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Horizontal lifts in the higher order geometry

By IOAN BUCATARU (Iaşi)

Abstract. First, using the complete lift of a linear connection we construct the
horizontal lift of a vector field with the aid of an arbitrary semispray S. It is proved that
this horizontal lift is independent on the choice of the semispray S. This reformulates
well-known constructions for the case of tangent bundle, [4], [8].

Secondly, the complete and horizontal lifts of vector fields are constructed for the
tangent bundle of second order. In this new framework we have a horizontal lift and
two vertical lifts. The nonlinear connection associated to the horizontal lift is proven to
be just Miron’s nonlinear connection, [6]. Thirdly, the above notions and constructions
are given for the tangent bundle of order k > 2.

1. The horizontal lift to the tangent bundle

Let (TM, π,M) be the tangent bundle of a real, smooth, n-dimen-
sional manifold M . For a local chart (U, φ = (xi)) on M , its induced
local chart on TM will be denoted by (π−1(U),Φ = (xi, yi)). In a point
u = (x, y) ∈ TM , the natural basis of the tangent space TuTM is denoted
by { ∂

∂xi |u, ∂
∂yi |u}. The linear map induced by the canonical submersion

π : TM → M is denoted by π∗,u : TuTM → Tπ(u)M , u ∈ TM . For each
u ∈ TM , VuTM = Ker π∗,u is an n-dimensional vector subspace of the
space TuTM , and a basis of it is { ∂

∂yi |u}. The map V TM : u ∈ TM 7→
VuTM ⊂ TuTM is a regular, n-dimensional and integrable distribution,
called the vertical distribution.

The tensor field J = ∂
∂yi ⊗dxi, is globally defined on TM and is called

the natural almost tangent structure.
One has: 1. J2 = 0, 2. Im J = Ker J = V TM , 3. rank J = n.
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The vector field
1

Γ = yi ∂
∂yi , globally defined on TM , is called the

Liouville vector field. A vector field S ∈ χ(TM) is called a semispray on

TM if and only if JS =
1

Γ. It follows that

(1.1) S = yi ∂

∂xi
− 2Gi ∂

∂yi
,

where the functions Gi are defined on the domain of local charts.
For a vector field X = Xi ∂

∂xi ∈ χ(M) we denote its vertical lift by
Xv = (Xi ◦ π) ∂

∂yi . The map lv : χ(M) → χ(TM), defined by lv(X) = Xv

is F(M)-linear and is called also the vertical lift.
For X = Xi(x) ∂

∂xi ∈ χ(M), the vector field Xc ∈ χ(TM) defined by

Xc(x, y) = Xi(x)
∂

∂xi
+

∂Xi

∂xj
(x)yj ∂

∂yi

is called the complete lift of X. We observe that if X = Xi ∂
∂xi ∈ χ(M) and

S is a semispray on TM , then

Xc = (Xi ◦ π)
∂

∂xi
+ S(Xi ◦ π)

∂

∂yi
.

So the complete lift can be constructed using a semispray and the result
does not depend on the choice of the semispray.

For the vertical and the complete lifts the next formulae hold:

J(Xc) = Xv, (fX)c = S(f)Xv + fXc, X ∈ χ(M), f ∈ F(M).

The map X ∈ χ(M) 7→ Xc ∈ χ(TM) is not an F(M)-linear map.
Next we shall introduce a modification of this map such that the new map
will be F(M)-linear.

Definition 1.1. An F(M)-linear map lh : χ(M) → χ(TM) for which
we have

(1.2) J ◦ lh = lv,

is called a horizontal lift.
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A subbundle HTM of the tangent bundle (TTM, πTM , TM) which is
supplementary to the vertical subbundle, i.e. the following Whitney sum
holds

(1.3) TTM = HTM ⊕ V TM,

is called a nonlinear connection on TM . A nonlinear connection determines
an n-dimensional distribution N : u ∈ TM → Nu = HuTM ⊂ TuTM .

We have that every horizontal lift lh determines a nonlinear connection
N = Im lh on TM . Conversely, every nonlinear connection N on TM

determines a horizontal lift lh which is the inverse of the map π∗,u|Nu :
Nu → Tπ(u)M .

