Integer points on a family of elliptic curves

By ANDREJ DUJELLA (Zagreb) and ATTILA PETHŐ (Debrecen)

Dedicated to Professor Kálmán Györy
on the occasion of his 60th birthday

Abstract. Let the sequence $\left(c_{k}\right)$ be given by the recursion

$$
c_{0}=0, c_{1}=8, c_{k+2}=14 c_{k+1}-c_{k}+8, \quad k \geq 0
$$

Let the elliptic curve E_{k} be defined by the equation $y^{2}=(x+1)(3 x+1)\left(c_{k} x+1\right)$. We prove in this paper that if the rank of $E_{k}(\mathbb{Q})$ is equal to two, or $k \leq 40$, with the possible exceptions $k=23$ and $k=37$, then all integer points on E_{k} are given by

$$
\begin{gathered}
(x, y) \in\left\{(-1,0), \quad(0, \pm 1), \quad\left(c_{k-1}, \pm s_{k-1} t_{k-1}\left(2 c_{k}-s_{k} t_{k}\right)\right)\right. \\
\left.\left(c_{k+1}, \pm s_{k+1} t_{k+1}\left(2 c_{k}+s_{k} t_{k}\right)\right)\right\}
\end{gathered}
$$

where $c_{k}+1=s_{k}^{2}$ and $3 c_{k}+1=t_{k}^{2}$.

1. Introduction

A set D of m positive integers is called a Diophantine m-tuple if the product of any two distinct elements of D increased by 1 is a perfect square. The first example of a Diophantine quadruple - $\{1,3,8,120\}$ - was found by Fermat (see [6, p. 517]). In 1969, Baker and Davenport [2] proved that if d is a positive integer such that $\{1,3,8, d\}$ is a Diophantine quadruple, then d has to be 120 .

Recently, in [9], we generalized this result to all Diophantine triples of the form $\{1,3, c\}$. The fact that $\{1,3, c\}$ is a Diophantine triple implies that $c=c_{k}$ for some positive integer k, where the sequence $\left(c_{k}\right)$ is given by

$$
c_{0}=0, \quad c_{1}=8, \quad c_{k+2}=14 c_{k+1}-c_{k}+8, \quad k \geq 0 .
$$

Let $c_{k}+1=s_{k}^{2}, 3 c_{k}+1=t_{k}^{2}$ with positive integers s_{k}, t_{k}. It is easy to check that

$$
c_{k \pm 1} c_{k}+1=\left(2 c_{k} \pm s_{k} t_{k}\right)^{2} .
$$

The main result of [9] is the following theorem.
Theorem 1. Let k be a positive integer. If d is an integer which satisfies the system of equations

$$
\begin{equation*}
d+1=x_{1}^{2}, \quad 3 d+1=x_{2}^{2}, \quad c_{k} d+1=x_{3}^{2}, \tag{1}
\end{equation*}
$$

then $d \in\left\{0, c_{k-1}, c_{k+1}\right\}$.
Eliminating d from the system (1) we obtain the following system of Pellian equations

$$
\begin{align*}
x_{3}^{2}-c_{k} x_{1}^{2} & =1-c_{k} \tag{2}\\
3 x_{3}^{2}-c_{k} x_{2}^{2} & =3-c_{k} . \tag{3}
\end{align*}
$$

We used the theory of Pellian equations and some congruence relations to reformulate the system (2) and (3) to four equations of the form $v_{m}=w_{n}$, where $\left(v_{m}\right)$ and $\left(w_{n}\right)$ are binary recursive sequences. After that, a comparison of the upper bound for the solutions obtained from the theorem of Baker and Wüstholz [3] with the lower bound obtained from the congruence condition modulo c_{k}^{2} finished the proof for $k \geq 76$. The statement for $1 \leq k \leq 75$ was proved by a variant of the reduction procedure due to Baker and Davenport [2].

Similar results are proved in [7] and [8] for Diophantine triples of the form $\{k-1, k+1,4 k\}$ and $\left\{F_{2 k}, F_{2 k+2}, F_{2 k+4}\right\}$. In the second triple F_{n} denotes the n-th Fibonacci number.

