4) The game SG∗fin(A,B) is played similarly, except that in the n-
th inning TWO chooses a finite subset Fn of X. The play U1, F1; . . . ;Un,
Fn; . . . is won by TWO if {St(Fn,Un) : n ∈ N} is a member of B; otherwise,
ONE wins;
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(5) The game SG∗comp(A,B) is played as the previous game, but in
the n-th inning TWO chooses a compact subset Kn of X. TWO wins if
{St(Kn,Un) : n ∈ N} ∈ B; otherwise, the play is won by ONE. ¤

In this paper A and B will be collections of topologically significant
open covers of a space X:

O – the collection of all open covers of X;

Ω – the collection of ω-covers of X. An open cover U of X is an
ω-cover [4] if X does not belong to U and every finite subset of X is
contained in a member of U ;

Γ – the collection of γ-covers of X. An open cover U of X is a
γ-cover [4] if it is infinite and for every x ∈ X the set {U ∈ U : x /∈ U} is
finite.

Recall that a space X is said to have the Menger property [9], [5], [6]
(resp. the Rothberger property [11]) if the selection hypothesis Sfin(O,O)
(resp. S1(O,O)) is true for X (see also [10], [7], [12]).

Following this terminology we introduce the following definition.

1.4. Definition. A space X is said to have: (1) the star-Rothberger
property , (2) the star-Menger property , (3) the strongly star-Rothberger
property , (4) the strongly star-Menger property , (5) star-K-Menger prop-
erty if it satisfies the selection hypothesis: (1’) S∗1(O,O), (2’) S∗fin(O,O),
(3’) SS∗1(O,O), (4’) SS∗fin(O,O), (5’) SS∗comp(O,O).

2. Relations between star covering properties

We give first the following diagram which illustrates relationships be-
tween here defined properties and some other star covering properties,
whose definitions can be found in [2]. Most of the implications follow al-
most directly from the definitions; we give a simple one in Proposition 2.1.
Recall that a space X is said to be strongly starcompact [strongly star-
Lindelöf , star-L-Lindelöf ] if for every open cover U of X there is a finite
[countable, Lindelöf] subset A of X such that St(A,U) = X. X is star-
compact [star-Lindelöf ] if for every open cover U of X there exists a finite
[countable] V ⊂ U such that St(∪V,U) = X.

We will also give some examples and assertions in order to compare
the properties (and their combinations) from this diagram and to clarify it.
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Observe a simple fact that any property from the diagram is an invari-
ant of contunuous mappings and is inherited by closed-and-open subspaces.

— — — — — — — — — —

| ↓
| star-Rothberger =⇒ star-Menger =⇒ star-Lindelöf

| ⇑ ⇑ ⇑
| ⇑ star-K-Menger =⇒ star-L-Lindelöf

| ⇑ ⇑ ⇑

| strongly star-Roth. =⇒ strongly star-Men. =⇒ strongly
star-Lind.

⇐= separable

| ⇑ ↗ ⇑ ⇑
| Rothberger =⇒ Menger =⇒ Lindelöf

↑ ↗ ⇑
starcomp. ⇐ strongly starcomp. ⇐ compact

Diagram 1

2.1. Proposition. Every (strongly)star-Menger space X is (strongly)
star-Lindelöf.

Proof. Consider only the case when X is a star-Menger space. Let U
be an open cover of X. Then, by definition, there is a sequence (Vn : n ∈ N)
such that for every n, Vn is a finite subset of U and

⋃
n∈N St(∪Vn,U) = X.

Then V =
⋃

n∈N Vn is a countable subfamily of U satisfying St(∪V,U) = X,
i.e. X is a star-Lindelöf space. ¤

2.2. (Matveev [8]) Example. Let A be an almost disjoint family of
infinite subsets of ω (i.e. the intersection of every two distinct elements
of A is finite) and let X = ω ∪A be the Mrówka–Isbell space constructed
from A [3], [2]. Then:

(i) X is strongly star-Menger ⇐⇒ |A| < d;

(ii) If |A| = c, then X is not star-Menger,

where d is the dominating number (see [2]).
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2.3. Example. There is a strongly star-Menger space X which is not

strongly starcompact.
Let X = [0, ω1]× [0, ω]\{(ω1, ω)} be the Tychonoff plank. It is shown

in [2] that X is not strongly starcompact. We prove that X is strongly
star-Menger.

