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Linear recursive sequences and power series

By JAMES P. JONES (Calgary) and PÉTER KISS (Eger)

Introduction

Let Rn (n = 0, 1, . . . ), be a sequence of complex numbers defined by
a kth order linear recurrence

Rn = A1Rn−1 + A2Rn−2 + · · ·+ AkRn−k, (n ≥ k),

where k is a nonnegative integer, A1, . . . , Ak are fixed parameters, Ak 6= 0
and the initial values R0, . . . , Rk−1 are complex numbers not all zero. The
polynomial

c(x) = xk −A1x
k−1 −A2x

k−2 − · · · −Ak

is called the characteristic polynomial of the sequence Rn. If R(x) is a
function whose formal power series expansion is of the form

R(x) = R0 + R1x + R2x
2 + · · · =

∞∑
n=1

Rnxn,

then R(x) is called the generating function of the sequence Rn (n=0, 1, . . .).
For many recurrences generating functions are known. The best

known example is the generating function of the Fibonacci sequence. Let
Fn, (n = 0, 1, 2, . . . ) be the Fibonacci sequence defined by Fn = Fn−1 +
Fn−2 (n > 1) and F0 = 0, and F1 = 1. Then it is well known that

x

1− x− x2
=

∞∑
n=0

Fnxn.
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V.E. Hoggatt, Jr. [5] and R.T. Hansen [4] gave a great number of
generating functions for sequences constructed from Fibonacci and Lucas
sequences.

In this paper we show that the generating function of any linear recur-
rent sequence is a rational function, and conversely, any rational function
whose denominator is not zero at x = 0, is the generating function of some
linear recurrence. Our results give an easy way to determine the power se-
ries expansion of rational functions. Furthermore, as a consequence of our
development, we give new proofs for some known results. Similar topics
were investigated by M. D’Ocagne [8], A.J. van der Poorten [11] and
P. Erdős, Th. Maxsein, P.R. Smith [1].

Main theorem

For a given fixed linear recurrence it is not difficult to determine the
generating function. Furthermore, from [10], pp. 96–97, it follows that if a
power series a0 + a1x + a2x

2 + . . . represents a rational function, then the
sequence an (n = 0, 1, . . . ) satisfies a linear recurrence. We give a unified
proof of these results and some improvements.

Theorem 1. Let an (n = 0, 1, . . . ), be a linear recurrence with char-
acteristic polynomial xk − A1x

k−1 − · · · − Ak. Then the formal power
series

a0 + a1x + a1x
2 + . . .

is generated by a rational function of the form

a(x) =
b0 + b1x + . . . + bk−1x

k−1

1−A1x−A2x2 − . . .−Akxk
,

where

bi = ai −
i∑

j=1

Ajai−j (i = 0, 1, 2, . . . , k − 1).

Conversely, every rational function

b0 + b1x + . . . + bsx
s

d0 + d1x + . . . + dkxk
,

where s ≥ 0, k ≥ 1, bs 6= 0, d0 6= 0, dk 6= 0, and the denominator is not an
algebraic factor of the numerator, is a generating function of some sequence
an, satisfying a linear recurrence relation with characteristic polynomial

xk +
d1

d0
xk−1 + · · ·+ dk

d0
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for indices n ≥ n0 = max(k, 1 + s). The terms of the sequence an are
rational integers when s < k, d0 = 1 and d1, . . . , dk, b0, . . . , bs are rational
integers.

Proof. =⇒ First suppose that an is a kth order linear recurrence
satisfying the relation

(1) an = A1an−1 + A2an−2 + · · ·+ Akan−k

for any n ≥ k. If a(x) is a function such that

a(x) = a0 + a1x + a2x
2 + . . .

then
a(x)−A1xa(x)−A2x

2a(x)− · · · −Akxka(x) =

=a(x)(1−A1x−A2x
2 − · · · −Akxk)

=a0 + (a1 −A1a0)x + (a2 −A1a1 −A2a0)x2 + · · ·
· · ·+ (ak−1 −A1ak−2 − · · · −Ak−1a0)xk−1

since, by (1), the coefficients of xk, xk+1, . . . on the right-hand side are
zero. From this we have

a(x) =
a0 + (a1 −A1a0)x + · · ·+ (ak−1 −A1ak−2 − · · · −Ak−1a0)xk−1

1− a1x− · · · − akxk

which proves the first part of the theorem.