Let D be a linear connection, with the local coefficients γi
jk. One can

associate to D ([8], Ch. I, §6) a unique linear connection Dc on TM , called
the complete lift of D, which satisfies:

Dc
XcY c = (DXY )c.

For Dc the following formulae hold:

(∗) Dc
XcY v = Dc

XvY c = (DXY )v, Dc
XvY v = 0.

The linear connection Dc preserves the vertical distribution by parallelism,
i.e. for a vertical vector field Y and X ∈ χ(TM) we have that Dc

XY is a
vertical vector field.

Proposition 1.1. Let S be a semispray on TM . For a vector field

X ∈ χ(M) we define Xh ∈ χ(TM) by

(1.4) Xh = Xc −Dc
SXv.

The map lh : χ(M) → χ(TM) defined by lh(X) = Xh is a horizontal lift

and it does not depend on the choice of the semispray S.

Proof. First we prove that the map (lh) is F(M)-linear. For f ∈
F(M) we have (fX)c = (f ◦ π)Xc + S(f)Xv and (fX)v = (f ◦ π)Xv. It
follows (fX)h = (f ◦π)Xc+S(f)Xv−S(f)Xv−(f ◦π)Dc

SXv = (f ◦π)Xh.
Now we prove that J ◦ lh = lv. We have J(Xc) = Xv, ∀X ∈ χ(M).

Since Ker J = V and Dc
SXv is a vertical vector field, it results that

J(Dc
SXv) = 0. Consequently (J ◦ lh)(X) = J(Xc)−J(Dc

SXv) = J(Xc) =
Xv = lv(X), ∀X ∈ χ(M).
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It remains to prove that lh does not depend on the choice of the
semispray S. Let S1 and S2 be two semisprays on TM and Xh1 , Xh2 the
horizontal lifts of the vector field X ∈ χ(M) constructed with S1 and S2,
respectively. We have Xh1 −Xh2 = Dc

S2−S1
Xv. Since S1−S2 and Xv are

vertical vector fields, according to (∗) we obtain Dc
S2−S1

Xv = 0, and so
Xh1 = Xh2 . ¤

In the natural basis, the map lh is given by

(1.5) (lh)u

(
∂

∂xi

∣∣∣
π(u)

)
=

∂

∂xi

∣∣∣
u
− γp

ji(π(u))yj ∂

∂yp

∣∣∣
u
.

The functions N i
j(x, y) = γi

kj(x)yk are called the local coefficients of
the nonlinear connection N determined by the horizontal lift lh.

2. The horizontal lift to the tangent bundle of order two

Let M be a smooth manifold of dimension n and J0,p(R,M) the set
of germs of smooth mappings f : R → M with f(0) = p. We say that
f, g ∈ J0,p(R,M) are equivalent up to order k if there exists a chart (U,ϕ)
around p such that

(2.1) dh
0 (ϕ ◦ f) = dh

0 (ϕ ◦ g), 1 ≤ h ≤ k,

where d denotes Frechet differentiation. It can be seen if (2.1) holds for a
chart (U,ϕ), it holds for any other chart (V, ψ) around p.

We denote by jk
0,pf the equivalence class of f and set Jk

0,p = {jk
0,pf ,

f ∈ J0,p(R,M)}. Then we put T kM =
⋃

p∈M Jk
0,p and define πk : T kM →

M by πk(Jk
0,p) = p. (T kM,πk, M) will be called the tangent bundle of

order k of the manifold M . For k = 2, if we take E := T 2M , then E is a
real, smooth manifold, of dimension 3n. For a local chart (U,ϕ = (xi)) in
p ∈ M its lifted local chart in u ∈ (π2)−1(p) will be denoted by ((π2)−1(U),
Φ = (xi, y(1)i, y(2)i)).

For each u = (x, y(1), y(2)) ∈ E, the natural basis of the tangent space
TuE is { ∂

∂xi |u, ∂
∂y(1)i |u, ∂

∂y(2)i |u}.
We have two canonical submersions π2 : T 2M → M and π2

1 : T 2M →
T 1M ≡ TM which are locally expressed by: π2 : (x, y(1), y(2)) 7→ (x) and
π2

1 : (x, y(1), y(2)) 7→ (x, y(1)), respectively.
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We have two vertical distributions Vα+1E = Ker(π2
α)∗, where (π2

α)∗
is the tangent map associated to π2

α, α ∈ {0, 1}.
The tensor field J = ∂

∂y(1)i ⊗ dxi + ∂
∂y(2)i ⊗ dy(1)i is called the 2-

almost tangent structure on E. The 2-almost-tangent structure J has the
property: 1. J3 = 0, 2. Im J2 = Ker J = V2E. 3. Im J = Ker J2 = V1E.

