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Linear recursive sequences and power series

By JAMES P. JONES (Calgary) and PETER KISS (Eger)

Introduction

Let R, (n =0,1,...), be a sequence of complex numbers defined by
a k™ order linear recurrence

Rn - Aan,1 + A2Rn72 + -+ AkRTLfkv (n > k)7

where k is a nonnegative integer, Ay, ... , Ay are fixed parameters, Ay # 0
and the initial values Ry, ... , Rx_1 are complex numbers not all zero. The
polynomial

c(z) = o — At — Agxh T A

is called the characteristic polynomial of the sequence R,. If R(z) is a
function whose formal power series expansion is of the form

R(z) = Ry + Riz + Roa® + --- = ZRnx",
n=1

then R(x) is called the generating function of the sequence R,, (n=0,1,..).

For many recurrences generating functions are known. The best
known example is the generating function of the Fibonacci sequence. Let
F,, (n =0,1,2,...) be the Fibonacci sequence defined by F,, = F,,_1 +
F,—2 (n>1)and Fy =0, and F; = 1. Then it is well known that

:L' oo
— s = g EF,z™.
l—xz—2z
n=0
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V.E. HoGcAtT, Jr. [5] and R.T. HANSEN [4] gave a great number of

generating functions for sequences constructed from Fibonacci and Lucas
sequences.

In this paper we show that the generating function of any linear recur-
rent sequence is a rational function, and conversely, any rational function
whose denominator is not zero at x = 0, is the generating function of some
linear recurrence. Our results give an easy way to determine the power se-
ries expansion of rational functions. Furthermore, as a consequence of our
development, we give new proofs for some known results. Similar topics
were investigated by M. D’OCAGNE [8], A.J. van der POORTEN [11] and

P. ERDOs, Th. MAXSEIN, P.R. SMITH [1].

Main theorem

For a given fixed linear recurrence it is not difficult to determine the
generating function. Furthermore, from [10], pp. 96-97, it follows that if a

power series ag + a1 + asx? + ... represents a rational function, then the
sequence a, (n =0,1,...) satisfies a linear recurrence. We give a unified
proof of these results and some improvements.

Theorem 1. Let a, (n =0,1,...), be a linear recurrence with char-

acteristic polynomial x¥ — Akt — ... — A, Then the formal power
series

2
ag+a1x+ajx”+...

is generated by a rational function of the form

( )_ bo+b1x+...+bk_1mk_1
nE) = 1—Ajx— Asz?2 — ... — Apak’

where

%
bi:ai—ZAjai_j (i:0,1,2,...,]{3—1).
j=1

Conversely, every rational function
bo + bix + ...+ bx®
do +dix + ...+ dpzk’

where s > 0, k > 1, bs # 0, dy # 0, di, # 0, and the denominator is not an

algebraic factor of the numerator, is a generating function of some sequence

an, satisfying a linear recurrence relation with characteristic polynomial
dy

d
e T .
x -I—dox + —f-do
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for indices n > ng = max(k,1 + s). The terms of the sequence a,, are
rational integers when s < k, dy = 1 and dy, ... ,dy, bg, ... ,bs are rational
integers.

PROOF. = First suppose that a, is a k' order linear recurrence
satisfying the relation

(1) an = Alan—l + A2an—2 + -+ Akan—k
for any n > k. If a(x) is a function such that

a(z) = ap + a1z + asx® + . ..

then
a(z) — Ayza(z) — Asz’a(z) — - — AgzFa(z) =
=a(z)(l — Az — Agz? — o — Akxk)
=ag + (a1 — Ayag)z + (a2 — Arar — Azag)z® + -+
st (ag—1 — Arag—g — - — Ak—lao)xkfl
since, by (1), the coefficients of z¥, 2**1 ... on the right-hand side are
zero. From this we have
ap + (a1 — Ayag)z + - + (ap—1 — Ayag—2 — -+ — Ap_1a9)z*?
a(z) =
l1—ax— - —agak

which proves the first part of the theorem.