It is clear that every solution $\left(d, x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{4}$ of (1) induce an integer point on the elliptic curve

$$
\begin{equation*}
E_{k}: \quad y^{2}=(x+1)(3 x+1)\left(c_{k} x+1\right) \tag{4}
\end{equation*}
$$

with $y=x_{1} x_{2} x_{3}$ and $x=d$. The purpose of the present paper is to prove that the converse of this statement is true, provided the rank of $E_{k}(\mathbb{Q})$ is equal to 2. As we will see in Proposition 2, for all $k \geq 2$ the rank of $E_{k}(\mathbb{Q})$ is always ≥ 2. Our main result is

Theorem 2. Let k be a positive integer. If $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)=2$ or $k \leq 40$, with the possible exceptions $k=23$ and $k=37$, then all integer points on E_{k} are given by

$$
\begin{gathered}
(x, y) \in\left\{(-1,0),(0, \pm 1),\left(c_{k-1}, \pm s_{k-1} t_{k-1}\left(2 c_{k}-s_{k} t_{k}\right)\right),\right. \\
\left.\left(c_{k+1}, \pm s_{k+1} t_{k+1}\left(2 c_{k}+s_{k} t_{k}\right)\right)\right\} .
\end{gathered}
$$

2. Torsion group

Under the substitution $x \leftrightarrow 3 c_{k} x, y \leftrightarrow 3 c_{k} y$ the curve E_{k} is transformed into the following Weierstraß form
$E_{k}^{\prime}: \quad y^{2}=x^{3}+\left(4 c_{k}+3\right) x^{2}+\left(3 c_{k}^{2}+12 c_{k}\right) x+9 c_{k}^{2}=\left(x+3 c_{k}\right)\left(x+c_{k}\right)(x+3)$.
There are three rational points on E_{k}^{\prime} of order 2, namely

$$
A_{k}=\left(-3 c_{k}, 0\right), \quad B_{k}=\left(-c_{k}, 0\right), \quad C_{k}=(-3,0),
$$

and also other two, more or less obvious, rational points on E_{k}^{\prime}, namely

$$
P_{k}=\left(0,3 c_{k}\right), \quad R_{k}=\left(s_{k} t_{k}+2 s_{k}+2 t_{k}+1,\left(s_{k}+t_{k}\right)\left(s_{k}+2\right)\left(t_{k}+2\right)\right) .
$$

Note that if $k=1$, then $R_{1}=C_{1}-P_{1}$.
Lemma 1. $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
Proof. From [17, Main Theorem 1] it follows immediately that $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ or $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$, and the later is possible iff there exist integers α and β such that $\frac{\alpha}{\beta} \notin\left\{-2,-1,-\frac{1}{2}, 0,1\right\}$ and

$$
c_{k}-3=\alpha^{4}+2 \alpha^{3} \beta, \quad 3 c_{k}-3=2 \alpha \beta^{3}+\beta^{4} .
$$

Now, we have

$$
\begin{equation*}
4 c_{k}-6=\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)^{2}-3 \alpha^{2} \beta^{2} . \tag{5}
\end{equation*}
$$

Since c_{k} is even, the left hand side of (5) is $\equiv 2(\bmod 8)$. If α and β are both even then the right hand side of (5) is divisible by 8 , and if α and β are both odd then the right hand side of (5) is $\equiv 6(\bmod 8)$, a contradiction. Hence, $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

3. The independence of P_{k} and R_{k}

In this section we will often use the following 2 -descent proposition (see [12, 4.1, p. 37]).

Proposition 1. Let $P=\left(x^{\prime}, y^{\prime}\right)$ be a \mathbb{Q}-rational point on E, an elliptic curve over \mathbb{Q} given by the equation

$$
y^{2}=(x-\alpha)(x-\beta)(x-\gamma),
$$

where $\alpha, \beta, \gamma \in \mathbb{Q}$. Then there exists a \mathbb{Q}-rational point $Q=(x, y)$ on E such that $2 Q=P$ iff $x^{\prime}-\alpha, x^{\prime}-\beta, x^{\prime}-\gamma$ are all \mathbb{Q}-rational squares.

Lemma 2. $P_{k}, P_{k}+A_{k}, P_{k}+B_{k}, P_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.
Proof. We have:

$$
\begin{aligned}
& P_{k}+A_{k}=\left(-c_{k}-2,-2 c_{k}+2\right), \\
& P_{k}+B_{k}=\left(-3 c_{k}+6,6 c_{k}-18\right), \\
& P_{k}+C_{k}=\left(c_{k}^{2}-4 c_{k},-c_{k}^{3}+4 c_{k}^{2}-3 c_{k}\right) .
\end{aligned}
$$

It follows immediately from Proposition 1 that $P_{k}, P_{k}+A_{k}, P_{k}+B_{k} \notin$ $2 E_{k}^{\prime}(\mathbb{Q})$. If $P_{k}+C_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$, then $c_{k}^{2}-c_{k}=\square$, which is impossible.

