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On the location of the zeros
of polynomials defined by linear recursions

By FERENC MÁTYÁS (Eger)

Abstract. Let the polynomials Gn(x) be defined by the recursive formula Gn(x)
= p(x)Gn−1(x) + q(x)Gn−2(x) for n ≥ 2, where p(x), q(x), G0(x) and G1(x) are given
polynomials with complex coefficients. The notation Gn(x) = Gn(p(x), q(x), G0(x),
G1(x)) is also used. In this paper we determine the location of the zeros of polynomials
Gn(x) if p(x), q(x), G0(x) and G1(x) are special polynomials, and give a bound for
the absolute values of the complex zeros of the polynomials Gn(ax + b, q, c, dx + e) if
a, b, q, d, e ∈ C and aqcd 6= 0. The theorems generalize some earlier results.

1. Introduction

Let p(x), q(x), G0(x) and G1(x) be polynomials with complex coeffi-
cients and for n ≥ 2 let us define the polynomials Gn(x) by

(1) Gn(x) = p(x)Gn−1(x) + q(x)Gn−2(x).

We assume that neither of the polynomials p(x) and q(x) is equal to the
zero polynomial and at most one of them is constant, furthermore at most
one of the polynomials G0(x) and G1(x) is the zero polynomial. For brevity
we use the notation Gn(x) = Gn (p(x), q(x), G0(x), G1(x)), as well.

With special polynomials we can get the well-known Fibonacci polyno-
mials (Fn(x)) and the Chebyshev polynomials of the second kind (Un(x)),
namely

Fn(x) = Gn(x, 1, 0, 1)

Mathematics Subject Classification: 11B39, 12D10.
Key words and phrases: polynomial sequences, zeros of polynomials, bound for the
zeros.
Research supported by the Hungarian OTKA Foundation, No. T 020295.



454 Ferenc Mátyás

and
Un(x) = Gn(2x,−1, 0, 1).

It is known, by trigonometrical identities and x = cos θ, that

Un(x) =
sin nθ

sin θ
(θ ∈ C, θ 6= kπ, k ∈ Z),

and so the zeros zk of the polynomial Un(x) are

(2) zk = cos
kπ

n
, k = 1, 2, . . . , n− 1.

If we consider the polynomials Gn(x) as polynomial functions of x ∈ C
and H denotes the set of the roots of the equation p2(x)+4q(x) = 0, then
for x ∈ C \H

(3) Gn(x) = a(x)αn(x)− b(x)βn(x),

where α(x) and β(x) are the roots of the characteristic equation λ2 −
p(x)λ− q(x) = 0, that is

(4) α(x) =
p(x) +

√
p2(x) + 4q(x)
2

and β(x) =
p(x)−

√
p2(x) + 4q(x)
2

,

while

a(x) =
G1(x)− β(x)G0(x)

α(x)− β(x)
and b(x) =

G1(x)− α(x)G0(x)
α(x)− β(x)

.

Recently, some papers have been published on the zeros of the poly-
nomials Gn(x). These papers can be separated into two classes. One class
deals with the real zeros of the Fibonacci-type polynomials Gn(x, 1, G0(x),
G1(x)). For example, Moore [7] investigated the maximal real zero gn

of the polynomials Gn(x, 1,−1, x− 1) and proved that limn→∞ gn = 3/2.
In [5], under some restrictions, we observed the accumulation points of the
set of real zeros of the polynomials Gn(x, 1, G0(x), G1(x)), while in [4] an
asymptotic formula was given for the maximal real zeros of the polynomials
Gn(x, 1, a, x± a) (a ∈ R \ {0}).

The second class of the above-mentioned papers, among others, inves-
tigated the complex zeros of the Morgan–Voyce-type polynomials Gn(x+p,

q, G0(x), G1(x)) (p, q ∈ R \ {0}). Adopting our notation, Swamy [9], [10]
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derived explicit formulae for the zeros of the polynomials Gn(x + 2,
−1, 1, x + 1), Gn(x + 2,−1, 1, x + 2) and Gn(x + p,−q, 1, x + p ± √

q).
André-Jeannin [1]–[3] determined the zeros of the polynomials Gn(x+2,
−1, 1, x + 3), Gn(x + p,−q, 0, 1) and Gn(x + p,−q, 2, x + p). These results
are based upon the relation between these polynomials and Un(x).

