L_{1}-convergence and strong summability of Hankel transforms

By JORGE J. BETANCOR (Tenerife) and LOURDES RODRÍGUEZ-MESA (Tenerife)

Abstract

In this paper we analyse L_{1}-convergence and strong summability of Hankel transforms.

1. Introduction

As usual, we define the Hankel transform $h_{\mu} f$ of a measurable function f on $(0, \infty)$ by

$$
h_{\mu}(f)(y)=\int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) f(x) x^{2 \mu+1} d x,
$$

where J_{μ} denotes the Bessel function of the first kind and order μ. We assume here that $\mu>-1 / 2$.

In this paper we study pointwise convergence and strong summability of Hankel transforms.

We consider, for every $1 \leq p \leq \infty$, the space $L_{p, \mu}$ that consists of all those complex valued and measurable functions f on $(0, \infty)$ such that

$$
\|f\|_{p, \mu}=\left\{\int_{0}^{\infty}|f(x)|^{p} x^{2 \mu+1} d x\right\}^{1 / p}<\infty, \quad \text { when } 1 \leq p<\infty
$$

and

$$
\|f\|_{\infty}=\operatorname{ess} \sup _{x \in(0, \infty)}|f(x)|<\infty, \quad \text { when } p=\infty
$$

Mathematics Subject Classification: 46F12.
Key words and phrases: L_{p}-spaces, Bochner-Riesz mean, Hankel transform. Partially supported by DGICYT Grant PB 97-1489 (Spain).
$L_{p, \mu}$ is endowed with the topology associated to $\|\cdot\|_{p, \mu}, 1 \leq p \leq \infty$.
C.S. Herz [12] established that the Hankel transform h_{μ} defines a bounded operator from $L_{p, \mu}$ into $L_{p^{\prime}, \mu}$, provided that $1 \leq p \leq 2$. Here p^{\prime} denotes the conjugate of p, that is, $p^{\prime}=\frac{p}{p-1}$.

The partial Hankel integral $S_{T}(f, \mu ; \cdot)$ is defined by

$$
S_{T}(f, \mu ; x)=\int_{0}^{T}(x y)^{-\mu} J_{\mu}(x y) y^{2 \mu+1} h_{\mu}(f)(y) d y, \quad x, T \in(0, \infty)
$$

for every $f \in L_{p, \mu}, 1 \leq p \leq 2$. The definition of the operator S_{T} can be extended to $L_{p, \mu}$, when $2<p<\frac{4(\mu+1)}{2 \mu+1}$, by using the Hankel convolution (see [4]). Numerous authors (see [6], [14] and [15], amongst others) have investigated the pointwise convergence of $S_{T}(f, \mu ; x)$ to $f(x)$, as $T \rightarrow \infty$. In [1] and [2] we give necessary and sufficient conditions in order that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} S_{T}(f, \mu ; x)=f(x), \quad \text { a.e. } x \in(0, \infty) \tag{1}
\end{equation*}
$$

In particular, we prove that if $x^{-\mu-1 / 2} f$ and $x^{-\mu-1 / 2} h_{\mu}(f)$ are in $L_{1, \mu}$ then (1) holds ([2, Theorem 3.1]).

The first objective on this paper is to recover f from $h_{\mu}(f)$ by means of L_{1}-convergence. As Corollary 2.1 shows, in general $S_{T}(f, \mu ; \cdot) \notin L_{1, \mu}$, $T \in(0, \infty)$, when $f \in L_{1, \mu}$. Hence it makes no sense to think about the convergence of $S_{T}(f, \mu ; \cdot)$, as $T \rightarrow \infty$, in $L_{1, \mu}$. In Section 2 we obtain necessary and sufficient conditions on f in order that the following

$$
\lim _{T \rightarrow \infty} R_{T}(f, \mu ; \cdot)=f
$$

holds, when the limit is understood in $L_{1, \mu}$ and where

$$
\begin{gathered}
R_{T}(f, \mu ; x)=-\int_{0}^{T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+2} \frac{d}{d y}\left(h_{\mu}(f)(y)\right) d y \\
T, x \in(0, \infty)
\end{gathered}
$$