4. rank J = 2n, rank J2 = n. The vector field
2

Γ = y(1)i ∂
∂y(1)i + 2y(2)i ∂

∂y(2)i

is called the Liouville vector field and is globally defined on E.

Definition 2.1 [6]. A vector field S ∈ χ(E) is called a semispray on E

(2-semispray) if JS =
2

Γ.

The local expression of a semispray is:

(2.2) S = y(1)i ∂

∂xi
+ 2y(2)i ∂

∂y(1)i
− 3Gi ∂

∂y(2)i
,

where the functions Gi are defined on the domain of local charts.
For a vector field X = Xi ∂

∂xi ∈ χ(M) we denote by

Xv2 = (Xi ◦ π2)
∂

∂y(2)i

its vertical lift. The map lv2 : χ(M) → χ(E), defined by lv2(X) = Xv2

is F(M)-linear and is called vertical lift , too. This means that for every
X ∈ χ(M) and f ∈ F(M) we have lv2(fX) = (f ◦ π2)lv2(X).

For X = Xi ∂
∂xi ∈ χ(M), the vector field Xc ∈ χ(E) given by

Xc = Xi ∂

∂xi
+

∂Xi

∂xj
y(1)j ∂

∂y(1)i
+

(
1
2

∂2Xi

∂xj∂xk
y(1)jy(1)k +

∂Xi

∂xj
y(2)j

)
∂

∂y(2)i

is called the complete lift of the vector field X. Note that if X = Xi ∂
∂xi ∈

χ(M) and S is a semispray on T 2M then

Xc = Xi ∂

∂xi
+ S(Xi)

∂

∂y(1)i
+

1
2
S2(Xi)

∂

∂y(2)i
.

Consequently, we can construct the complete lift using a semispray S and
this complete lift does not depend on the choice of the semispray S.
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For the vertical and complete lifts the following formulae hold:

J2(Xc) = Xv2 ,

(fX)c =
1
2
S2(f)Xv2 + S(f)J(Xc) + fXc, f ∈ F(M), X ∈ χ(M).

The map X ∈ χ(M) 7→ Xc ∈ χ(E) is not an F(M)-linear map. Next
we introduce a modification of this map so that to get an F(M)-linear
one.

Definition 2.2. An F(M)-linear map lh : χ(M) → χ(E), for which
we have

(2.3) J2 ◦ lh = lv2 ,

is called a horizontal lift on the tangent bundle of order two.

Definition 2.3 [6]. A subbundle HE of the bundle (TE, πE , E), which
is supplementary to the vertical subbundle V1E, that is the following Whit-
ney sum holds

(2.4) TE = HE ⊕ V1E,

is called a nonlinear connection on E.

A nonlinear connection determines an n-dimensional distribution
N : u ∈ TM → Nu = HuE ⊂ TuE.

Proposition 2.1. Every horizontal lift lh determines a nonlinear con-

nection on the tangent bundle of order two.

Proof. For every u ∈ E we set Nu = (lh)u(Tπ2(u)M), δ
δxi |u =

(lh)u( ∂
∂xi |π2(u)) and δ

δy(1)i |u = J( δ
δxi |u). As J2 ◦ lh = lv2 we obtain

J2( δ
δxi ) = ∂

∂y(2)i . It follows that { δ
δxi |u, δ

δy(1)i |u, ∂
∂yi |u} are linearly in-

dependent, so they determine a basis for TuE. Since { δ
δxi |u} is a basis for

Nu, { δ
δy(1)i |u = J( δ

δxi |u)} is a basis for N1(u) = J(Nu) and { ∂
∂y(2)i |u} is a

basis for V2(u) we have TuE = Nu ⊕ N1(u) ⊕ V2(u) for each u ∈ E. But
{ δ

δy(1)i |u, ∂
∂y(2)i |u} is a basis for V1(u) which means that V1(u) = N1(u) ⊕

V2(u) and so TuE = Nu ⊕ V1(u). Hence the distribution N : u ∈ E 7→ Nu

is supplementary to the vertical distribution V1 and so N determines a
nonlinear connection. ¤
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Conversely every nonlinear connection N determines a horizontal lift.
For a linear connection D, with the local coefficients γi

jk, we denote
by Dc its complete lift given by Dc

XcY c = (DXY )c.
The linear connection Dc preserves the vertical distributions V1 and

V2 by parallelism.