Lemma 3. $R_{k}, R_{k}+A_{k}, R_{k}+B_{k}, R_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.
Proof. We have:

$$
\begin{aligned}
R_{k} & =\left(s_{k} t_{k}+2 s_{k}+2 t_{k}+1,\left(t_{k}+s_{k}\right)\left(s_{k}+2\right)\left(t_{k}+2\right)\right), \\
R_{k}+A_{k} & =\left(2 s_{k}-2 t_{k}-s_{k} t_{k}+1,\left(s_{k}-t_{k}\right)\left(s_{k}+2\right)\left(t_{k}-2\right)\right), \\
R_{k}+B_{k} & =\left(2 t_{k}-2 s_{k}-s_{k} t_{k}+1,\left(t_{k}-s_{k}\right)\left(s_{k}-2\right)\left(t_{k}+2\right)\right), \\
R_{k}+C_{k} & =\left(s_{k} t_{k}-2 s_{k}-2 t_{k}+1,\left(t_{k}+s_{k}\right)\left(2-s_{k}\right)\left(t_{k}-2\right)\right) .
\end{aligned}
$$

Since $2 s_{k}-2 t_{k}-s_{k} t_{k}+4=\left(s_{k}+2\right)\left(2-t_{k}\right)<0$ and $2 t_{k}-2 s_{k}-s_{k} t_{k}+4=$ $\left(t_{k}+2\right)\left(2-s_{k}\right)<0$, we have $R_{k}+A_{k}, R_{k}+B_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.

If $R_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$, then $\left(t_{k}+s_{k}\right)\left(t_{k}+2\right)=\square$ and $\left(t_{k}+s_{k}\right)\left(s_{k}+2\right)=$ Let $d=\operatorname{gcd}\left(t_{k}+s_{k}, t_{k}+2, s_{k}+2\right)$. Then d divides $\left(t_{k}+2\right)+\left(s_{k}+2\right)-$ $\left(t_{k}+s_{k}\right)=4$, and since s_{k} and t_{k} are odd, we conclude that $d=1$. Hence, we have

$$
\begin{equation*}
t_{k}+s_{k}=\square, \quad t_{k}+2=\square, \quad s_{k}+2=\square . \tag{6}
\end{equation*}
$$

Consider the sequence $\left(t_{k}+s_{k}\right)_{k \in \mathbb{N}}$. It follows easily by induction that $t_{k}+s_{k}=2 a_{k+1}$, where

$$
\begin{equation*}
a_{0}=0, \quad a_{1}=1, \quad a_{k+2}=4 a_{k+1}-a_{k}, \quad k \geq 0 . \tag{7}
\end{equation*}
$$

Thus, (6) implies $a_{k+1}=2 \square$, and this is impossible by a theorem of Mignotte and Рethő [14] (see also [16]) which says that $a_{k}=\square, 2 \square$, $3 \square$ or $6 \square$ implies $k \leq 3$.

If $R_{k}+C_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$, then $\left(t_{k}+s_{k}\right)\left(t_{k}-2\right)=\square$ and $\left(t_{k}+s_{k}\right)\left(s_{k}-2\right)=\square$. This implies $t_{k}+s_{k}=\square$ and we obtain a contradiction as above.

Lemma 4. If $k \geq 2$, then $R_{k}+P_{k}, R_{k}+P_{k}+A_{k}, R_{k}+P_{k}+B_{k}, R_{k}+$ $P_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.

Proof. As in the proof of Lemmas 2 and 3, we use Proposition 1.
If $R_{k}+P_{k}+A_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then $0>c_{k}\left(s_{k}+2\right)\left(s_{k}-t_{k}\right)=\square$, and if $R_{k}+P_{k}+B_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then $0>c_{k}\left(s_{k}-2\right)\left(s_{k}-t_{k}\right)=\square$. Hence, $R_{k}+P_{k}+A_{k}, R_{k}+P_{k}+B_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.