Note that, according to [19, $\S 5.1$ (7)], if $f \in L_{1, \mu} \cap L_{1, \mu+1}$ then $R_{T}(f, \mu ; x)=S_{T}(f, \mu+1 ; x), x, T \in(0, \infty)$.
I.I. Hirschman [13], D.T. Haimo [11] and F.M. Cholewinski [5] investigated the convolution operation for the Hankel transformation. Let
f, g be measurable functions on $(0, \infty)$. The Hankel convolution $f \# g$ of f and g is defined by

$$
(f \# g)(x)=\int_{0}^{\infty} f(y)\left(\tau_{x} g\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y, \quad \text { a.e. } x \in(0, \infty)
$$

where the Hankel translation $\tau_{x}, x \in(0, \infty)$, is defined through

$$
\left(\tau_{x} g\right)(y)=\int_{0}^{\infty} g(z) D_{\mu}(x, y, z) \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z, \quad \text { a.e. } y \in(0, \infty)
$$

and being

$$
D(x, y, z)=\frac{2^{3 \mu-1} \Gamma(\mu+1)^{2}}{\Gamma(\mu+1 / 2) \sqrt{\pi}}(x y z)^{-2 \mu} \Delta(x, y, z)^{2 \mu-1}, \quad x, y, z \in(0, \infty)
$$

where $\Delta(x, y, z)$ represents the area of the triangle having sides with lengths x, y and z, when such a triangle exists, and $\Delta(x, y, z)=0$, otherwise.

We established in [4] that the definition of the partial Hankel integral S_{T} can be written through the Hankel convolution as follows

$$
S_{T}(f, \mu ; \cdot)=f \# \varphi_{T},
$$

for every $T \in(0, \infty), 1 \leq p \leq 2$ and $f \in L_{p, \mu}$, where $\varphi_{T}(x)=T^{2 \mu+2}(x T)^{-\mu-1} J_{\mu+1}(x T), x, T \in(0, \infty)$.

Motivated by the paper of D.V. Giang and F. Móricz [8] in Section 3 we analyse the strong summability of the Hankel transforms.

Let $q>0$. We say that the Hankel transform of $f \in L_{1, \mu}$ is strongly summable of exponent q in $x \in(0, \infty)$ when

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|S_{\nu}(f, \mu ; x)-f(x)\right|^{q} d \nu=0 \tag{2}
\end{equation*}
$$

By using Hölder's inequality we conclude that if (2) holds then it also holds when q is replaced by $r \in(0, q)$. Moreover, if $x \in(0, \infty)$ and $S_{T}(f, \mu ; x) \longrightarrow f(x)$, as $T \rightarrow \infty$, then (2) holds for every $q>0$. Hence strong summability is weaker than pointwise convergence.

Throughout this paper C will always denote a positive constant not necessarily the same in each ocurrence.

2. L_{1}-convergence of Hankel transforms

In this section, inspired in the paper of D.V. Giang and F. MóRICZ [10], we give conditions that allow to recover a function $f \in L_{1, \mu}$ from $h_{\mu}(f)$ by means of convergence in the space $L_{1, \mu}$.

Assume that $f \in L_{1, \mu}$ and that $h_{\mu}(f)$ is absolutely continuous in $(0, \infty)$. According to $[19, \S 5.1(6)]$ a partial integration leads to

$$
\begin{aligned}
S_{T}(f, \mu ; x)= & \int_{0}^{T}(x y)^{-\mu} J_{\mu}(x y) y^{2 \mu+1} h_{\mu}(f)(y) d y \\
= & x^{-2 \mu-2}\left\{(x y)^{\mu+1} J_{\mu+1}(x y) h_{\mu}(f)(y)\right]_{0}^{T} \\
& \left.-\int_{0}^{T}(x y)^{\mu+1} J_{\mu+1}(x y) \frac{d}{d y}\left(h_{\mu}(f)(y)\right) d y\right\}
\end{aligned}
$$

for every $x, T \in(0, \infty)$. Since $f \in L_{1, \mu}, h_{\mu}(f)$ is a bounded function on $(0, \infty)$. Hence, since $z^{-\nu} J_{\nu}(z)$ is bounded on $(0, \infty)$, we have

$$
\lim _{y \rightarrow 0^{+}}(x y)^{\mu+1} J_{\mu+1}(x y) h_{\mu}(f)(y)=0, \quad x \in(0, \infty)
$$

Then, it follows that

$$
\begin{align*}
& S_{T}(f, \mu ; x)=x^{-2 \mu-2}(x T)^{\mu+1} J_{\mu+1}(x T) h_{\mu}(f)(T)+R_{T}(f, \mu ; x) \tag{3}\\
& x, T \in(0, \infty)
\end{align*}
$$

where $R_{T}(f, \mu ; x)=-\int_{0}^{T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+2} \frac{d}{d y}\left(h_{\mu}(f)(y)\right) d y, x, T \in$ $(0, \infty)$. Note that if $f \in L_{1, \mu} \cap L_{1, \mu+1}$ then $h_{\mu}(f)$ is absolutely continuous on $(0, \infty)$ and according to $[19, \S 5.1(7)], R_{T}(f, \mu ; x)=S_{T}(f, \mu+1 ; x)$, $x, T \in(0, \infty)$.

We will obtain necessary and sufficient conditions in order that the following

$$
\lim _{T \rightarrow \infty} R_{T}(f, \mu ; \cdot)=f
$$

holds, in the sense of convergence in $L_{1, \mu}$.
Previously we need to establish some results.