Theorem 2.1. Let S be a 2-semispray on E. For X ∈ χ(M) we define

Xv1 , Xh ∈ χ(E) by:

(2.5)
Xv1 = J(Xc)−Dc

SXv2 ,

Xh = Xc −Dc
SXv1 − 1

2
(Dc)2SXv2 .

The maps lv1 , lh : χ(M) → χ(E) defined by lv1(X) = Xv1 , lh(X) = Xh

are F(M)-linear and verify J2 ◦ lh = lv2 , J ◦ lv1 = lv2 , J ◦ lh = lv1 . These

maps are independent on the choice of the semispray S.

Proof. We proceed as in the proof of Proposition 1.1.
First we prove that (lh) is an F(M)-linear map. For f ∈ F(M) we

have
(fX)h = (fX)c −Dc

S(fX)v1 − 1
2
(Dc)2S(fX)v2 .

Since (fX)c = fXc + S(f)J(Xc) + 1
2S2(f)Xv2 , (fX)h1 = fXh1 and

(fX)v2 = fXv2 we obtain (fX)h = fXc + S(f)J(Xc) + 1
2S2(f)Xv2 −

S(f)(J(Xc)−Dc
SXv2)− 1

2 (S2(f)Xv2 +2S(f)Dc
SXv2 +f(Dc)2SXv2) = fXh.

For every X ∈ χ(M) we have J2(Xc) = Xv2 . Since Ker J2 = V1,
Dc

SXh1 and (Dc)2SXv2 are vertical vector fields, we obtain JDc
SXh1 = 0

and J2((Dc)2SXv2) = 0. It results (J2 ◦ lh)(X) = J2(Xc) = Xv2 = lv2(X),
∀X ∈ χ(M). In this way we obtain that the map lh is a horizontal lift .
Next we prove that this map depends on the linear connection D on M ,
only. Let S and S̃ two semisprays and

Xv1 = J(Xc)−Dc
SXv2 , Xh = Xc −Dc

SXv1 − 1
2
(Dc)2SXv2 ;

X̃v1 = J(Xc)−DceSXv2 , X̃h = Xc −DceSX̃v1 − 1
2
(Dc)2eSXv2 .

the horizontal lifts of a vector field X ∈ χ(M) constructed with the semi-
sprays S and S̃, respectively.
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We have Xv1 − X̃v1 = −Dc
S−eSXv2 . From the definition of Dc we

have Dc
XY v2 = for every X ∈ χV2(E) and Y ∈ χ(M). As S − S̃ belongs

to χV2(E), we obtain Dc
S−eSXv2 = 0, and so Xv1 = X̃v1 . Using the defini-

tion of Xh and X̃h we obtain: Xh − X̃h = −Dc
S−eSXv1 − 1

2 (Dc)2
S−eSXv2 .

But for Dc
S−eSXv1 = (Gi − G̃i)Dc

∂

∂y(2)i

Xv1 and Xv1 ∈ χV1(E) we obtain

Dc
∂

∂y(2)i

Xv1 = 0 that means Dc
S−eSXv1 = 0. In a similar way we get

Dc
∂

∂y(2)i

Xv2 = 0 and also we have Dc
S−eSXv2 = 0 and (Dc)2

S−eSXv2 = 0.

We proved that Xh = X̃h and so the horizontal lift Xh of a vector field
X ∈ χ(M) to the tangent bundle of order two is independent on the choice
of the semispray S. ¤

Proposition 2.2. In the natural basis, the maps lh and lv1 have the
following expressions:

(2. 6)

lv1

(
∂

∂xi

)
=

∂

∂y(1)i
−N j

i
(1)

∂

∂y(2)j

lh

(
∂

∂xi

)
=

∂

∂xi
−N j

i
(1)

∂

∂y(1)j
−N j

i
(2)

∂

∂y(2)j
,

where

(2.7)

N j
i

(1)

= γj
piy

(1)p,

N j
i

(2)

=
1
2

(
∂γj

ip

∂xk
− γj

mpγ
m
ik

)
y(1)py(1)k + γj

ipy
(2)p.