Let (Un : n ∈ N) be a sequence of open covers of X and let N =
N1∪N2∪. . . be a partition of N into infinitely many finite pairwise disjoint
subsets. Fix n ∈ N. For each k ∈ Nn there is an αk < ω1 such that the set
{(β, k) : αk < β ≤ ω1}is contained in some member U of Un, which means
that for xk = (ω1, k) one has St(xk,Un) ⊃ U . Let An = {xk : k ∈ Nn},
αn = sup{αk : k ∈ Nn} and α = sup{αn : n ∈ N}. Then α < ω1 and⋃

n∈N St(An,Un) ⊃ (α, ω1]× [0, ω).
Further, the subspace T = [0, ω1) × {ω} of X is homeomorphic to

[0, ω1) and consequently T is strongly star-Menger. Thus there is a se-
quence (Bn : n ∈ N) of finite subsets of T such that

⋃
n∈N St(Bn,Un) ⊃ T .

Finally, the subspace K = [0, α] × [0, ω] of X is compact and thus
strongly star-Menger. There exists a sequence (Cn : n ∈ N) of finite
subsets of K so that

⋃
n∈N St(Cn,Un) ⊃ K.

For each n ∈ N put Fn = An ∪Bn ∪Cn. Then the sequence (Fn : n ∈
N) witnesses for (Un : n ∈ N) that X is a strongly star-Menger space. ¤

Recall that a space X is said to be meta-compact [meta-Lindelöf ] if
every open cover U of X has a point-finite [point-countable] open refine-
ment V (i.e., every point of X belongs to at most finitely many [countably
many] members of V).

2.4. Theorem. Every strongly star-Menger metacompact space is a

Menger space.

Proof. Let (Un : n ∈ N) be a sequence of open covers of a strongly
star-Menger metacompact space X. For every n ∈ N let Vn be a point-
finite open refinement of Un. As X is strongly star-Menger, there is a
sequence (Fn : n ∈ N) of finite subsets of X such that

⋃
n∈N St(Fn,Vn) =

X. Elements of each Fn belong to finitely many members Vn,1, . . . , Vn,k(n)

of Vn; let V ′n = {Vn,1, . . . , Vn,k(n)}. Then St(Fn,Vn) =
⋃V ′n, so that we

have
⋃

n∈N ∪V ′n = X. For every V ∈ V ′n choose a member UV of Un such
that V ⊂ UV . Then, for every n, Wn = {UV : V ∈ V ′n} is a finite subfamily
of Un and

⋃
n∈NWn = X, i.e. X is a Menger space. ¤
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2.5. Theorem. Every strongly star-Menger meta-Lindelöf space X is

Lindelöf.

Proof. Let U be an open cover of X and let V be a point-countable
refinement of U . Since X is strongly star-Menger there exists a sequence
{Fn : n ∈ N} of finite subsets of X such that

⋃
n∈N St(Fn,V) = X. For

every n ∈ N denote by Wn the collection of all members of V which
intersect Fn. Since V is point-countable and Fn is finite, Wn is countable.
So the collection W =

⋃
n∈NWn is a countable subfamily of V and is a

cover of X. For every W ∈ W pick a member UW ∈ U such that W ⊂ UW .
Then {UW : W ∈ W} is a countable subcover of U and X is a Lindelöf
space. ¤

It is known that in the class of Hausdorff spaces strongly starcom-
pactness and countable compactness coincide, so that countable compact
Hausdorff spaces are strongly star-Menger. From the previous theorem we
obtain the next well known result [1]:

2.6. Corollary. A countably compact meta-Lindelöf space is compact.

2.7. Example. There is a strongly star-Menger space which is not

Menger.
Let X = [0, ω1) be the set of all countable ordinals with the order

topology. Since X is a Hausdorff countably compact space, i.e. a strongly
starcompact space, it is strongly star-Menger. On the other hand, X

cannot have the Menger property because it is even not Lindelöf.

The following theorem gives an information when star-Menger spaces
satisfy the Menger property.

2.8. Theorem. For a paracompact (Hausdorff) space X the following

are equivalent:

(a) X is a star-Menger space;

(b) X is a star-K-Menger space;

(c) X is a strongly star-Menger space;

(d) X is a Menger space.