Lemma 2.1. Assume that $f \in L_{1, \mu}$ and that $h_{\mu}(f)$ is absolutely continuous on $(0, \infty)$. Then

$$
\begin{gathered}
R_{T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)=\frac{\lambda^{2}}{\lambda^{2}-1}\left(\sigma_{\lambda T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)\right) \\
-\frac{2}{\left(\lambda^{2}-1\right) T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} h_{\mu}(f)(y) d y+\tau_{T}(f, \mu, \lambda ; x), \\
x, T \in(0, \infty) \text { and } \lambda>1,
\end{gathered}
$$

where $\sigma_{T}(f, \mu ; \cdot), T \in(0, \infty)$, denotes the Bochner-Riesz mean of f, that is,

$$
\begin{gathered}
\sigma_{T}(f, \mu ; x)=\int_{0}^{T}(x y)^{-\mu} J_{\mu}(x y)\left(1-\left(\frac{y}{T}\right)^{2}\right) h_{\mu}(f)(y) y^{2 \mu+1} d y \\
x, T \in(0, \infty)
\end{gathered}
$$

and

$$
\begin{aligned}
\tau_{T}(f, \mu, \lambda ; x)= & \frac{\lambda^{2}}{\lambda^{2}-1} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y)\left(1-\left(\frac{y}{\lambda T}\right)^{2}\right) y^{2 \mu+2} \\
& \times \frac{d}{d y}\left(h_{\mu}(f)(y)\right) d y
\end{aligned}
$$

for every $x, T \in(0, \infty)$ and $\lambda>1$.
Proof. Let $x, T \in(0, \infty)$ and $\lambda>1$. According to [2, Lemma 2.2] and by (3) we can write

$$
\begin{aligned}
& R_{T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)=S_{T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x) \\
&-x^{-2 \mu-2}(x T)^{\mu+1} J_{\mu+1}(x T) h_{\mu}(f)(T) \\
&= \frac{\lambda^{2}}{\lambda^{2}-1}\left[\sigma_{\lambda T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)\right] \\
&-\frac{\lambda^{2}}{\lambda^{2}-1} \int_{T}^{\lambda T} y^{2 \mu+1}(x y)^{-\mu} J_{\mu}(x y)\left(1-\left(\frac{y}{\lambda T}\right)^{2}\right) h_{\mu}(f)(y) d y \\
&-x^{-2 \mu-2}(x T)^{\mu+1} J_{\mu+1}(x T) h_{\mu}(f)(T) .
\end{aligned}
$$

Now a partial integration in the last integral allows to conclude the desired equality.

The following lemma is analogous to the one presented in [9, Lemma 2].

Lemma 2.2. Let $p \in(3 / 2,2]$ and $-1 / 2<\mu<p-2$. Assume that $f \in L_{p, \mu}$. Then

$$
\begin{gathered}
\int_{0}^{\infty}\left|\frac{1}{T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} f(y) d y\right| x^{2 \mu+1} d x \\
\leq C b(\lambda)\left\{\frac{1}{T^{2 \mu+2}\left(\lambda^{2 \mu+2}-1\right)} \int_{T}^{\lambda T}|f(y)|^{p} y^{2 \mu+1} d y\right\}^{1 / p}, \\
T \in(0, \infty) \text { and } \lambda>1
\end{gathered}
$$

where b is a continuous function on $(1, \infty)$ and $b(\lambda) \longrightarrow 0$, as $\lambda \rightarrow 1^{+}$. Here the constant C only depends on p and μ.

Proof. Let $T \in(0, \infty)$ and $\lambda>1$. Firstly we split the integral in the left side of (4) as follows

$$
\int_{0}^{\infty}\left|\frac{1}{T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} f(y) d y\right| x^{2 \mu+1} d x=I_{1}+I_{2}
$$

where

$$
I_{1}=\int_{0}^{1 / T}\left|\frac{1}{T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} f(y) d y\right| x^{2 \mu+1} d x
$$

and

$$
I_{2}=\int_{1 / T}^{\infty}\left|\frac{1}{T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} f(y) d y\right| x^{2 \mu+1} d x
$$

We now analyse I_{1}. By taking into account that $z^{-\eta} J_{\eta}(z), \eta \geq-1 / 2$, is bounded on $(0, \infty)$ we can write that

$$
\begin{aligned}
I_{1} & \leq C \lambda^{2} \int_{0}^{1 / T} x^{2 \mu+1} \int_{T}^{\lambda T}|f(y)| y^{2 \mu+1} d y d x=C \frac{\lambda^{2}}{T^{2 \mu+2}} \int_{T}^{\lambda T}|f(y)| y^{2 \mu+1} d y \\
& \leq C \lambda^{2}\left(\lambda^{2 \mu+2}-1\right)^{1 / p^{\prime}}\left\{\frac{1}{T^{2 \mu+2}} \int_{T}^{\lambda T}|f(y)|^{p} y^{2 \mu+1} d y\right\}^{1 / p} .
\end{aligned}
$$