If $R_{k}+P_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then

$$
\begin{align*}
3 c_{k}\left(t_{k}+s_{k}\right)\left(t_{k}+2\right) & =\square, \\
c_{k}\left(t_{k}+s_{k}\right)\left(s_{k}+2\right) & =\square, \tag{8}\\
3\left(s_{k}+2\right)\left(t_{k}+2\right) & =\square .
\end{align*}
$$

Substituting $2 c_{k}=\left(t_{k}+s_{k}\right)\left(t_{k}-s_{k}\right)$ in (8) we obtain

$$
\begin{aligned}
\left(t_{k}-s_{k}\right)\left(t_{k}+2\right) & =6 \square, \\
\left(t_{k}-s_{k}\right)\left(s_{k}+2\right) & =2 \square, \\
\left(s_{k}+2\right)\left(t_{k}+2\right) & =3 \square .
\end{aligned}
$$

Let $d=\operatorname{gcd}\left(s_{k}+2, t_{k}+2\right)$. Then the relation $t_{k}^{2}-3 s_{k}^{2}=-2$ implies $d \mid 6$. Since $t_{k}+2$ is odd, we have $d \in\{1,3\}$. Hence we obtain

$$
\begin{equation*}
t_{k}-s_{k}=6 \square \quad \text { or } \quad t_{k}-s_{k}=2 \square . \tag{9}
\end{equation*}
$$

But $t_{k}-s_{k}=2 a_{k}$, where $\left(a_{k}\right)$ is defined by (7). Thus (9) implies $a_{k}=\square$ or $3 \square$. According to [14], this is possible only if $k=2$. But $\left(s_{2}, t_{2}\right)=(11,19)$ and $\left(s_{2}+2\right)\left(t_{2}+2\right) \neq 3 \square$.

If $R_{k}+P_{k}+C_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then

$$
\begin{aligned}
3 c_{k}\left(t_{k}+s_{k}\right)\left(t_{k}-2\right) & =\square, \\
c_{k}\left(t_{k}+s_{k}\right)\left(s_{k}-2\right) & =\square, \\
3\left(s_{k}-2\right)\left(t_{k}-2\right) & =\square .
\end{aligned}
$$

Arguing as before, we obtain

$$
\begin{aligned}
\left(t_{k}-s_{k}\right)\left(t_{k}-2\right) & =6 \square, \\
\left(t_{k}-s_{k}\right)\left(s_{k}-2\right) & =2 \square, \\
\left(s_{k}-2\right)\left(t_{k}-2\right) & =3 \square,
\end{aligned}
$$

and conclude that

$$
t_{k}-s_{k}=6 \square \quad \text { or } \quad t_{k}-s_{k}=2 \square .
$$

As we have already seen, it is possible only for $\left(s_{2}, t_{2}\right)=(11,19)$, but then $\left(s_{2}-2\right)\left(t_{2}-2\right) \neq 3 \square$.

Proposition 2. If $k \geq 2$, then the points P_{k} and R_{k} generate a subgroup of rank 2 in $E_{k}^{\prime}(\mathbb{Q}) / E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$.

Proof. We have to prove that $m P_{k}+n R_{k} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}, m, n \in \mathbb{Z}$, implies $m=n=0$.

Assume $m P_{k}+n R_{k}=T \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}=\left\{\mathcal{O}, A_{k}, B_{k}, C_{k}\right\}$ with $(m, n) \neq$ $(0,0)$. If m and n are not both even, then $T \equiv P_{k}, R_{k}$ or $P_{k}+R_{k}$ $\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$, which is impossible by Lemmas 2,3 and 4 . Hence, m and n are even, say $m=2 m_{1}, n=2 n_{1}$, and since by Lemma $1 A_{k}, B_{k}, C_{k} \notin$ $2 E_{k}^{\prime}(\mathbb{Q})$,

$$
2 m_{1} P_{k}+2 n_{1} Q_{k}=\mathcal{O}
$$

Thus we obtain $m_{1} P_{k}+n_{1} R_{k} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$. Arguing as above, we obtain that m_{1} and n_{1} are even, and continuing this process we finally conclude that $m=n=0$.