Now let

a′(x) =
b′0 + b′1x + · · ·+ b′sx

s

d0 + d1x + · · ·+ dkxk

be a rational function with complex coefficients, where s ≥ 0, k ≥ 1,
b′s 6= 0, d0 6= 0, dk 6= 0 and the denominator is not a divisor of the
numerator. Then a′(x) can be written as

(2) a′(x) = a′′(x) +
1
d0
· a(x),

where a′′(x) is a polynomial and a(x) is of the form

a(x) =
b0 + b1x + · · ·+ bk−1x

k−1

1−A1x− · · · −Akxk

with bi’s not all zero and Ai = −di/d0 for i = 1, 2, . . . , k.
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Let us consider the system of equations
ak−1 −A1ak−2 −A2ak−3 − · · · −Ak−2a1 −Ak−1a0 = bk−1

ak−2 −A1ak−3 − · · · −Ak−3a1 −Ak−2a0 = bk−2

...
a1 −A1a0 = b1

a0 = b0

in unknowns a0, a1, . . . , ak−1. This system has a unique solution since its
determinant is 1. The solutions are integers if the Ai’s and bi’s are rational
integers and a0, . . . , ak−1 are not all zero since b0, . . . , bk−1 are not all zero.
But then, as we have seen above, the sequence an (n = 0, 1, . . . ) defined
by the initial terms a0, . . . , ak−1 and by the recursion

(3) an = A1an−1 + A2an−2 + · · ·+ Akan−k (n ≥ k),

has the generating function a(x). From this, by (2), it follows that the
coefficients of the power series of a′(x) satisfy the recurrence relation (3)
for any n ≥ n0, where n0 = k or n0 = k +1+deg a′′(x) according as a′′(x)
is identically zero or not.

From this the theorem follows.
Remark. Theorem 1 and its proof give a method for obtaining the

power series expansion of a rational function. For example let

a(x) =
4− 3x + 2x2

1− 3x + 2x2
= 1 +

3
1− 3x + 2x2

.

By Theorem 1 the function 3
1−3x+2x2 is the generating function of a linear

recurrence an with characteristic polynomial x2 − 3x + 2. For the initial
terms, we have from the proof of the Theorem, a1 − 3a0 = 0 and a0 = 3.
So a0 = 3, a1 = 9 and

a(x) = a0 + 1 +
∞∑

n=1

anxn.

But it is known that if α1 and α2 are the roots of the characteristic poly-
nomial of a second order linear recurrence an and α1 6= α2, then the terms
can be expressed by

(4) an =
(a1 − a0α2)α1

n − (a1 − a0α1)α2
n

α1 − α2
.

In our case α1 = 2, α2 = 1, a0 = 3, a1 = 9 and so we have

4− 3x + 2x2

1− 3x + 2x2
= 4 +

∞∑
n=1

(6 · 2n − 3)xn.
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Consequences of the theorem

Let Rn (n = 0, 1, . . . ) be a linear recurrence of order k as defined in
the introduction and let α1, α2, . . . , αm be the distinct roots of the char-
acteristic polynomial c(x) with multiplicities k1, k2, . . . , km respectively,
(k1 + · · ·+ km = k).

Explicit forms for the terms Rn are known in special cases, the best
known of which is Binet’s formula for Fibonacci numbers: Fn = (αn

1 −
αn

2 )/(α1−α2), where α1 and α2 are the roots of the polynomial x2−x−1.
For general second order recurrences formula (4) is also well known. For an
arbitrary sequence Rn, J.A. Jeske [6] proved the existence of polynomials
ri(x), i = 1, . . . , m, such that

Rn =
m∑

i=1

ri(n)αn
i

for any n ≥ 0. We show that this result and its converse follow from our
Theorem.