On the other hand, by virtue of Hausdorff-Young's inequality for the Hankel transform ([12, Theorem 3]), we have

$$
\begin{aligned}
I_{2}= & \frac{1}{T^{2}} \int_{1 / T}^{\infty}\left|\int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} f(y) d y\right| x^{-2} x^{2 \mu+3} d x \\
\leq & \frac{1}{T^{2}}\left\{\int_{1 / T}^{\infty} x^{2 \mu+3-2 p} d x\right\}^{1 / p} \\
& \times\left\{\int_{1 / T}^{\infty} x^{2 \mu+3}\left|\int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} f(y) d y\right|^{p^{\prime}} d x\right\}^{1 / p^{\prime}} \\
\leq & C T^{-2(\mu+2) / p}\left\{\int_{T}^{\lambda T}|f(y)|^{p} y^{2 \mu+3} d y\right\}^{1 / p} \\
\leq & C \lambda^{2 / p}\left\{\frac{1}{T^{2 \mu+2}} \int_{T}^{\lambda T}|f(y)|^{p} y^{2 \mu+1} d y\right\}^{1 / p}
\end{aligned}
$$

provided that $\mu<p-2$.
Hence, we conclude that

$$
\begin{aligned}
\int_{0}^{\infty} & \left|\frac{1}{T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} f(y) d y\right| x^{2 \mu+1} d x \\
& \leq C b(\lambda)\left\{\frac{1}{T^{2 \mu+2}\left(\lambda^{2 \mu+2}-1\right)} \int_{T}^{\lambda T}|f(y)|^{p} y^{2 \mu+1} d y\right\}^{1 / p}
\end{aligned}
$$

where $b(\lambda)=\lambda^{2}\left(\lambda^{2 \mu+2}-1\right)+\lambda^{2 / p}\left(\lambda^{2 \mu+2}-1\right)^{1 / p}$.
We now characterize the convergence of $R_{T}(f, \mu ; \cdot)$ to f, as $T \rightarrow \infty$, in $L_{1, \mu}$.

Proposition 2.1. Let $-1 / 2<\mu<0$. Assume that $f \in L_{1, \mu}$, $x^{-\mu-1 / 2} f \in L_{1, \mu}$ and that $h_{\mu}(f)$ is absolutely continuous on $(0, \infty)$. Then

$$
R_{T}(f, \mu ; \cdot) \longrightarrow f, \quad \text { as } T \rightarrow \infty,
$$

in $L_{1, \mu}$ if and only if

$$
\begin{equation*}
\lim _{\lambda \rightarrow 1^{+}} \limsup _{T \rightarrow \infty} \int_{0}^{\infty}\left|\tau_{T}(f, \mu, \lambda ; x)\right| x^{2 \mu+1} d x=0 \tag{5}
\end{equation*}
$$

Here $\tau_{T}(f, \mu, \lambda ; x)$ is defined as in Lemma 2.1.
Proof. According to Lemma 2.1 we can write

$$
\begin{gathered}
\left|\int_{0}^{\infty}\right| R_{T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)\left|x^{2 \mu+1} d x-\int_{0}^{\infty}\right| \tau_{T}(f, \mu, \lambda ; x)\left|x^{2 \mu+1} d x\right| \\
\leq \frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\infty}\left|\sigma_{\lambda T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)\right| x^{2 \mu+1} d x \\
+\frac{2}{\left(\lambda^{2}-1\right) T^{2}} \int_{0}^{\infty}\left|\int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} h_{\mu}(f)(y) d y\right| x^{2 \mu+1} d x, \\
T \in(0, \infty) \text { and } \lambda>1 .
\end{gathered}
$$

It is well-known that $\sigma_{T}(f, \mu ; \cdot) \longrightarrow f$, as $T \rightarrow \infty$, in $L_{1, \mu}$, provided that $\mu \in(-1 / 2,1 / 2)([7$, p. 38]). Hence, for every $\lambda>1$,

$$
\int_{0}^{\infty}\left|\sigma_{\lambda T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)\right| x^{2 \mu+1} d x \longrightarrow 0, \quad \text { as } T \rightarrow \infty .
$$

Moreover, since $f \in L_{1, \mu}, h_{\mu}(f)$ is bounded on $(0, \infty)$ and then $h_{\mu}(f) \in L_{p, \mu}(a, b)$, for every $0<a<b<\infty$ and $1 \leq p<\infty$. Hence, from Lemma 2.2 we deduce, for $-1 / 2<\mu<0$,

$$
\begin{aligned}
\int_{0}^{\infty} & \left|\frac{1}{T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} h_{\mu}(f)(y) d y\right| x^{2 \mu+1} d x \\
& \leq C b(\lambda)\left\{\frac{1}{T^{2 \mu+2}\left(\lambda^{2 \mu+2}-1\right)} \int_{T}^{\lambda T}\left|h_{\mu}(f)(y)\right|^{2} y^{2 \mu+1} d y\right\}^{1 / 2} \\
& \leq C b(\lambda) \sup _{y \geq T}\left|h_{\mu}(f)(y)\right|, \quad T \in(0, \infty) \text { and } \lambda>1 .
\end{aligned}
$$

Here b is continuous on $(1, \infty)$ and $b(\lambda) \longrightarrow 0$, as $\lambda \rightarrow 1^{+}$(see Lemma 2.2).