Proof. We have to prove only that (a) implies (d). Let {Un : n ∈ N}
be a sequence of open covers of a paracompact star-Menger space X. By
the well known Stone characterization of paracompactness [3] for every
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n ∈ N let Vn be an open star-refinement of Un. Since X is star-Menger
there exists a sequence {Wn : n ∈ N} such that for each n ∈ N, Wn is a
finite subfamily of Vn and

⋃
n∈N St(∪Wn,Vn) = X. For every W ∈ Wn

let UW be a member of Un such that St(W,Vn) ⊂ UW . Then U ′n = {UW :
W ∈ Wn} is a finite subfamily of Un for each n ∈ N and

⋃
n∈N ∪U ′n = X

which means that X is a Menger space. ¤
In a similar way we obtain

2.9. Theorem. A paracompact space X is Rothberger iff it is star-
Rothberger iff it is strongly star-Rothberger.

From Theorem 2.5, Theorem 2.8 and the fact that regular Lindelöf
spaces are paracompact we have

2.10. Corollary. A regular strongly star-Menger meta-Lindelöf space
is a Menger space.

Let us observe that the following result is true without any separation
axiom.

2.11. Theorem. A paracompact space X is star-K-Menger if and only
if it is a Menger space.

Proof. Let (Un : n ∈ N) be a sequence of open covers of X and let
for each n ∈ N, Vn be an open locally finite refinement of Un. Since X is
star-K-Menger, there exists a sequence (Kn : n ∈ N) of compact subspaces
of X satisfying

⋃
n∈N St(Kn,Vn) = X. The set V ′n of all members of Vn

which meet Kn is finite because Vn is locally finite and
⋃V ′n = St(Kn,Vn).

Therefore,
⋃

n∈N
⋃V ′n = X. For every V ∈ V ′n pick a UV ∈ Un with

V ⊂ UV and let Wn = {UV : V ∈ V ′n}. Then the sequence (Wn : n ∈ N)
guarantees that X is a Menger space. ¤

It is easy to check that the star-Menger property is preserved by count-
able topological sums. However, the product of two star-Menger spaces
need not be star-Menger as simple examples show. The same holds for
strongly star-Menger spaces.

2.12. Example. The product of a strongly star-Menger space and a
strongly star-Lindelöf space which is not strongly star-Menger.

The ordinal space X = [0, ω1) is strongly star-Menger. Let Y be the
set [0, ω1] with the following topology: for every α < ω1 the set {α} is open;
a set containing ω1 is open iff its complement in Y is countable. Then Y
is a Lindelöf space, hence a strongly star-Lindelöf space. The space X×Y
is not strongly star-Menger because it is not strongly star-Lindelöf as it
was shown in [2; Ex. 3.3.3].
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However, we have the following result.

2.13. Theorem. If X is a star-Menger (star-Rothberger) space and Y

is a compact space, then X × Y is a star-Menger (star-Rothberger) space.

Proof. We shall prove the star-Menger case. Let {Wn : n ∈ N} be a
sequence of open covers of X×Y ; without loss of generality one can suppose
that every Wn is a basic open cover of the form Un×Vn, Un an open cover
of X and Vn an open cover of Y . For a fixed x ∈ X, each Wn is an open
cover for the compact subspace {x}× Y of X × Y . Therefore, there exists
a finite subfamily Un,x × Vn,x of Wn such that ∪(Un,x × Vn,x) ⊃ {x} × Y .
Let Un,x = ∩ Un,x. Then Gn = {Un,x : x ∈ X} is an open cover of X

for every n ∈ N. Since X has the star-Menger property there are finite
Hn = {Un,x1 , . . . , Un,xk(n)} ⊂ Gn, n ∈ N, such that

⋃
n∈N St(∪Hn,Gn) =

X. Denote W ′
n = (Un,x1 ×Vn,x1)∪ · · ·∪ (Un,xk(n) ×Vn,xk(n)). We have that

for every n ∈ N, W ′
n is a finite subfamily of Wn and

⋃

n∈N
St(∪W ′

n,Wn) ⊃
⋃

n∈N
St(∪Hn,Gn)× Y = X × Y. ¤

Matveev observed in [8] that there is a consistent example of a strongly
star-Menger space X whose product with a compact space Y is not strongly
star-Menger. By Theorem 2.13 X × Y is a star-Menger space, so that we
have a consistent example of a star-Menger space which is not strongly
star-Menger.

We close this section by the following three questions.

2.14. Question. Characterize hereditarily (strongly) star-Menger
[(strongly) star-Rothberger] spaces.

2.15. Question. Find out a space X such that all finite powers of X

are (strongly) star-Menger [resp. (strongly) star-Rothberger] spaces but
Xω is not. Characterize spaces X such that Xω (resp. every finite power
of X) is (strongly) star-Menger [(strongly) star-Rothberger].