Corollary 1. The terms of the linear recurrence Rn can be expressed
by

(5) Rn =
m∑

i=1

ri(n)αn
i

for every n ≥ 0, where ri(x), (i = 1, . . . , m) are fixed polynomials of
degree ki − 1, respectively and the coefficients of these polynomials are
elements of the number field generated by R0, . . . , Rk−1, A1, . . . , Ak and
α1, . . . , αm over the rationals. Also conversely, if the terms of a sequence
satisfy equality (5) with polynomials ri(x) of degree ki − 1 (1 ≤ i ≤ m),
then the sequence satisfies a linear recurrence of order k1 + . . . + km with
characteristic polynomial

c(x) =
m∏

i=1

(x− αi)ki .

Proof. Let Rn be a linear recurrence with characteristic polynomial

(6) c(x) =
m∏

i=1

(x− αi)ki = xk −A1x
k−1 − · · · −Ak.

Then, by Theorem 1, there is a polynomial g(x) with deg g(x) < k and
such that

(7) R(x) =
g(x)

1−A1x− . . .−Akxk
=

∞∑
n=0

Rnxn.
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By (6) we can write

(8) R(x) =
g(x)

m∏
i=1

(1− αix)ki

=
m∑

i=1

gi(x)
(1− αix)ki

where

gi(x) = bi,0 + bi,1x + · · ·+ bi,ki−1x
ki−1, (i = 1, . . . , m),

are polynomials.
It is known that

1
(1− x)k

=
∞∑

n=0

(
n + k − 1

k − 1

)
xn,

from which

(9)

gi(x)
(1− αix)ki

=
∞∑

n=0

ki−1∑

j=0

bi,j

(
n + ki − 1

ki − 1

)
αn

i xn+j =

=
∞∑

n=0

ki−1∑

j=0

bi,j

αj
i

(
n + ki − 1

ki − 1

)
αn+j

i xn+j =

=
∞∑

n=0




ki−1∑

j=0

bi,j

αj
i

(
n− j + ki − 1

ki − 1

)
αn

i xn =

=
∞∑

n=0

ri(n)αn
i xn

follows, where ri(x) is a polynomial of degree at most ki − 1. From this,
by (7) and (8), equality (5) follows. The restrictions on the coefficients of
the polynomials also hold.

Now let R′n be a sequence of numbers defined by

(10) R′n =
m∑

i=1

ri(n)αn
i

for any n ≥ 0, where ri(x), (i = 1, . . . , m), are polynomials of degree ki−1,
respectively, m, k1, . . . , km are positive rational integers, and α1, . . . , αm
are fixed non-zero numbers.

We show that for any polynomial

(11) r(x) = c0 + c1x + · · ·+ ck−1x
k−1,
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there are numbers t0, t1, . . . , tk−1 such that

r(x) =t0

(
x + k − 1

k − 1

)
+ t1

(
x− 1 + k − 1

k − 1

)
+ · · ·

+ tk−1

(
x− (k − 1) + k − 1

k − 1

)(12)

for any non-negative integer x. By (11) and (12) t0 = c0 follows since
r(0) = c0 and

(
x−i+k−1

k−1

)
= 0 if x− i < 0. Also by (12) we have

t1 = r(1)− t0

(
k

k − 1

)

and continuing this process with x = 2, 3, . . . , k − 1 we have

ti = r(i)−
i−1∑

j=0

tj

(
i− j + k − 1

k − 1

)

for any 1 ≤ i ≤ k−1. So the numbers t0, . . . , tk−1 are uniquely determined.
From this and (9) by replacing bi,j by tjα

j , it follows that

∞∑
n=0

r(n)αnxn =
g′(x)

(1− αx)k
,

for some polynomial g′(x) of degree k − 1, for any α 6= 0 and polynomial
r(x) of degree k − 1. So by (10)

(13)
m∑

i=1

gi(x)
(1− αix)ki

=
∞∑

i=0

R′nxn

follows for some polynomials gi(x) of degree ki − 1, i = 1, . . . , m.
The right hand side of (13) is a rational function with denominator of

the form

c′(x) =
m∏

i=1

(1− αix)ki = 1−A1x− · · · −Akxk

and so, by the Theorem, the sequence R′n is a linear recurrence with char-
acteristic polynomial

c(x) =
m∏

i=1

(x− αi)ki = xk −A1x
k−1 − · · · −Ak.
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Remark. Some authors state formula (5) in the form that the degree
of the polynomials ri(x) are “at most” ki − 1. Corollary 1 implies that if
deg ri(x) < ki − 1 for some i, then the sequence Rn satisfies a recurrence
relation of order less than k1 + · · ·+ km = k.

