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On the number of solutions of the equation
1k + 2k + · · · + (x − 1)k = yz

By B. BRINDZA (Debrecen) and Á. PINTÉR (Debrecen)

To Professor K. Győry on his 60th birthday

1. Introduction

In 1956 Schäffer proved

Theorem A (Schäffer [13]). For fixed k > 0 and m > 1 the equa-

tion

(1) 1k + 2k + · · ·+ (x− 1)k = ym

has an infinite number of solutions in positive integers x and y only in the

cases

(i) k = 1, m = 2; (ii) k = 3, m ∈ {2, 4}; (iii) k = 5, m = 2.

For further generalisations and improvements we refer to [3], [5], [7],
[9], [14], [15], [16] and [17]. One of the most surprising results is
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Theorem B (Győry, Tijdeman and Voorhoeve [17]). Let R(x)
be a fixed polynomial with rational integer coefficients. Let b 6= 0 and

k ≥ 2 be fixed rational integers such that k /∈ {3, 5}. Then the equation

1k + 2k + · · ·+ xk + R(x) = byz

in integers x, y ≥ 1 and z > 1 has only finitely many solutions.

It is known that the sum Sk(x) = 1k + 2k + · · · + (x − 1)k can be
expressed in terms of Bernoulli polynomials, hence the equation (1) can
be considered as a superelliptic equation and one can derive an upper
bound for the size of the solutions by using Baker’s method. Dealing with
the number of solutions, Brindza obtained

Theorem C (Brindza [4]). For any given m /∈ {1, 2, 4}, the equation

(1) has at most e7k solutions.

The purpose of this paper is to handle the more general case when
the exponent m is also unknown; i.e. we consider the equation

(2) Sk(x) = yz in positive integers x, y > 1, z > 2 and (k, z) /∈ (3, 4).

Theorem 1. The equation (2) has at most

max{c1, e
3k}

solutions, where c1 is an effectively computable absolute constant.

A reasonable upper bound in the hyperelliptic case (i.e. when z = 2),
which is not covered by Theorem C is provided by

Theorem 2. If k is even then the equation

(3) Sk(x) = y2

possesses at most max{c2, 9k} solutions in positive integers x and y, where

c2 is an effectively computable absolute constant.
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2. Preliminaries

The proofs are based upon several classical properties of Bernoulli
polynomials and some up-to-date results. For the following known prop-
erties we refer to [11] (pages 4–22).

Let Bn(X) denote the nth Bernoulli polynomial and Bn = Bn(0),
n = 0, 1, 2, . . . ; moreover, let Dn be the denominator of Bn. Then we have

(A) Bn(X) =
n∑

i=0

(
n

i

)
BiX

n−i, (B0 := 1),

(B) 1k + 2k + · · ·+ (x− 1)k =
1

k + 1
(Bk+1(x)−Bk+1),

(C) Bn(X) = (−1)nBn(1−X),

(D) B2n+1 = 0, n = 1, 2, . . . ,

(E) (Von Staudt and Clausen), D2n =
∏

p−1|2n

p, p prime;

(F )
2 · (2n)!
(2π)2n

< |B2n| < (2n)!
12(2π)2n−2

(n > 1).

(G) If k is odd then 0, 1,
1
2

are simple zeros of Bk(X).

Moreover, we shall use the following lemmas.

Lemma 1. For any n ≥ 3 and positive integers a, b the diophantine
equation

|axn − byn| = 1

has at most one solution in positive integers x and y.

Proof. See [2]. ¤
In the sequel, c3, c4, . . . , will denote effectively computable absolute

constants.

Lemma 2. The equation (2) implies

z < c3k
2 log 2k.

Proof. See [10, Theorem] and the subsequent remark. ¤
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Lemma 3. For any given k, m with k > c4, m > 2 the equation (1)
possesses at most e2.85k solutions.

Proof. Using Brindza’s approach (see [4]), one can see that (1) leads
to at most T (k) equations of type

aum − bvm = 1 in positive integers u, v,

where

T (k) ≤
(

k

3

)εk(2+ log 3
log 2 )

( ∏

p<21/ε

p prime

2
ε log 2

)2+ log 3
log 2

(k > c5).

We mention that the upper bound for T (k) is valid for all ε > 0.
Applying the well-known inequality

(4) π(n) <
2n

log n
, n > 1 (cf. [12]),

and on taking

ε =
log 2

log k/2

we have

T (k) ≤ exp
{

log k/3
log k/2

log 2
(

2 +
log 3
log 2

)
k

+
log 2 + log log k/2− 2 log log 2

log k/2

(
2 +

log 3
log 2

)
k

}

≤ exp
{(

2 +
log 3
log 2

)
(log 2 + 0.1)k

}
≤ e2.85k,

for k > c6. Finally, Lemma 1 completes the proof.

Lemma 4. If a, b and c are positive integers then the simultaneous

equations

ax2 − by2 = 1, by2 − cz2 = 1

has at most one solution (x, y, z) in positive integers.

Proof. This is the main result of [1]. ¤
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Lemma 5. Let d(n) denote, as usual, the number of positive divisors

of n. Then for every positive ε and positive integer n

d(n) ≤ nε
∏

pε<2
p prime

2
ε log 2

.

Proof. See e.g. [8], page 111. ¤

3. Proofs of Theorems

Proof of Theorem 1. Since all the parameters of the kth Bernoulli
polynomials depend only on k thus the unknowns x, y and z are bounded
by a function of k.

If k ≤ c7 then our result is an easy consequence of Lemma 2 and
Lemma 5. Now supposing k > c7 Theorem 1 is a straightforward corollary
of Lemmata 1, 2 and 3. ¤

Proof of Theorem 2. We may assume again that k > c8, otherwise
Theorem 2 is proved by Lemma 5. If k is even then

(k + 1)y2 = (k + 1)Sk(x) = Bk+1(x)

=
(

k + 1
1

)
Bkx +

(
k + 1

3

)
Bk−2x

3 + · · ·+ xk+1.

On setting Pk =
∏

p≤k
p prime

p we obtain

(k + 1)Pky2 = x
(
(k + 1)BkPk + x2f(x)

)
,

where f(x) ∈ Z[x] and thus

x = au2, a | (k + 1)BkPk

and a is a square-free and positive. We get similarly

x− 1 = bv2 and 2x− 1 = cz2,
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where b and c also square-free positive rational integers and divide
(k +1)BkPk. Using Lemma 4, it is enough to give an upper bound for the
number of triplets (a, b, c) denoted by N(a, b, c). It is plain that

N(a, b, c) ≤ d
(|(k + 1)BkPk|

)3

and a simple calculation gives

|(k + 1)BkPk| ≤ (k + 1)
k!

12(2π)k−2
2.8k

≤ (k + 1)
(

k

e

)k√
2πk e1/12 4π2

12

(
2.8
2π

)k

<

(
k

4

)k

.

Now we have, by Lemma 5 and inequality (4),

d
(|(k + 1)BkPk|

) ≤
(

k

4

)kε ∏

p<21/ε

2
ε log 2

≤
(

k

4

)kε (
2

ε log 2

) 2·21/ε

1/ε·log 2

.

On choosing

ε =
log 2

log k/2

we obtain

d
(|(k + 1)BkPk|

)

≤ exp
{

log k/4
log k/2

k log 2 +
k

log k/2
(log 2 + log log k − 2 log log 2)

}

≤ exp{k(log 2 + 0.03)} ≤ 9k/3. ¤
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