Now let
by b+ bt
Cdo+dix+ -+ dyak

a'(z)
be a rational function with complex coefficients, where s > 0, k > 1,

bl # 0, dy # 0, d # 0 and the denominator is not a divisor of the
numerator. Then a’(z) can be written as

@ (a) = a"(2) + o -ala)

where a”(z) is a polynomial and a(z) is of the form

o(z) = bo + byx + -+ + by_yaF !
Tl Ay — - — At

with b;’s not all zero and A; = —d;/dy for i =1,2,... k.
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Let us consider the system of equations
ap—1 — Arag_o2 — Asap_3 — -+ — Ag_2a1 — Ap_100 = b1

ap—2 — Arag_3 — -+ — Ap_3a1 — Ap_200 = bj_2

ay — Arapg = by
apg = bo

in unknowns ag, a1, ... ,ar_1. This system has a unique solution since its
determinant is 1. The solutions are integers if the A;’s and b;’s are rational
integers and ay, . . . ,arp_1 are not all zero since bg, ... ,bx_1 are not all zero.
But then, as we have seen above, the sequence a,, (n = 0,1,...) defined
by the initial terms ag, ... ,ar_1 and by the recursion

(3) ap = Alan—l + A2an—2 + -+ Akan—k (7’1, Z k)a

has the generating function a(z). From this, by (2), it follows that the
coefficients of the power series of a/(x) satisfy the recurrence relation (3)
for any n > ng, where ng = k or ng = k+1+dega”(x) according as a”(x)
is identically zero or not.

From this the theorem follows.

Remark. Theorem 1 and its proof give a method for obtaining the
power series expansion of a rational function. For example let

4 — 3z + 222 3
a(r) =

1 3r+2:2 1 3zt2®
By Theorem 1 the function % is the generating function of a linear

recurrence a,, with characteristic polynomial x? — 3z 4+ 2. For the initial
terms, we have from the proof of the Theorem, a; — 3ag = 0 and ag = 3.
Soap=3,a; =9 and

o0
a(x) =ap+ 1+ Z anz™.
n=1

But it is known that if c; and as are the roots of the characteristic poly-
nomial of a second order linear recurrence a,, and a; # s, then the terms
can be expressed by

(4) an =

In our case a1 =2, as =1, ag = 3, a1 = 9 and so we have

4 — 3z + 222 s
TS 44 (62" 3.
n=1

(a1 — aoag)aln — (a1 — aoal)agn

Q] — Qg

1— 3z + 222
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Consequences of the theorem

Let R, (n=0,1,...) be a linear recurrence of order k as defined in
the introduction and let oy, as,... ,a,, be the distinct roots of the char-
acteristic polynomial ¢(z) with multiplicities ki, ko, ... , k,, respectively,
(k14 +kp = k).

Explicit forms for the terms R, are known in special cases, the best
known of which is Binet’s formula for Fibonacci numbers: F,, = (af —
a) /(a1 — az), where o and ap are the roots of the polynomial 22 —x —1.
For general second order recurrences formula (4) is also well known. For an
arbitrary sequence R,,, J.A. JESKE [6] proved the existence of polynomials
ri(x), i=1,...,m, such that

m
R, = Z ri(n)al
i=1
for any n > 0. We show that this result and its converse follow from our
Theorem.

Corollary 1. The terms of the linear recurrence R,, can be expressed
by

m
(5) R, =) rin)a}
i=1

for every n > 0, where r;(z), (i = 1,...,m) are fixed polynomials of
degree k; — 1, respectively and the coefficients of these polynomials are
elements of the number field generated by Ry, ... ,Rr_1, A1,..., A and
Qi, ...,y over the rationals. Also conversely, if the terms of a sequence
satisfy equality (5) with polynomials r;(x) of degree k; — 1 (1 < i < m),
then the sequence satisfies a linear recurrence of order ki + ...+ k,, with
characteristic polynomial

(z — ;)"

o)
&
I
—

PRrOOF. Let R, be a linear recurrence with characteristic polynomial
(6) c(x) = H(az —a)li =2k — At - A
i=1
Then, by Theorem 1, there is a polynomial g(x) with degg(z) < k and
such that

(7) R(z) = 1— Az g(m — Apzk - Z R,
n=0
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By (6) we can write

( m

(8) R(x)= 57— =
11— ) = 1‘“2
i=1
where
9i(x) = big +bix+ -+ by, (i=1,...,m),

are polynomials.
It is known that

from which

ooki—l
gl(w) . TL+k‘i—1 n, nt+j __
T = S (M ) aran -

n=0 5=0
oo k;—1
S bij (n4ki—1Y n+i ntj
N 0 o o ki —1 '
n=4yu j= K2
9)
o0 ki—l .
:Z bly] ’I’L—]—kaz—l aly™ =
o’ ki — 1 ¢
n=0 \ j=0 %
o0
= Zri(n)a?x”
n=0

follows, where r;(x) is a polynomial of degree at most k; — 1. From this,
by (7) and (8), equality (5) follows. The restrictions on the coefficients of
the polynomials also hold.