4. Proof of Theorem $2\left(\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)=2\right)$

Let $E_{k}^{\prime}(\mathbb{Q}) / E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}=\langle U, V\rangle$ and $X \in E_{k}^{\prime}(\mathbb{Q})$. Then there exist integers m, n and a torsion point T such that $X=m U+n V+T$. Also $P_{k}=m_{P} U+n_{P} V+T_{P}, R_{k}=m_{R} U+n_{R} V+T_{R}$ with integers m_{P}, n_{P}, m_{R}, n_{R} and with $T_{P}, T_{R} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$. Let $\mathcal{U}=\{\mathcal{O}, U, V, U+V\}$. There exist $U_{1}, U_{2} \in \mathcal{U}, T_{1}, T_{2} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$ such that $P_{k} \equiv U_{1}+T_{1}\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$, $R_{k} \equiv U_{2}+T_{2}\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$. Let $U_{3} \in \mathcal{U}$ such that $U_{3} \equiv U_{1}+U_{2}$ $\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$. Then $P_{k}+R_{k} \equiv U_{3}+\left(T_{1}+T_{2}\right)\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$. Now Lemmas 2,3 and 4 imply that $U_{1}, U_{2}, U_{3} \neq \mathcal{O}$ and accordingly $\left\{U_{1}, U_{2}, U_{3}\right\}=$ $\{U, V, U+V\}$. Therefore $X \equiv X_{1}\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$, where

$$
\begin{aligned}
& X_{1} \in \mathcal{S}=\left\{\mathcal{O}, A_{k}, B_{k}, C_{k}, P_{k}, P_{k}+A_{k}, P_{k}+B_{k}, P_{k}+C_{k},\right. \\
& R_{k}, R_{k}+A_{k}, R_{k}+B_{k}, R_{k}+C_{k}, R_{k}+P_{k}, \\
&\left.R_{k}+P_{k}+A_{k}, R_{k}+P_{k}+B_{k}, R_{k}+P_{k}+C_{k}\right\} .
\end{aligned}
$$

Let $\{a, b, c\}=\left\{3, c_{k}, 3 c_{k}\right\}$. By [13, 4.6, p. 89], the function φ : $E_{k}^{\prime}(\mathbb{Q}) \rightarrow \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ defined by

$$
\varphi(X)= \begin{cases}(x+a) \mathbb{Q}^{* 2}, & \text { if } X=(x, y) \neq \mathcal{O},(-a, 0) \\ (b-a)(c-a) \mathbb{Q}^{* 2}, & \text { if } X=(-a, 0) \\ \mathbb{Q}^{* 2}, & \text { if } X=\mathcal{O}\end{cases}
$$

is a group homomorphism.
This fact and Theorem 1 imply that it is sufficient to prove that for all $X_{1} \in \mathcal{S} \backslash P_{k}, X_{1}=\left(3 c_{k} u, 3 c_{k} v\right)$, the system

$$
\begin{equation*}
x+1=\alpha \square, \quad 3 x+1=\beta \square, \quad c_{k} x+1=\gamma \square \tag{11}
\end{equation*}
$$

has no integer solution, where \square denotes a square of a rational number, and α, β, γ are defined by $u+1=\alpha, 3 u+1=\beta, c_{k} u+1=\gamma$ if all those numbers are $\neq 0$, and if e.g. $u+1=0$ then we choose $\alpha=\beta \gamma$ (so that $\alpha \beta \gamma=\square)$. Note that for $X_{1}=P_{k}$ we obtain the system $x+1=\square$, $3 x+1=\square, c_{k} x+1=\square$, which is completely solved in Theorem 1 .

For $X_{1} \in\left\{A_{k}, B_{k}, P_{k}+A_{k}, P_{k}+B_{k}, R_{k}+A_{k}, R_{k}+B_{k}, R_{k}+P_{k}+A_{k}\right.$, $\left.R_{k}+P_{k}+B_{k}\right\}$ exactly two of the numbers α, β, γ are negative and thus the system (11) has no integer solution.

The rest of the proof falls naturally into 7 parts. By a^{\prime} we will denote the square free part of an integer a.