According now to Riemann-Lebesgue Lemma for Hankel transform [18, p. 457] from (6) we infer that

$$
\int_{0}^{\infty}\left|\frac{1}{T^{2}} \int_{T}^{\lambda T}(x y)^{-\mu-1} J_{\mu+1}(x y) y^{2 \mu+3} h_{\mu}(f)(y) d y\right| x^{2 \mu+1} d x \rightarrow 0, \quad \text { as } T \rightarrow \infty
$$

uniformly when $1<\lambda \leq a$, for every $a>1$.
Thus we conclude that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \int_{0}^{\infty}\left|R_{T}(f, \mu ; x)-\sigma_{T}(f, \mu ; x)\right| x^{2 \mu+1} d x=0 \tag{7}
\end{equation*}
$$

if and only if

$$
\lim _{\lambda \rightarrow 1} \limsup _{T \rightarrow \infty} \int_{0}^{\infty}\left|\tau_{T}(f, \mu, \lambda ; x)\right| x^{2 \mu+1} d x=0
$$

To finish the proof it is sufficient to take into account that, since $\sigma_{T}(f, \mu ; \cdot) \longrightarrow f$, as $T \rightarrow \infty$, in $L_{1, \mu},(7)$ is equivalent to $R_{T}(f, \mu ; \cdot) \longrightarrow f$, as $T \rightarrow \infty$, in $L_{1, \mu}$.

A consequence of Proposition 2.1 is the following one.
Corollary 2.1. Let $-1 / 2<\mu<0$. Assume that $f \in L_{1, \mu}, x^{-\mu-1 / 2} f \in$ $L_{1, \mu}$, that $h_{\mu}(f)$ is absolutely continuous on $(0, \infty)$ and that (5) holds. If $T \in(0, \infty)$ and $h_{\mu}(f)(T) \neq 0$, then $S_{T}(f, \mu ; \cdot) \notin L_{1, \mu}$.

Proof. It is well-known that [18, p. 199]

$$
\sqrt{t} J_{\mu}(t)=\cos (t+\alpha)+O\left(\frac{1}{t}\right), \quad \text { as } t \rightarrow \infty
$$

for a certain $\alpha \in \mathbb{R}$. Hence, $t^{-\mu-1} J_{\mu+1}(t) \notin L_{1, \mu}$, when $-1 / 2<\mu<0$. By (3) the result follows.

According to Proposition 2.1 we can find sufficient conditions in order that $R_{T}(f, \mu ; \cdot) \longrightarrow f$, as $T \rightarrow \infty$, in $L_{1, \mu}$.

Proposition 2.2. Let $-1 / 2<\mu<p-2$, with $p \in(3 / 2,2]$. Assume that $f \in L_{1, \mu}$ and that $h_{\mu}(f)$ is absolutely continuous on $(0, \infty)$. If we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow 1^{+}} \limsup _{T \rightarrow \infty} \int_{T}^{\lambda T} y^{p-1}\left|\frac{d}{d y} h_{\mu}(f)(y)\right|^{p} d y<\infty \tag{8}
\end{equation*}
$$

then (5) is satisfied.

Proof. Choose $r \in(3 / 2, p)$ such that $-1 / 2<\mu<r-2$. From Lemma 2.2 it infers that

$$
\begin{gathered}
\int_{0}^{\infty}\left|\tau_{T}(f, \mu, \lambda ; x)\right| x^{2 \mu+1} d x \leq C \frac{\lambda^{2}}{\lambda^{2}-1} T^{2} b(\lambda) \\
\times\left\{\frac{1}{T^{2 \mu+2}\left(\lambda^{2 \mu+2}-1\right)} \int_{T}^{\lambda T}\left(1-\left(\frac{y}{\lambda T}\right)^{2}\right)^{r}\left|\left(\frac{1}{y} \frac{d}{d y}\right) h_{\mu}(f)(y)\right|^{r} y^{2 \mu+1} d y\right\}^{\frac{1}{r}}, \\
T \in(0, \infty) \text { and } \lambda>1,
\end{gathered}
$$

where $b(\lambda)=\lambda^{2}\left(\lambda^{2 \mu+2}-1\right)+\lambda^{2 / r}\left(\lambda^{2 \mu+2}-1\right)^{1 / r}, \lambda>1$.
Hence we conclude after straightforward manipulations that, for every $T \in(0, \infty)$ and $\lambda>1$,

$$
\begin{gather*}
\int_{0}^{\infty}\left|\tau_{T}(f, \mu, \lambda ; x)\right| x^{2 \mu+1} d x \\
\leq C \frac{b(\lambda)}{\left(\lambda^{2 \mu+2}-1\right)^{1 / r}}\left\{\int_{T}^{\lambda T} y^{r-1}\left|\frac{d}{d y} h_{\mu}(f)(y)\right|^{r} d y\right\}^{1 / r} . \tag{9}
\end{gather*}
$$