Using linear-algebraic methods, Ricci [8] proved for the complex ze-
ros z of the polynomials Gn(x, 1, 1, x+1) (n ≥ 1) that |z| < 2, and a similar
result was obtained by us in [6] for the complex zeros of the polynomials
Gn(x, 1, a, x + b) (a ∈ R \ {0}, b ∈ R).

The purpose of this paper is to characterize the zeros of the follow-
ing polynomials: Gn(p(x), q(x), 0, 1), Gn(p(x), q, c0, c1) (q, c0, c1 ∈ C, c1 =
±c0

√−q), Gn(p(x), q, c, cp(x) + e) (q, c, e ∈ C, e = 0 or ±c
√−q = e) and

to find a bound for the zeros of the polynomials Gn(ax + b, q, c, dx + e),
where a, b, q, c, d, e ∈ C, aqcd 6= 0. From our results one can get the above-
mentioned results of Swamy, André-Jeannin, Ricci and Mátyás.

2. Results

Write
d1(x) = gcd

(
p(x), q(x)

)
,

d2(x) = gcd
(
G1(x), q(x)

)
,

d3(x) = gcd
(
G0(x), G1(x)

)

and for x ∈ C let
√

x denote one of the complex square roots of x (for
example with 0 ≤ arg(

√
x ) < π).

It is obvious by (1) that if di(x) = 0 with some i (i = 1, 2, 3) and
a complex x = z, then Gn(z) = 0 for every n ≥ 2. In the sequel we do
not deal with these simple cases, therefore we suppose that di(x) = 1 for
i = 1, 2, 3.

It can easily be derived from (3) that for n ≥ 0

(5) Gn (p(x), q(x), 0, G1(x)) = G1(x)Gn (p(x), q(x), 0, 1)

and for n ≥ 1, by α(x)β(x) = −q(x),

(6) Gn (p(x), q(x), G0(x), 0) = G0(x)q(x)Gn−1 (p(x), q(x), 0, 1) .

Since we have supposed that d3(x) = 1 and d2(x) = 1, thus, in (5), G1(x)
is a constant, while, in (6), G0(x) and q(x) are constants. Therefore, to de-
termine the zeros of the polynomials Gn(p(x), q(x), 0, G1(x)) and Gn(p(x),
q(x), G0(x), 0) is enough to consider the case Gn(p(x), q(x), 0, 1).
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Theorem 1. Let n ≥ 2. Then Gn (p(x), q(x), 0, 1) = 0 with a complex

x = z if and only if z is a root of the equation

(7) p(x)− 2
√
−q(x) cos

kπ

n
= 0

for some k = 1, 2, . . . , n− 1.

Remarks. Because of the signs of the cosines, the roots of (7) do not
depend on the choice of the square root of −q(x).

By our theorem, to obtain the zeros of Gn (p(x), q(x), 0, 1) one has to
solve n− 1 equations of type (7), where the degree of these equations does
not depend on n.

Using (7), some known results on the zeros of special polynomials can
be derived. For instance, let zk, z′k and z′′k denote the zeros of the Fibonacci(
Fn(x)

)
, Pell

(
Pn(x) = Gn (2x, 1, 0, 1)

)
and the Jacobsthal polynomial(

Jn(x) = Gn (1, 2x, 0, 1)
)
, then

zk = 2i cos
kπ

n
, z′k = i cos

kπ

n
(k = 1, 2, . . . , n− 1)

and
z′′k = − 1

8cos2 kπ
n

(
1 ≤ k <

n

2

)
,

respectively.
For the polynomial Gn (x + p,−q, 0, 1) we get that its zeros z′′′k are

z′′′k = −p + 2
√

q cos
kπ

n
(k = 1, 2, . . . , n− 1),

as was shown by André-Jeannin in [2].
In the following theorem we characterize the zeros of the polynomials

Gn (p(x), q, c0, c1), where c0 and c1 are special constants.

Theorem 2. Let q, c0, c1 ∈ C \ {0}, c1 = ±c0
√−q and n ≥ 2. For a

complex number x = z, in the case c1 = c0
√−q, Gn (p(x), q, c0, c1) = 0 if

and only if z satisfies the equation

p(x)− 2
√−q cos

2k − 1
2n− 1

π = 0,
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while, in the case c1 = −c0
√−q, z satisfies the equation

p(x)− 2
√−q cos

2k

2n− 1
π = 0

for some k = 1, 2, . . . , n− 1.