Let q ≥ 1, r ≥ 0 be fixed natural numbers. Then the sequence
Hn = Rqn+r, (n = 0, 1, 2, . . . ), is a subsequence of Rn. If Rn is a second
order linear recursive sequence, then it is easy to see that Hn is also a
second order linear recurrence. For the Fibonacci sequence this was shown
by J.H. Halton [3]. For an arbitrary linear recurrence this result can be
derived from Corollary 1. Now we give another proof of it using only our
Theorem.

Corollary 2. Let Rn, n = 0, 1, 2, . . . , be a kth order linear recurrence.
Then the subsequence Hn of Rn defined by

Hn = Rqn+r (n ≥ 0),

where q > 0 and r, 0 ≤ r < q, are fixed integers, is also a linear recurrence,
of order k. If Rn is a sequence of rational integers with integer parameters,
then the sequence Hn also has integer parameters.

Proof. Let Rn be a kth order recurrence with characteristic polyno-
mial

c(x) = xk −A1x
k−1 − · · · −Ak.

Then for any given r ≥ 0 the sequence Rr, Rr+1, . . . is also a linear
recurrence with the same characteristic polynomial, c(x). Let g(x)/f(x)
be the generating function of this sequence, i.e.,

g(x)
f(x)

= Rr + Rr+1x + Rr+2x
2 + . . .

where, by Theorem 1, deg g(x) < deg f(x) = k and

f(x) = 1−A1x− · · · −Akxk.

Let q > 0 be a natural number and ε be a primitive qth root of unity. Put

g(εix)
f(εix)

= Rr + Rr+1(εix) + Rr+2(εix)2 + . . .

for i = 0, 1, . . . , q − 1. Then

(14)
G(x)
F (x)

=
q−1∑

i=0

g(εix)
f(εix)

= q ·Rr +
∞∑

n=1

(
Rn+rx

n ·
q−1∑

i=0

εi·n
)

,

where

F (x) =
q−1∏

i=0

f(εix).
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But
q−1∑

i=0

εin =

{
0 if q |6 n

q if q | n

and so by (14) we have

(15)
G(x)
F (x)

=
∞∑

n=0

q ·Rqn+rx
qn = q ·

∞∑
n=0

Hnxqn.

By the definition of F (x), for any complex number x and any integer i,
(0 ≤ i ≤ q − 1), F (x) = F (εix). This implies that if δ 6= 0 is a root of the
equation F (x) = 0, then εδ, ε2δ, . . . , εq−1δ are also roots with the same
multiplicity as δ. Since F (0) 6= 0, it follows that F (x) is of the form

(16) F (x) = fk ·
k∏

i=1

(xq − βq
i ) = f0 + f1x

q + f2x
2q + · · ·+ fkxkq,

where β1, . . . , βk are the roots of the polynomial f(x), |fk| = |Ak|q and

|f0| = |fk| · |
k∏

i=1

βi|q = 1.

Let

G′(x) = g(x) · f(εx) · f(ε2x) · f(εq−1x) = amxm + · · ·+ a1x + a0.

Then

G(x) =
q−1∑

i=0

G′(εix) = bmxm + · · ·+ b1x + b0,

where

bi = ai

q−1∑

j=0

εij =

{
q · ai if q | i
0 if q |6 i

for any 0 ≤ i ≤ m and so G(x) has the form

(17) G(x) = q ·
t∑

i=0

gix
qi

for some integer t ≥ 0.
By (15), (16) and (17), after replacing xq by x, we get

±(g0 + g1x + · · ·+ gtx
t)

1± (f1x + · · ·+ fkxk)
=

∞∑
n=0

Hnxn,
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which, by Theorem 1, implies that Hn is a linear recurrence of order k
with characteristic polynomial c(x) = xk ± (f1x

k−1 + · · ·+ fk).
If Rn is a sequence of integers with rational integer parameters A1, . . . ,

Ak, then by using theorems about the elementary symmetric functions of
variables which are roots of a polynomial, it is easy to check that f1, . . . , fk
are integers. The initial terms of the sequence Hn are obviously integers
and so the proof is complete.