Now let R/, be a sequence of numbers defined by

(10) Rl = Zri(n)a

for any n > 0, where r;(x), (i = 1,... ,m), are polynomials of degree k; —1,
respectively, m, k1, ... , k,, are positive rational integers, and aq,... ,an,
are fixed non-zero numbers.

We show that for any polynomial

(11) r(z) =co+erx+ -+ cp1at
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there are numbers tg,%1,... ,tr_1 such that

r() Zto<x—]§§;1>+t1<x_é—_i_lf_l>+-“

o <:c—(k;i)1+k—l)

(12)

for any non-negative integer x. By (11) and (12) ¢ty = ¢y follows since
r(0) = ¢p and (m_Hk_l) =01if z — 4 < 0. Also by (12) we have

k1
tlzr(l)—t()(kﬁl)

and continuing this process with x = 2,3,... ,k — 1 we have
i—1
(=7 F k -1
=2t (T
7=0
forany 1 < i < k—1. So the numbers tg, ... ,t;_1 are uniquely determined.

From this and (9) by replacing b; ; by ¢;a7, it follows that

i r(n)a"z" = g()

— k>
oy (1—ax)

for some polynomial ¢’(z) of degree k — 1, for any « # 0 and polynomial
r(x) of degree k — 1. So by (10)

— (1—051 ZR/

follows for some polynomials g;(x) of degree k; —1,i=1,... ,m
The right hand side of (13) is a rational function with denominator of
the form

(13)

=1

m

d(z) = H(l —az)i =1 Az — - — Apa®

i=1

and so, by the Theorem, the sequence R/, is a linear recurrence with char-
acteristic polynomial

c(z) = H(m —a)l =ab — At - A
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Remark. Some authors state formula (5) in the form that the degree
of the polynomials r;(x) are “at most” k; — 1. Corollary 1 implies that if
degri(z) < k; — 1 for some i, then the sequence R,, satisfies a recurrence
relation of order less than k1 + -+ + k,,, = k.

Let ¢ > 1, » > 0 be fixed natural numbers. Then the sequence
H, = Ryn+r, (n =0,1,2,...), is a subsequence of R,,. If R,, is a second
order linear recursive sequence, then it is easy to see that H, is also a
second order linear recurrence. For the Fibonacci sequence this was shown
by J.H. HALTON [3]. For an arbitrary linear recurrence this result can be
derived from Corollary 1. Now we give another proof of it using only our
Theorem.

Corollary 2. Let R,,,n=0,1,2,..., be a k** order linear recurrence.
Then the subsequence H,, of R,, defined by

Hn = an—l—r (n > 0)7

where ¢ > 0 and r, 0 < r < ¢, are fixed integers, is also a linear recurrence,
of order k. If R, is a sequence of rational integers with integer parameters,
then the sequence H,, also has integer parameters.

PROOF. Let R,, be a k™ order recurrence with characteristic polyno-
mial
clx) =ak — Ayt — .. — A

Then for any given r > 0 the sequence R,., R,11,... is also a linear
recurrence with the same characteristic polynomial, ¢(z). Let g(z)/f(x)
be the generating function of this sequence, i.e.,

g9(z) 2
= R,r, R’I" RT‘ “ e
f(a:) + +1T + +2T +
where, by Theorem 1, deg g(z) < deg f(z) = k and
flz)=1— Az —-- — Apa®.
Let ¢ > 0 be a natural number and ¢ be a primitive ¢*" root of unity. Put
g(e'z) i i.\2
— =R, + R, R, e
f(&’ﬂ?) + +1<€ l‘) + +2(5 fL') +
fori=0,1,... ,g—1. Then
—1 . 0o q—1
Glz) = gl(e'x) ;.
14 = - :qu_i_ Rn Txn. gl ,
W e~ L e >
where

F(z) =[] f(e").
=0
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But

1

qzl in 0 if ¢fn
I =

— qg if g|n
and so by (14) we have

15 = q- Ropnirx®™ =q- H,z1.
( ) F((IJ‘) ngo qn—+ ngo

By the definition of F(x), for any complex number z and any integer ¢,
(0<i<q—1), F(xr) = F(¢'z). This implies that if § # 0 is a root of the
equation F(x) = 0, then &§, £26,... ,e9714 are also roots with the same
multiplicity as d. Since F'(0) # 0, it follows that F'(z) is of the form

k
(16)  F(x) = fi- [ = B]) = fo+ fra? + for® + - + fra®,

i=1
where [31,..., [k are the roots of the polynomial f(x), |fx| = |Ax|? and
k
| fol = |fl - | 1:[15@‘|q = 1.
Let -
G'(x) =g(x) - f(ex) - f(52x) . f(eq_lx) =apzr" + - +aix+ ag.