By using Hölder's inequality it is not hard to see that (8) and (9) imply (5) holds.

An immediate consequence of Proposition 2.2 is the following.
Corollary 2.2. Let $-1 / 2<\mu<0$. Assume that $f \in L_{1, \mu}$ and that $h_{\mu}(f)$ is ablutely continuous on $(0, \infty)$. If $y \frac{d}{d y} h_{\mu}(f)(y)=O(1)$, as $y \rightarrow \infty$, then (5) holds.

3. Strong summability of Hankel transforms

In this section we study the strong summability of Hankel transforms.
Firstly we define the h_{μ}-Lebesgue points for a function $f \in L_{p, \mu}$ as follows. Let $1 \leq p<\infty$ and $f \in L_{p, \mu}$. We will say that $x \in(0, \infty)$ is a h_{μ}-Lebesgue point for f of order p (to simplify $x \in H L^{\mu}(f, p)$) if and only if

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{t^{2 \mu+2}} \int_{0}^{t}\left|\left(\tau_{y} f\right)(x)-f(x)\right|^{p} y^{2 \mu+1} d y=0 .
$$

It is clear that $H L^{\mu}(f, p)$ contains to $H L^{\mu}(f, q)$ provided that $1 \leq$ $p<q<\infty$ and $f \in L_{p, \mu} \cap L_{q, \mu}$.

We now prove that $H L^{\mu}(f, p)$ is full in $(0, \infty)$.
Proposition 3.1. Let $1 \leq p<\infty$ and $f \in L_{p, \mu}$. Then the Lebesgue measure of the set $(0, \infty) \backslash H L^{\mu}(f, p)$ is zero.

Proof. Let $t>0$. Define the set

$$
A_{t}=\left\{x \in(0, \infty): \limsup _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon^{2 \mu+2}} \int_{0}^{\epsilon}\left|\left(\tau_{y} f\right)(x)-f(x)\right|^{p} y^{2 \mu+1} d y>t\right\} .
$$

The proof will be finish when we prove that $\gamma\left(A_{t}\right)=0$, where $d \gamma=$ $x^{2 \mu+1} d x$.

Let $\epsilon>0$. We can write $f=g+h$ where g is a smooth function having compact support in $(0, \infty)$ and $\|h\|_{p, \mu}<\epsilon$. By proceeding as in the proof of [3, Proposition 2.1] we can obtain

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon^{2 \mu+2}} \int_{0}^{\epsilon}\left|\left(\tau_{y} g\right)(x)-g(x)\right|^{p} y^{2 \mu+1} d y=0, \quad x \in(0, \infty)
$$

Hence by invoking Jensen's inequality and [13, $\S 2$ (2)] we obtain

$$
\begin{align*}
& \limsup _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon^{2 \mu+2}} \int_{0}^{\epsilon}\left|\left(\tau_{y} f\right)(x)-f(x)\right|^{p} y^{2 \mu+1} d y \\
& \quad \leq \limsup _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon^{2 \mu+2}} \int_{0}^{\epsilon}\left|\left(\tau_{y} h\right)(x)-h(x)\right|^{p} y^{2 \mu+1} d y \tag{10}\\
& \quad \leq C\left(\limsup _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon^{2 \mu+2}} \int_{0}^{\epsilon}\left(\tau_{y}|h|^{p}\right)(x) y^{2 \mu+1} d y+|h(x)|^{p}\right) \\
& \quad \leq C\left(M\left(|h|^{p}\right)(x)+|h(x)|^{p}\right), \quad x \in(0, \infty) .
\end{align*}
$$

Here, by M we denote the maximal function introduced by K. Stempak [16] defined by

$$
M(F)(x)=\sup _{\epsilon>0} \frac{1}{\epsilon^{2 \mu+2}} \int_{0}^{\epsilon} \tau_{x}(|F|)(y) y^{2 \mu+1} d y, \quad x \in(0, \infty)
$$

when F is a measurable function on $(0, \infty)$.
Then we deduce from (10) that

$$
A_{t} \subset\left\{x \in(0, \infty): M\left(|h|^{p}\right)(x)>\frac{t}{2 C}\right\} \cup\left\{x \in(0, \infty):|h(x)|^{p}>\frac{t}{2 C}\right\} .
$$