1) $X_{1}=\mathcal{O}$:

We have

$$
\begin{equation*}
x+1=3 c_{k} \square, \quad 3 x+1=c_{k} \square, \quad c_{k} x+1=3 \square . \tag{12}
\end{equation*}
$$

From the second equation in (12) we see that $3 \nmid c_{k}^{\prime}$ and thus the first and second equations imply that c_{k}^{\prime} divides $3 x+1$ and $x+1$. Accordingly, $c_{k}^{\prime} \mid 3(x+1)-(3 x+1)=2$ and we conclude that $c_{k}^{\prime}=1$ or 2 . Hence,

$$
c_{k}=\square, \quad \text { or } \quad c_{k}=2 \square .
$$

However, $c_{k}=s_{k}^{2}-1=\square$ is obviously impossible, while $c_{k}=2 w^{2}$ leads to the system of Pellian equations

$$
s_{k}^{2}-2 w^{2}=1, \quad t_{k}^{2}-6 w^{2}=1 .
$$

This system is solved by Anglin [1], and the only positive solution is $\left(s_{k}, t_{k}, w\right)=(3,5,2)$ which corresponds to $c_{k}=c_{1}=8$, contradicting our assumption that $k \geq 2$. (Note that for $c_{1}=8$ there is also no solution because in this case the first and the third equations in (12) imply $3 \mid 7$.)
2) $X_{1}=C_{k}$:

We have

$$
\begin{aligned}
x+1 & =c_{k}\left(c_{k}-1\right) \square, \\
3 x+1 & =c_{k}\left(c_{k}-3\right) \square, \\
c_{k} x+1 & =\left(c_{k}-1\right)\left(c_{k}-3\right) \square .
\end{aligned}
$$

If $3 \nmid c_{k}$ then, as in $\mathbf{1}$), we obtain $c_{k}^{\prime}=1$ or 2 , and $c_{k}=\square$ or $2 \square$, which is impossible.

If $c_{k}=3 e_{k}$ then e_{k}^{\prime} divides $3 x+1$ and $3 x+3$ and thus $e_{k}^{\prime}=1$ or 2 . Hence,

$$
c_{k}=3 \square, \quad \text { or } \quad c_{k}=6 \square .
$$

The relation $c_{k}=3 \square$ is impossible since it implies $t_{k}^{2}-1=9 \square$, while $c_{k}=6 w^{2}$ leads to the system of Pellian equations

$$
s_{k}^{2}-6 w^{2}=1, \quad t_{k}^{2}-18 w^{2}=1
$$

which has no positive solution according to [1].
3) $X_{1}=P_{k}+C_{k}$:

We have

$$
\begin{aligned}
x+1 & =3\left(c_{k}-1\right) \square \\
3 x+1 & =\left(c_{k}-3\right) \square \\
c_{k} x+1 & =3\left(c_{k}-1\right)\left(c_{k}-3\right) \square
\end{aligned}
$$

Since $c_{k}=s_{k}^{2}-1$, we see that $c_{k} \not \equiv 1(\bmod 3)$, and thus $x \equiv-1(\bmod 3)$. From the second equation we have that $\left(c_{k}-3\right)^{\prime}$ is not divisible by 3 , and then the third equation gives $c_{k} x+1 \equiv 0(\bmod 3)$. This implies $c_{k} \equiv 1$ $(\bmod 3)$, a contradiction.
4) $X_{1}=R_{k}$:

We have

$$
\begin{aligned}
x+1 & =6\left(t_{k}-s_{k}\right)\left(t_{k}+2\right) \square, \\
3 x+1 & =2\left(t_{k}-s_{k}\right)\left(s_{k}+2\right) \square \\
c_{k} x+1 & =3\left(s_{k}+2\right)\left(t_{k}+2\right) \square .
\end{aligned}
$$

From the relation $t_{k}^{2}-3 s_{k}^{2}=-2$ it follows that $\operatorname{gcd}\left(t_{k}-s_{k}, s_{k}+2\right)=$ $\operatorname{gcd}\left(t_{k}-s_{k}, t_{k}+2\right)=1$ or 3 .

If $3 \nmid t_{k}-s_{k}$ then $\left[2\left(t_{k}-s_{k}\right)\right]^{\prime}$ divides $x+1$ and $3 x+1$, and thus $\left[2\left(t_{k}-s_{k}\right)\right]^{\prime}=1$ or 2 . Accordingly,

$$
t_{k}-s_{k}=2 \square \quad \text { or } \quad t_{k}-s_{k}=\square .
$$

As we have already seen in the proof of Lemma 4, this implies

$$
a_{k}=\square \quad \text { or } \quad a_{k}=2 \square,
$$

and [14] implies again that $k=2$. Now we obtain $120 x+1=91 \square$, which is impossible modulo 4.