Then
q—1

G(z) = Z G'(e'2) = bypa™ + -+ - + byx + b,
i=0

where
= {q-w if ¢l
bi = a; 25” = t .
= 0 if gfi
for any 0 < ¢ < m and so G(x) has the form

(17) Gx)=q- Zgia:qi

for some integer t > 0.
By (15), (16) and (17), after replacing x? by x, we get

+ t >
(90 + 12 + * oz ) _ S Ha,
L£ (o + -+ fuak) 2
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which, by Theorem 1, implies that H, is a linear recurrence of order k
with characteristic polynomial ¢(z) = 2% £+ (fiz* =1 + -+ + fr).

If R, is a sequence of integers with rational integer parameters Ay, ... ,
Aj, then by using theorems about the elementary symmetric functions of
variables which are roots of a polynomial, it is easy to check that f1,... , fx
are integers. The initial terms of the sequence H,, are obviously integers
and so the proof is complete.

Using the generating functions for the Fibonacci F,, and Lucas L,
sequences H.W. GoOULD [2] showed that for any fixed integer p > 1 the
sequences FP and LP are also linear recurrences. Similar results were
obtained by I.I. KOLONDER [7] for general second order linear recurrences.
Corollary 1 implies a generalization of these results.

Corollary 3. Let R,, be a linear recurrence and let
p(z) = apx’ + a2 4+ ag
be a polynomial. Then the sequence G,,, defined by
G, =p(Ry) (n=0,1,...)
also satisfies a linear recursion equation.

Proor. By Corollary 1, for any given complex number a and any
integer s > 0, the numbers a - R} are of the form

i=1 =1

for all n > 0. Here v is a positive integer, the g;(z)’s are polynomials and
the B;’s are determined by

m
Bi = Hajj with Zej = s.
j=1
But then

t u
s=0 i=1

for some integer u, some polynomials h;(x) and some numbers ;. So by
Corollary 1 the sequence (G, is a linear recurrence.

Remark. One can easily check that if R, is a sequence with integer
parameters and the coefficients of p(x) are integers, then the parameters
of the sequence G, are also integers.
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Additional consequences

Now we list some further consequences which can be proved easily
from the above results.

Corollary 4. Let S = {p1,...,ps} be a finite set of prime numbers
and suppose that a,, (n =0,1,...), is a sequence of non zero integers such
that all prime divisors of the terms ag,ay,as,... are elements of the set
S. Then the sequence a,, satisfies a linear recurrence relation if and only
if the terms of a,, are of the form

apn+r =c - a£n+r
for alln > 0 and all r, 0 < r < p, where p is a positive integer and ., ¢,
(r=0,1,...,p— 1) are constants.

PROOF. This follows from Theorem 1 and a result of G. POLYA [9)].
But it can also be proved from Corollaries 1 and 2, using the known re-
sult: if a,, is a non-degenerate linear recurrence of integers, then there are
infinitely many prime p such that p|a,, for some n.

Corollary 5. Let R, be a linear recurrence of order k with generat-
ing function g(x)/f(x). If (9(x), f(z)) > 1, then the sequence satisfies a
recurrence relation of order less than k.

PrRooOF. From Theorem 1.

Corollary 6. If R, (n = 0,1,...) and K,, are linear recurrences of
order ki and ko, respectively, then the sequence R,, + K,,, (n =0,1,...),
is also a linear recurrence of order < ki + ks.

PRroOOF. This follows from Theorem 1 by adding the generating func-
tions of the sequences. Corollary 1 also implies this assertion.

Corollary 7. If R, and K,, are the sequences defined in Corollary 6,
then the sequence L,,, defined by

Ln = Zn: Ranfz
=0

is also a linear recurrence of order at most ki + ks.

PRrOOF. It follows from Theorem 1 by multiplying the generating
functions of the sequences.

Corollary 8. If L,, is a linear recurrence and p > 0 is a fixed natural
number, then the sequence P, , defined by

P, = Zn: ¥
=0



306 James P. Jones and Péter Kiss : Linear recursive sequences. . .

is also a linear recurrence.

PRrROOF. The sequence L? is a linear recurrence by Corollary 3. Hence
if in Corollary 7 we replace the sequence R,, by L? and let K,, be defined
by K, =1 for n > 0, then the assertion follows.
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