Considering the zeros of the polynomials Gn (p(x), q, c, cp(x) + e) ,
where e and c are special contants, we have:

Theorem 3. Let n ≥ 1, q, c ∈ C \ {0}, e ∈ C, e = 0 or ±c
√−q = e.

The zeros of the polynomial Gn (p(x), q, c, cp(x) + e) are equivalent to the
roots of the following equations for some k = 1, 2, . . . , n:
in the case e = 0

p(x)− 2
√−q cos

kπ

n + 1
= 0,

in the case −c
√−q = e

p(x)− 2
√−q cos

2k − 1
2n + 1

π = 0

and in the case c
√−q = e

p(x)− 2
√−q cos

2k

2n + 1
π = 0.

Remark. The mentioned results on the zeros of the Morgan–Voyce-
type polynomials follow from Theorem 3 if we substitute the actual poly-
nomials. For example the zeros x = zk of Gn(x + p,−q, 1, x + p +

√
q)

are
zk = −p + 2

√
q cos

2k

2n + 1
π (k = 1, 2, . . . , n),

since in this case c
√−q = e.

Moreover, using linear-algebraic methods, we derive a bound for the
zeros of a general class of polynomials Gn(ax+b, q, c, dx+e). The following
theorem generalizes the result of [6].

Theorem 4. Let a, b, q, c, d, e ∈ C, aqcd 6= 0 and n ≥ 1. If Gn(ax + b,
q, c, dx + e) = 0 for x = x1, x2, . . . , xn, then

max
1≤i≤n

|xi| ≤ 1
|ad|

(
max

(|ca√q|+ |ae− db|, 2|d√q|) + |bd|
)

.
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Remark. According to Theorem 4, for example the zeros of the Fer-
mat–Lucas polynomials Gn(3x,−2, 2, 3x) satisfy the inequality |z| ≤ 2

√
2/3

for every n ≥ 1.

3. Lemmas and proofs

To prove our theorems some auxiliary results are needed.

Lemma 1. Let Gn(x) = Gn (p(x), q(x), G0(x), G1(x)) and the degree

of q(x) ≥ 1. If q(z) = 0 with a complex z, then Gn(z) 6= 0 for every n ≥ 1.

Proof. By the assumption d2(x) = 1 we have G1(z) 6= 0. If there is
an n ≥ 2 for which Gn(z) = 0, then (1) and d1(x) = 1 imply Gn−1(z) = 0,
but this leads to G1(z) = 0, which is a contradiction.

According to Lemma 1, the zeros of the polynomial q(x) can be omit-
ted at the investigation of zeros of the polynomial Gn(x). Let K = {z : z ∈C,
q(z) = 0} and H is as before, that is, H = {z : z ∈ C, p2(z) + 4q(z) = 0}.

Lemma 2. For x ∈ C \ (H ∪K) and n ≥ 1 we have

Gn(p(x), q(x), G0(x), G1(x))

=
(√

±q(x)
)n−1

Gn

(
p(x)√
±q(x)

,±1,
√
±q(x)G0(x), G1(x)

)
,

where the same signs are taken together.

Proof. By (4),

α(x) =
p(x) +

√
p2(x) + 4q(x)
2

=
√
±q(x)

p(x)√
±q(x)

+

√(
p(x)√
±q(x)

)2

± 4

2

and

β(x) =
p(x)−

√
p2(x) + 4q(x)
2

=
√
±q(x)

p(x)√
±q(x)

−
√(

p(x)√
±q(x)

)2

± 4

2
.
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The equation λ2 − p(x)√
±q(x)

λ − (±1) = 0 is the characteristic equation

of the polynomials Gn

(
p(x)√
±q(x)

,±1,
√
±q(x)G0(x), G1(x)

)
and let α?(x)

and β?(x) denote the roots of it. Then

α?(x)
√
±q(x) = α(x), β?(x)

√
±q(x) = β(x)

and (3) yield

Gn(p(x), q(x), G0(x), G1(x))

=
G1(x)−

√
±q(x)G0(x)β?(x)√

±q(x)(α?(x)− β?(x))

(√
±q(x)

)n

α?n(x)

− G1(x)−
√
±q(x)G0(x)α?(x)√

±q(x)(α?(x)− β?(x))

(√
±q(x)

)n

β?n(x)

=
(√

±q(x)
)n−1

Gn

(
p(x)√
±q(x)

,±1,
√
±q(x)G0(x), G1(x)

)
.