If $t_{k}-s_{k}=3 z_{k}$ then $\left(2 z_{k}\right)^{\prime}$ divides $x+1$ and $9 x+3$. Hence $\left(2 z_{k}\right)^{\prime}$ divides 6 , which implies $a_{k}=\square, 2 \square, 3 \square$ or $6 \square$, and this is possible only if $k=2$. But for $k=2, t_{k}-s_{k}=8 \not \equiv 0(\bmod 3)$.
5) $X_{1}=R_{k}+C_{k}$:

We have

$$
\begin{gathered}
x+1=6\left(t_{k}-s_{k}\right)\left(t_{k}-2\right) \square, \quad 3 x+1=2\left(t_{k}-s_{k}\right)\left(s_{k}-2\right) \square, \\
c_{k} x+1=3\left(s_{k}-2\right)\left(t_{k}-2\right) \square .
\end{gathered}
$$

This case is completely analogous to the case 4).
6) $X_{1}=R_{k}+P_{k}$:

We have

$$
\begin{gathered}
x+1=\left(t_{k}+s_{k}\right)\left(t_{k}+2\right) \square, \quad 3 x+1=\left(t_{k}+s_{k}\right)\left(s_{k}+2\right) \square, \\
c_{k} x+1=\left(s_{k}+2\right)\left(t_{k}+2\right) \square .
\end{gathered}
$$

As in 4), we obtain that if $3 \nmid t_{k}+s_{k}$ then $\left(t_{k}+s_{k}\right)^{\prime}$ divides 2 , and if $t_{k}+s_{k}=3 z_{k}$ then z_{k}^{\prime} divides 6 . Hence, we have $a_{k+1}=\square, 2 \square, 3 \square$ or $6 \square$, which is impossible for $k \geq 2$.
7) $X_{1}=R_{k}+P_{k}+C_{k}$:

We have

$$
\begin{gathered}
x+1=\left(t_{k}+s_{k}\right)\left(t_{k}-2\right) \square, \quad 3 x+1=\left(t_{k}+s_{k}\right)\left(s_{k}-2\right) \square, \\
c_{k} x+1=\left(s_{k}-2\right)\left(t_{k}-2\right) \square .
\end{gathered}
$$

This case is completely analogous to the case 6).
Remark 1. It is easy to check that $\operatorname{rank}\left(E_{1}(\mathbb{Q})\right)=1$, and from the proof of the first statement of Theorem 2 (parts 1), 2) and 3)) it is clear that all integer points on E_{1} are given by $(x, y) \in\{(-1,0),(0, \pm 1)$, $(120, \pm 6479)\}$. Hence Theorem 2 is true for $k=1$.

Remark 2. As the coefficients of E_{k} grow exponentially, the computation of the rank of E_{k} for large k is difficult. The following values of $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)$ were computed using the programs SIMATH ([18]) and mwrank ([5]):

$$
\begin{array}{cccccccccc}
k & 1 & 2 & 3 & 4 & 5 & 7 & 8^{*} & 9 & 10^{*} \\
\operatorname{rank}\left(E_{k}(\mathbb{Q})\right) & 1 & 2 & 3 & 3 & 2 & 4 & 4 & 3 & 3
\end{array}
$$

In the cases $k=8,10$, the rank is computed assuming the Parity Conjecture. For $k=6,11,12$, under the same conjecture, we obtained that $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)$ is equal to 2 or 4 . We also verified by SIMATH that for $k=3$ and $k=4\left(\right.$ when $\left.\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)>2\right)$ all integer points on E_{k} are given by the values from Theorem 2.

Remark 3. Let us mention that Bremner, Stroeker and TzanakIS [4] proved recently a similar result as the first statement of our Theorem 2 for the family of elliptic curves

$$
C_{k}: \quad y^{2}=\frac{1}{3} x^{3}+\left(k-\frac{1}{2}\right) x^{2}+\left(k^{2}-k+\frac{1}{6}\right) x,
$$

under the assumptions $\operatorname{rank}\left(C_{k}(\mathbb{Q})\right)=1$ and $C_{k}(\mathbb{Q}) / C_{k}(\mathbb{Q})_{\text {tors }}=\langle(1, k)\rangle$.

5. Proof of Theorem $2(3 \leq k \leq 40)$

We pointed out in Remark 2 that the coefficients of E_{k} are growing very fast. Therefore, using SIMATH ${ }^{1}$ we were able to compute the integer points of $E_{k}(\mathbb{Q})$ only for $k \leq 4$. However, the following elementary argument gives us the proof of the second statement of Theorem 2.