Moreover, by invoking [17, (3)] we obtain

$$
\gamma\left(\left\{x \in(0, \infty): M\left(|h|^{p}\right)(x)>\frac{t}{2 C}\right\}\right) \leq \frac{C}{t}\|h\|_{p, \mu}^{p} \leq \frac{C}{t} \epsilon^{p}
$$

Also, it is clear that

$$
\gamma\left(\left\{x \in(0, \infty):|h(x)|^{p}>\frac{t}{2 C}\right\}\right) \leq \frac{C}{t}\|h\|_{p, \mu}^{p} \leq \frac{C}{t} \epsilon^{p}
$$

Hence, $\gamma\left(A_{t}\right) \leq \frac{C}{t} \epsilon^{p}$. By letting $\epsilon \rightarrow 0^{+}$we can obtain the desired result.

Our result about strong summability of Hankel transforms is the following.

Proposition 3.2. Let $-1 / 2<\mu<0$. Let f be in $L_{1, \mu} \cap L_{p, \mu}$, for some $\mu+2<p<\infty$, and let x be in $H L^{\mu}(f, q)$, for some $q>0$. Then

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|S_{\nu}(f, \mu ; x)-f(x)\right|^{q} d \nu=0 \tag{11}
\end{equation*}
$$

Hence (11) holds for almost every $x \in(0, \infty)$.
Proof. Without loss of generality we can assume that $\mu+2<p<2$ and that $q=p^{\prime}($ see $[8$, Remark 4$])$.

Let $T \in(0, \infty)$. By invoking [4, p. 3] we can write, for every $\nu \in(0, T)$,

$$
S_{\nu}(f, \mu ; x)-f(x)=I_{1}(\nu, T)+I_{2}(\nu, T)
$$

where

$$
I_{1}(\nu, T)=\int_{0}^{1 / T}\left[\left(\tau_{x} f\right)(y)-f(x)\right] \varphi_{\nu}(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y
$$

and

$$
I_{2}(\nu, T)=\int_{1 / T}^{\infty}\left[\left(\tau_{x} f\right)(y)-f(x)\right] \varphi_{\nu}(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y
$$

Here we have taken into account that $\int_{0}^{\infty} \varphi_{\nu}(y) y^{2 \mu+1} d y=2^{\mu} \Gamma(\mu+1)$.
Recall that $\varphi_{\nu}(y)=\nu^{2 \mu+2}(y \nu)^{-\mu-1} J_{\mu+1}(y \nu), \nu, y \in(0, \infty)$.

Since the function $z^{-\eta} J_{\eta}(z), \eta \geq-1 / 2$, is bounded on $(0, \infty)$, it infers that

$$
\begin{aligned}
& \left\{\frac{1}{T} \int_{0}^{T}\left|I_{1}(\nu, T)\right|^{q} d \nu\right\}^{1 / q} \\
\leq & C\left\{\frac{1}{T} \int_{0}^{T}\left[\nu^{2 \mu+2} \int_{0}^{1 / T}\left|\left(\tau_{x} f\right)(y)-f(x)\right| \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y\right]^{q} d \nu\right\}^{1 / q} \\
\leq & C \int_{0}^{1 / T}\left|\left(\tau_{x} f\right)(y)-f(x)\right| \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y\left\{\frac{1}{T} \int_{0}^{T} \nu^{2(\mu+1) q} d \nu\right\}^{1 / q} \\
= & C T^{2 \mu+2} \int_{0}^{1 / T}\left|\left(\tau_{x} f\right)(y)-f(x)\right| \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y .
\end{aligned}
$$

Hence, since $H L^{\mu}(f, q)$ is contained in $H L^{\mu}(f, 1)$ it concludes that

$$
\left\{\frac{1}{T} \int_{0}^{T}\left|I_{1}(\nu, T)\right|^{q} d \nu\right\}^{1 / q} \longrightarrow 0, \quad \text { as } T \rightarrow \infty
$$

On the other hand, according to [12, Theorem 3] we obtain

$$
\begin{aligned}
& \left\{\frac{1}{T} \int_{0}^{T}\left|I_{2}(\nu, T)\right|^{q} d \nu\right\}^{1 / q} \leq C\left\{\left.\frac{1}{T} \int_{0}^{T} \right\rvert\, \int_{1 / T}^{\infty}\left[\left(\tau_{x} f\right)(y)\right.\right. \\
& \left.-f(x)]\left.\nu^{2 \mu+2}(y \nu)^{-\mu-1} J_{\mu+1}(y \nu) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y\right|^{q} d \nu\right\}^{1 / q} \\
\leq & C T^{2[(\mu+1) q-\mu-2] / q}\left\{\int_{1 / T}^{\infty}\left|\frac{\left(\tau_{x} f\right)(y)-f(x)}{y^{2}}\right|^{p} y^{2 \mu+3} d y\right\}^{1 / p} .
\end{aligned}
$$