The next lemma shows a relation between the polynomials Un(x) and
Gn(2x,−1, 1, t), where t ∈ C \ {0}.

Lemma 3. For n ≥ 1 and t ∈ C \ {0}

Gn(2x,−1, 1, t) = tUn(x)− Un−1(x).

Proof. It is easy to verify that G1(2x,−1, 1, t) = t = tU1(x)−U0(x)
and G2(2x,−1, 1, t) = 2xt−1 = tU2(x)−U1(x). Furthermore, we suppose
that the statement is true for n−1 and n−2 (n ≥ 3) then, by (1) and our
induction hipothesis,

Gn(2x,−1, 1, t) = 2xGn−1(2x,−1, 1, t)−Gn−2(2x,−1, 1, t)

= 2x
(
tUn−1(x)− Un−2(x)

)− (
tUn−2(x)− Un−3(x)

)

= t
(
2xUn−1(x)− Un−2(x)

)− (
2xUn−2(x)− Un−3(x)

)

= tUn(x)− Un−1(x).

To prove Theorem 4 we need the following lemma.
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Lemma 4. Let n ≥ 1 and a, b ∈ C (a 6= 0). If Gn(x, 1, a, x + b) = 0
for the complex numbers x = x1, x2, . . . , xn, then

max
1≤i≤n

|xi| ≤ max
(|a|+ |b|, 2)

for every n ≥ 1.

Proof. The proof of this lemma can be found in [6]. An outline of
the proof is as follows. First one can verify by induction on n that the
polynomial Gn(x, 1, a, x + b) is the characteristic polynomial of the n× n
matrix

An =




−b −ai 0 · · · 0 0 0
−i 0 −i · · · 0 0 0
0 −i 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −i 0 −i

0 0 0 · · · 0 −i 0




.

Therefore, the roots of Gn(x, 1, a, x + b) = 0 are the eigenvalues of the
matrix An. We get, by Gershgorin’s theorem, that the eigenvalues (roots)
x1, x2, . . . , xn are in or on the so-called Gershgorin circles. In our case
there are only two distinct circles (with distinct midpoints). Their mid-
points are −b and 0 in the Gaussian plane, while their radii are |a| and 2,
respectively. From this the inequality

max
1≤i≤n

|xi| ≤ max
(|a|+ |b|, 2)

follows immediately for every n ≥ 1.

Proof of Theorem 1. Using Lemma 2, we get that for x ∈ C\(H∪K)

Gn(p(x), q(x), 0, 1) =
(√

−q(x)
)n−1

Gn

(
p(x)√
−q(x)

,−1, 0, 1

)
.

Let

(8) 2y =
p(x)√
−q(x)

,

then

Gn

(
p(x)√
−q(x)

,−1, 0, 1

)
= Gn(2y,−1, 0, 1) = Un(y).
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By (2), Un(yk) = 0 if and only if yk = cos kπ
n (k = 1, 2, . . . , n − 1).

Therefore, with (8), the zeros of the polynomial Gn(p(x), q(x), 0, 1) (n ≥ 2)
satisfy the equation p(x)−2

√
−q(x) cos kπ

n = 0 for some k = 1, 2, . . . , n−1.

Proof of Theorem 2. Acccording to Lemma 2 and (3), for n ≥ 2 we
obtain

Gn(p(x), q, c0, c1) =
(√−q

)n−1
Gn

(
p(x)√−q

,−1, c0

√−q, c1

)

=
(√−q

)n
c0Gn

(
p(x)√−q

,−1, 1,
c1

c0
√−q

)
.

With

(9) 2y =
p(x)√−q

,

one can see that

Gn(p(x), q, c0, c1) =
(√−q

)n
c0Gn

(
2y,−1, 1,

c1

c0
√−q

)
,

from which, by Lemma 3,

Gn(p(x), q, c0, c1) =
(√−q

)n
c0

(
c1

c0
√−q

Un(y)− Un−1(y)
)

follows. Therefore, Gn(p(x), q, c0, c1) = 0 if and only if

c1

c0
√−q

Un(y) = Un−1(y),

hence, with y = cos θ
(
θ ∈ C \ {kπ : k ∈ Z}), we get

(10)
c1

c0
√−q

sinnθ

sin θ
=

sin(n− 1)θ
sin θ

.