Proof. Taking into account (2.5) and ( ∂
∂xi )v1 = ∂

∂y(1)i −Dc
S

∂
∂y(2)i we

obtain (
∂

∂xi

)v1

=
∂

∂y(1)i
− γk

ijy
(1)j ∂

∂y(2)k
.

Using the notation N j
i

(1)

= γj
piy

(1)p we see that the first formula (2.6) holds.

Next we denote

δ

δy(1)i
= lv1

(
∂

∂xi

)
=

∂

∂y(1)i
− γk

ijy
(1)j ∂

∂y(2)k
.
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For the horizontal lift lh we have
(

∂

∂xi

)h

=
∂

∂xi
−Dc

S

δ

δy(1)i
− 1

2
(Dc)2S

∂

∂y(2)i
.

As Dc
S

∂
∂y(2)i = γk

ijy
(1)j ∂

∂y(2)k = Nk
i

(1)

∂
∂y(2)k it results:

(Dc)2S
∂

∂y(2)i = Dc
SNk

i
(1)

∂
∂y(2)k . Accordingly we have

lh

(
∂

∂xi

)
=

∂

∂xi
− γj

iky(1)k ∂

∂y(1)j

− 1
2

{(
∂γj

ip

∂xk
− γj

mpγ
m
ik

)
y(1)py(1)k + 2γj

ipy
(2)p

}
∂

∂y(2)j
.

The horizontal lift determines, by the Proposition 2.1 a nonlinear
connection N . This connection is just Miron’s nonlinear connection, [6].

We remark that the map lv1 determines a distribution N1 which is
supplementary to the vertical distribution V2 in the distribution V1 i.e.
V1(u) = N1(u) ⊕ V2(u), ∀u ∈ E. Also, because of J ◦ lh = lv1 we have
J(N) = N1. ¤

3. Horizontal lift to the tangent bundle of higher order

The problems which were presented in the previous section can be
extended to the general case of order k > 2. In this section we point out
only the differences from k = 2 case.

Let (E := T kM, πk,M) be the tangent bundle of order k of a real,
smooth, n-dimensional manifold M .

For a local chart (U, φ = (xi)) on M we denote by
(
(πk)−1(U),

Φ = (xi, y(1)i, y(2)i, . . . , y(k)i)
)

its induced local chart on T kM .
For every u = (x, y(1), y(2), . . . , y(k)) ∈ E, the natural basis of the

tangent space TuE will be denoted by { ∂
∂xi |u, ∂

∂y(1)i |u, . . . , ∂
∂y(k)i |u}.

We consider Vk(u) ⊂ · · · ⊂ V1(u) the vertical distributions induced by
the natural submersions πk

k−1, . . . , π
k
1 , πk. The k-almost tangent structure

of the tangent bundle of order is a tensor field of (1, 1)-type, which is locally
expressed by

(3.1) J =
∂

∂y(1)i
⊗ dxi +

∂

∂y(2)i
⊗ dy(1)i + · · ·+ ∂

∂y(k)i
⊗ dy(k−1)i.
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Definition 3.1 [6]. A vector field S ∈ χ(E) is said to be a semispray

on E (k-semispray) if JS =
k

Γ, where

k

Γ = y(1)i ∂

∂y(1)i
+ 2y(2)i ∂

∂y(2)i
+ · · ·+ ky(k)i ∂

∂y(k)i

is the Liouville vector field.

The local expression of a k-semispray is given by

(3.2) S = y(1)i ∂

∂xi
+2y(2)i ∂

∂y(1)i
+ · · ·+ky(k)i ∂

∂y(k−1)i
−(k+1)Gi ∂

∂y(k)i
,

the functions Gi being defined on the domain of a local chart.
For a vector field X = Xi ∂

∂xi ∈ χ(M) we denote by

Xvk = (Xi ◦ πk)
∂

∂y(k)i

its vertical lift. The map lvk
: χ(M) → χ(E), which is defined by lvk

(X) =
Xvk is F(M)-linear and is called also the vertical lift . This means that
for every X ∈ χ(M) and f ∈ F(M) we have lvk

(fX) = (f ◦ πk)lvk
(X).