We now define the function g through

$$
g(t)=\int_{0}^{t}\left|\left(\tau_{x} f\right)(y)-f(x)\right|^{p} y^{2 \mu+1} d y, \quad t \in(0, \infty) .
$$

Then by partial integration it obtains

$$
\begin{aligned}
& \int_{1 / T}^{\infty}\left|\frac{\left(\tau_{x} f\right)(y)-f(x)}{y^{2}}\right|^{p} y^{2 \mu+3} d y=\int_{1 / T}^{\infty} \frac{g^{\prime}(y)}{2^{2(p-1)}} d y \\
&=\left.\frac{g(y)}{y^{2(p-1)}}\right]_{1 / T}^{\infty}+2(p-1) \int_{1 / T}^{\infty} \frac{g(y)}{y^{2 p-1}} d y \\
&=\lim _{y \rightarrow \infty} \frac{1}{y^{2(p-1)}} \int_{0}^{y}\left|\left(\tau_{x} f\right)(s)-f(x)\right|^{p} s^{2 \mu+1} d s \\
& \quad-T^{2(p-1)} \int_{0}^{1 / T}\left|\left(\tau_{x} f\right)(s)-f(x)\right|^{p} s^{2 \mu+1} d s \\
& \quad+2(p-1) \int_{1 / T}^{\infty} \frac{g(y)}{y^{2 p-1}} d y .
\end{aligned}
$$

Hence since τ_{x} is a contractive operator from $L_{p, \mu}$ into itself ([17, p. 16]) and since, under our assumption, $H L^{\mu}(f, q)$ is contained in $H L^{\mu}(f, p)$, we can conclude that

$$
\left\{\frac{1}{T} \int_{0}^{T}\left|I_{2}(\nu, T)\right|^{q} d \nu\right\}^{1 / q} \longrightarrow 0, \quad \text { as } T \rightarrow \infty
$$

Thus the proof is finished.
Acknowledgement. The authors would like to thank to Professor F. Móricz by his correspondence.

References

[1] J. J. Betancor and L. Rodríguez-Mesa, Pointwise convergence for Hankel transform, Transforms Methods \& Special Functions, Varna, 1996.
[2] J. J. Betancor and L. Rodríguez-Mesa, Pointwise convergence and a new inversion theorem for Hankel transforms, Publ. Math. Debrecen 50(3-4) (1997), 235-247.
[3] J. J. Betancor and L. Rodríguez-Mesa, On Hankel convolutors on certain Hankel transformable function spaces, Glasgow Math. J. 39 (1997), 351-369.
[4] J. J. Betancor and L. Rodríguez-Mesa, Lipschitz-Hankel spaces and partial Hankel integrals, Integral Transforms and Special Functions 7(1-2) (1998), 1-12.
[5] F. M. Cholewinski, A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. 58 (1965).
[6] L. Colzani, A. Crespi, G. Travaglini and M. Vignati, Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in euclidean and noneuclidean spaces, Trans. Amer. Math. Soc. 338(1) (1993), 43-55.
[7] L. Colzani, G. Travaglini and M. Vignati, Bochner-Riesz means of functions in weak- L^{p}, Mh. Math. 115 (1993), 35-45.
[8] D. V. Giang and F. Móricz, The strong summability of Fourier transforms, Acta Math. Hungar. 65(4) (1994), 403-419.
[9] D. V. Giang and F. Móricz, Lebesgue integrability of Fourier transforms, Acta. Sci. Math. (Szeged) 60 (1995), 329-343.
[10] D. V. Giang and F. Móricz, On the L^{1}-convergence of Fourier transforms, J. Austral. Math. Soc. (Series A) 60 (1996), 405-420.
[11] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330-375.
[12] C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA 40 (1954), 996-999.
[13] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/61), 307-336.
[14] Y. Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc., 103(4) (1988), 1063-1069.
[15] E. Prestini, Almost everywhere convergence of spherical partial sums for radial functions, Mh. Math. 105 (1988), 207-216.
[16] K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform, University of Wroclaw, 1985, Preprint no. 45.
[17] K. Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier -Bessel, C. R. Acad. Sc. Paris 303 (serie I, no 1) (1986), 15-19.
[18] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1959.
[19] A. H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968.

```
JORGE J. BETANCOR
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
UNIVERSIDAD DE LA LAGUNA
38271 - LA LAGUNA, TENERIFE
ISLAS CANARIAS
ESPAÑA.
E-mail: jbetanco@ull.es
LOURDES RODRÍGUEZ-MESA
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
UNIVERSIDAD DE LA LAGUNA
38271 - LA LAGUNA, TENERIFE
ISLAS CANARIAS
ESPAÑA.
E-mail: Irguez@ull.es
```