In our cases, (10) can easily be solved for every n ≥ 2. That is, if c1 =
c0
√−q then θ = 2k−1

2n−1π (k ∈ Z) are the solutions of (10), and so we get
the distinct values yk by

yk = cos
2k − 1
2n− 1

π (k = 1, 2, . . . , n− 1).
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If c1 = −c0
√−q then the solutions of (10) are θ = 2k

2n−1π (k ∈ Z), and
so the distinct values yk are

yk = cos
2k

2n− 1
π (k = 1, 2, . . . , n− 1).

Using (9), the desired formulae can be obtained.

Proof of Theorem 3. It is easy to see by (1) that for n ≥ 1

Gn(p(x), q, c, cp(x) + e) = Gn+1

(
p(x), q,

e

q
, c

)
.

If e = 0 then, by Theorem 1, the zeros of Gn(p(x), q, c, cp(x)) and

p(x)− 2
√−q cos

kπ

n + 1
= 0

coincide for some k = 1, 2, . . . , n.
If −c

√−q = e or c
√−q = e then, by Theorem 2, the zeros of the

polynomial Gn(p(x), q, c, cp(x) + e) and the roots of the equations

p(x)− 2
√−q cos

2k − 1
2n + 1

π = 0

or
p(x)− 2

√−q cos
2k

2n + 1
π = 0

are the same for some k = 1, 2, . . . , n, respectively.

Proof of Theorem 4. By Lemma 2,

Gn(ax + b, q, c, dx + e) = (
√

q )n−1
Gn

(
ax + b√

q
, 1, c

√
q, dx + e

)
.

With

(11) y =
ax + b√

q

(
x =

y
√

q − b

a

)
,

we get

Gn(ax + b, q, c, dx + e) = (
√

q )n−1
Gn

(
y, 1, c

√
q,

d
√

q

a
y +

ae− db

a

)
,
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from which, by (3),

Gn(ax + b, q, c, dx + e) = (
√

q )n d

a
Gn

(
y, 1,

ca

d
, y +

ae− db

d
√

q

)

follows. According to Lemma 4, the roots y1, y2, . . . , yn of the equation

Gn

(
y, 1,

ca

d
, y +

ae− db

d
√

q

)
= 0

satisfy the inequality

max
1≤i≤n

|yi| ≤ max
(∣∣∣ca

d

∣∣∣ +
∣∣∣∣
ae− db

d
√

q

∣∣∣∣ , 2
)

for every n ≥ 1. That is, by (11),

max
1≤i≤n

|xi| ≤
∣∣∣∣
√

q

a

∣∣∣∣ max
1≤i≤n

|yi|+
∣∣∣∣
b

a

∣∣∣∣

≤
∣∣∣∣
√

q

a

∣∣∣∣ max
(∣∣∣ca

d

∣∣∣ +
∣∣∣∣
ae− db

d
√

q

∣∣∣∣ , 2
)

+
∣∣∣∣
b

a

∣∣∣∣

=
1
|ad|

(
max

(|ac
√

q|+ |ae− bd|, 2|d√q|) + |bd|
)
.

This completes the proof.
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eds.), Number Theory, Walter de Gruyter GmbH & Co., Berlin, New York, 1998,
361–370.

[6] F. M�aty�as, Bounds for the zeros of Fibonacci-type polynomials, Acta Academiae
Paedagogicae Agriensis (Sectio Matematicae) 25 (1998), 17–23.

[7] G. A. Moore, The limit of the golden numbers is 3/2, The Fibonacci Quarterly
32.3 (1994), 211–217.

[8] P. E. Ricci, Generalized Lucas polynomials and Fibonacci polynomials, Rivista
di Matematica Univ. Parma 4 no. 5 (1995), 137–146.

[9] M. N. S. Swamy, Further properties of the polynomials defined by Morgan-Voyce,
The Fibonacci Quarterly 6.5 (1968), 166–175.

[10] M. N. S. Swamy, On a class of generalized polynomials, The Fibonacci Quarterly
35.4 (1997), 329–334.

FERENC MÁTYÁS
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