For X = Xi ∂
∂xi ∈ χ(M) and S a k-semispray, the vector field Xc ∈ χ(E)

defined by:

Xc = Xi ∂

∂xi
+

1
1!

S(Xi)
∂

∂y(1)i
+

1
2!

S2(Xi)
∂

∂y(2)i
+ · · ·+ 1

k!
Sk(Xi)

∂

∂y(k)i

is called the complete lift of the vector field X.
A direct consequence of Xi = Xi(x) is Sα(Xi) = S̃α(Xi) for every

two semisprays S and S̃ and so the complete lift of a vector field X is
independent on the choice of the semispray S.

For the vertical and complete lifts the following formulae hold:

(3.3)

Jk(Xc) = Xvk ,

(fX)c =
k∑

α=0

1
α!

Sα(f)Jα(Xc), f ∈ F(M), X ∈ χ(M).

It can be seen from the second formula (3.3) that the map X ∈
χ(M) 7→ Xc ∈ χ(E) is not an F(M)-linear map. Next, we modify this
map such that the new map will be F(M)-linear.
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Definition 3.2. An F(M)-linear map lh : χ(M) → χ(E), for which
we have

(3.4) Jk ◦ lh = lvk
,

is called a horizontal lift on the tangent bundle of order k.

Definition 3.3 [6]. A subbundle HE of the tangent bundle
(TE, πE , E), which is supplementary to the vertical subbundle V1E, i.e.
the following Whitney sum holds

(3.5) TE = HE ⊕ V1E,

is called a nonlinear connection.

A nonlinear connection determines a horizontal n-dimensional distri-
bution N : u ∈ TM → Nu = HuE ⊂ TuE.

Like in the k = 1 or k = 2 cases we have that every horizontal lift lh
determines a nonlinear connection on the tangent bundle of order k. Con-
versely every nonlinear connection N determines a horizontal lift.

Let D be a linear connection on M with the local coefficients γi
jk. We

denote by Dc its complete lift. This is uniquely determined by

(3.6) Dc
XcY c = (DXY )c.

For this linear connection we have also the next formulae

(3.7) Dc
Jα(Xc)Y

c = Dc
XcJα(Y c) = Jα((DXY )c), α = 0, k.

Theorem 3.1. Let S be a semispray on E. For X ∈ χ(M) we define

Xvk−1 , . . . , Xv1 , Xh ∈ χ(E) by:

Xvk−1 = Jk−1(Xc)− 1
1!

Dc
S(Xvk),

Xvk−2 = Jk−2(Xc)− 1
1!

Dc
SXvk−1− 1

2!
(Dc)2SXvk , . . . ,(3.8)

Xh = Xc − 1
1!

Dc
SXv1 − 1

2!
(Dc)2SXv2 − · · · − 1

k!
(Dc)k

SXvk .
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The maps lvα , lh : χ(M) → χ(E), α = 1, 2, . . . , k defined by lvα(X) = Xvα ,
lh(X) = Xh are F(M)-linear and verify Jk ◦ lh = lvk

, Jα ◦ lh = lvα . These
maps are independent on the choice of the semispray S.

Proof. For the maps lvk−1 and lvk−2 the stated properties are proved
as in Proposition 1.1 and Theorem 2.1. We assume that the stated prop-
erties are true for lvk−β

for ∀β ∈ 1, 2, . . . , α− 1 with 1 ≤ α ≤ k and we
prove, using (3.3) that lvα verifies also the required properties. ¤

We denote by N the nonlinear connection induced by the horizontal
lift determined in the above. Let N1 = J(N), N2 = J2(N), . . . , Nk−1 =
Jk−1(N).

We set δ
δxi = lh( ∂

∂xi ) and δ
δy(α)i = lvα( ∂

∂xi ), α ∈ {1, . . . , k − 1}. Since
Jα ◦ lh = lvα we obtain Jα( δ

δxi ) = δ
δy(α)i . On this way we get for every u ∈

E { δ
δxi |u, δ

δy(1)i |u, . . . , δ
δy(k−1)i |u, ∂

∂y(k)i |u} a basis for TuE which is adapted
to the direct decomposition

TuE = N(u)⊕N1(u)⊕ · · · ⊕Nk−1(u)⊕ Vk(u).
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