2.16. Question. Let M be the class of spaces X such that for every
(strongly) star-Menger [(strongly) star-Rothberger] space Y the product
X×Y is (strongly) star-Menger [(strongly) star-Rothberger]. Describe the
class M.
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3. Other properties

In [7; Th. 1.1], it was shown that a Lindelöf space X satisfies S1(Γ, Γ)
if and only if X satisfies Sfin(Γ,Γ). Closely following the line of reasoning
from the proof of that result we have:

3.1. Theorem. For a Lindelöf space X we have S∗1 (Γ,Γ) = S∗fin(Γ,Γ).

Proof. Clearly, S∗1 (Γ, Γ) implies S∗fin(Γ, Γ). Let X satisfies S∗fin(Γ, Γ)
and let (Un : n ∈ N) be a sequence of γ-covers of X. Suppose that
Un = {Un,1, Un,2, . . . }. We shall define a new sequence (Vn : n ∈ N) of
γ-covers of X as follows:

Vn = {Vn,1, Vn,2, . . . }, where Vn,k = U1,k ∩ U2,k ∩ · · · ∩ Un,k.

We see that V1 = U1, Vi refines Ui for i ≥ 2 and Vn,k ⊂ Vm,k whenever
n ≥ m. Let us check that every Vn is a γ-cover for X. Let x ∈ X. For
every i = 1, 2, . . . , n there is some mi ∈ N such that x ∈ Ui,k for all k > mi.
If m0 = max{m1,m2, . . . , mn}, then x ∈ Vn,k for all k > m0.

Since X satisfies S∗fin(Γ,Γ) there exists a sequence (Wn : n ∈ N), each
Wn a finite subset of Vn, such that {St(W,Vn) : W ∈ Wn, n ∈ N} is a
γ-cover of X. Now, we use tha fact that every {St(W,Vn) : W ∈ Wn} is
finite while {St(W,Vn) : W ∈ Wn, n ∈ N} is infinite being a γ-cover.

Pick a member V1,k1 ∈ W1. Then X \ St(V1,k1 ,V1) 6= ∅. Take now
some V2,k2 ∈ W2 such that St(V2,k2 ,V2) 6= St(V,V1) for all V ∈ W1; we can
suppose this because of the fact mentioned above. Then X\(St(V1,k1 ,V1)∪
St(V2,k2 ,V2)) 6= ∅. We continue this procedure and obtain a sequnce

(Vn,kn : n ∈ N), Vn,kn ∈ Wn

such that, by construction, {St(Vn,kn ,Vn) : n ∈ N} is a γ-cover of X.
It is understood, {St(Un,kn ,Un) : n ∈ N} is a γ-cover of X witnessing
membership of X to the class S∗1 (Γ, Γ). ¤

We need now the following simple lemma taken from [7; L. 3.2].

3.2. Lemma. If U is an ω-cover of a space X, then {U2 : U ∈ U} is

an ω-cover of X2.
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3.3. Theorem. If every finite power of a space X satisfies S∗1(Ω,O),
then X satisfies S∗1(Ω, Ω).

Proof. Let (Un : n ∈ N) be a sequence of ω-covers of X. Let N =
N1 ∪N2 ∪ · · · ∪Nn ∪ . . . be a partition of N into countably many pairwise
disjoint infinite subsets. For every i ∈ N and every j ∈ Ni let Vj =
{U i : U ∈ Uj}. According to Lemma 3.2, for every i ∈ N, the sequence
(Vj : j ∈ Ni) is a sequence of ω-covers of Xi. By assumption, for every
i ∈ N one can choose a sequence (Uj

i : j ∈ Ni) so that for each j, Uj ∈ Uj

and {St(Uj
i,Vj) : j ∈ Ni} is an open cover for Xi.

We shall prove that {St(Uj ,Uj) : j ∈ N} is an ω-cover for X which
witnesses that X satisfies S∗1(Ω, Ω). Indeed, let A = {a1, a2, . . . , ap} be a
finite subset of X. Then (a1, a2, . . . , ap) ∈ Xp so that there is some k ∈ Np

such that (a1, a2, . . . , ap) ∈ St(Uk
p,Vk); it is clear that A ⊂ St(Uk,Uk).

¤

In a similar way one may prove:

3.4. Theorem. If every finite power of a space X is a star-Menger

space, then X satisfies S∗fin(Ω, Ω).
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YUGOSLAVIA

E-mail: kocinac@archimed.filfak.ni.ac.yu

(Received March 3, 1998; revised September 28, 1998)