Using the generating functions for the Fibonacci Fn and Lucas Ln

sequences H.W. Gould [2] showed that for any fixed integer p ≥ 1 the
sequences F p

n and Lp
n are also linear recurrences. Similar results were

obtained by I.I. Kolonder [7] for general second order linear recurrences.
Corollary 1 implies a generalization of these results.

Corollary 3. Let Rn be a linear recurrence and let

p(x) = atx
t + at−1x

t−1 + · · ·+ a0

be a polynomial. Then the sequence Gn, defined by

Gn = p(Rn) (n = 0, 1, . . . )

also satisfies a linear recursion equation.

Proof. By Corollary 1, for any given complex number a and any
integer s ≥ 0, the numbers a ·Rs

n are of the form

a ·Rs
n = a ·

(
m∑

i=1

ri(n)αn
i

)s

=
v∑

i=1

gi(n)βn
i

for all n ≥ 0. Here v is a positive integer, the gi(x)’s are polynomials and
the βi’s are determined by

βi =
m∏

j=1

α
ej

j with
m∑

j=1

ej = s.

But then

Gn = p(Rn) =
t∑

s=0

asR
s
n =

u∑

i=1

hi(n)γn
i

for some integer u, some polynomials hi(x) and some numbers γi. So by
Corollary 1 the sequence Gn is a linear recurrence.

Remark. One can easily check that if Rn is a sequence with integer
parameters and the coefficients of p(x) are integers, then the parameters
of the sequence Gn are also integers.
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Additional consequences

Now we list some further consequences which can be proved easily
from the above results.

Corollary 4. Let S = {p1, . . . , ps} be a finite set of prime numbers
and suppose that an (n = 0, 1, . . . ), is a sequence of non zero integers such
that all prime divisors of the terms a0, a1, a2, . . . are elements of the set
S. Then the sequence an satisfies a linear recurrence relation if and only
if the terms of an are of the form

apn+r = cr · αpn+r
r

for all n ≥ 0 and all r, 0 ≤ r < p, where p is a positive integer and αr, cr

(r = 0, 1, . . . , p− 1) are constants.

Proof. This follows from Theorem 1 and a result of G. Pólya [9].
But it can also be proved from Corollaries 1 and 2, using the known re-
sult: if an is a non-degenerate linear recurrence of integers, then there are
infinitely many prime p such that p|an for some n.

Corollary 5. Let Rn be a linear recurrence of order k with generat-
ing function g(x)/f(x). If (g(x), f(x)) > 1, then the sequence satisfies a
recurrence relation of order less than k.

Proof. From Theorem 1.

Corollary 6. If Rn (n = 0, 1, . . . ) and Kn are linear recurrences of
order k1 and k2, respectively, then the sequence Rn + Kn, (n = 0, 1, . . . ),
is also a linear recurrence of order ≤ k1 + k2.

Proof. This follows from Theorem 1 by adding the generating func-
tions of the sequences. Corollary 1 also implies this assertion.

Corollary 7. If Rn and Kn are the sequences defined in Corollary 6,
then the sequence Ln, defined by

Ln =
n∑

i=0

RiKn−i

is also a linear recurrence of order at most k1 + k2.

Proof. It follows from Theorem 1 by multiplying the generating
functions of the sequences.

Corollary 8. If Ln is a linear recurrence and p > 0 is a fixed natural
number, then the sequence Pn, defined by

Pn =
n∑

i=0

Lp
i
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is also a linear recurrence.

Proof. The sequence Lp
n is a linear recurrence by Corollary 3. Hence

if in Corollary 7 we replace the sequence Rn by Lp
n and let Kn be defined

by Kn = 1 for n ≥ 0, then the assertion follows.
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