Notice the following relations

$$
\begin{array}{lll}
c_{0}=0, \quad c_{1}=8, \quad c_{k+2}=14 c_{k+1}-c_{k}+8, & \text { if } k \geq 0, \\
t_{0}=1, \quad t_{1}=5, \quad t_{k+2}=4 t_{k+1}-t_{k}, & \text { if } k \geq 0, \\
s_{0}=1, \quad s_{1}=3, \quad s_{k+2}=4 s_{k+1}-s_{k}, & \text { if } k \geq 0, \\
c_{k}+1=s_{k}^{2} \quad \Longrightarrow \quad c_{k}=\left(s_{k}+1\right)\left(s_{k}-1\right), & \\
3 c_{k}+1=t_{k}^{2} \quad \Longrightarrow \quad 3 c_{k}=\left(t_{k}+1\right)\left(t_{k}-1\right), & \\
3\left(c_{k}-1\right)=\left(t_{k}+2\right)\left(t_{k}-2\right), & \\
c_{k}-3=\left(s_{k}+2\right)\left(s_{k}-2\right) . & \tag{19}
\end{array}
$$

We have $8 \mid c_{k}$ for any $k \geq 0$ by (13). Hence s_{k} and t_{k} are odd. We have further $3 \nmid c_{k}-1$ by (16).

Assume that $(x, y) \in \boldsymbol{Z}^{2}$ is a solution of (4). Put $D_{1}=\operatorname{gcd}(x+1$, $3 x+1), D_{2}=\operatorname{gcd}\left(x+1, c_{k} x+1\right)$ and $D_{3}=\operatorname{gcd}\left(3 x+1, c_{k} x+1\right)$. As $D_{1}=\operatorname{gcd}(x+1,3 x+1)=\operatorname{gcd}(x+1,2)$, we have $D_{1}=1$ if $x+1$ is odd, and $D_{1}=2$ if $x+1$ is even. We have further $D_{2}=\operatorname{gcd}\left(x+1, c_{k} x+1\right)=$

[^0]$\operatorname{gcd}\left(x+1, c_{k}-1\right)$ and $D_{3}=\operatorname{gcd}\left(3 x+1, c_{k} x+1\right)=\operatorname{gcd}\left(3 x+1, c_{k}-3\right)$. Hence D_{1}, D_{2} and D_{3} are pairwise relatively prime.

Assume first $D_{1}=1$. Then there exist $x_{1}, x_{2}, x_{3} \in \boldsymbol{Z}$ such that

$$
\begin{aligned}
x+1 & =D_{2} x_{1}^{2} \\
3 x+1 & =D_{3} x_{2}^{2} \\
c_{k} x+1 & =D_{2} D_{3} x_{3}^{2} .
\end{aligned}
$$

Eliminating x we obtain the following system of equations

$$
\begin{aligned}
3 D_{2} x_{1}^{2}-D_{3} x_{2}^{2} & =2 \\
c_{k} x_{1}^{2}-D_{3} x_{3}^{2} & =\frac{c_{k}-1}{D_{2}} .
\end{aligned}
$$

Similarly, if $D_{1}=2$, then (4) implies

$$
\begin{aligned}
x+1 & =2 D_{2} x_{1}^{2} \\
3 x+1 & =2 D_{3} x_{2}^{2} \\
c_{k} x+1 & =D_{2} D_{3} x_{3}^{2},
\end{aligned}
$$

from which we obtain

$$
\begin{aligned}
3 D_{2} x_{1}^{2}-D_{3} x_{2}^{2} & =1 \\
2 c_{k} x_{1}^{2}-D_{3} x_{3}^{2} & =\frac{c_{k}-1}{D_{2}} .
\end{aligned}
$$

Hence, to find all integer solutions of (4), it is enough to find all integer solutions of the systems of equations

$$
\begin{align*}
& d_{1} x_{1}^{2}-d_{2} x_{2}^{2}=j_{1} \tag{20}\\
& d_{3} x_{1}^{2}-d_{2} x_{3}^{2}=j_{2} \tag{21}
\end{align*}
$$

where

- $d_{1}=3 D_{2}, D_{2}$ is a square-free divisor of $c_{k}-1=\left(t_{k}+2\right)\left(t_{k}-2\right) / 3$,
- $d_{2}=D_{3}, D_{3}$ is a square-free divisor of $c_{k}-3=\left(s_{k}+2\right)\left(s_{k}-2\right)$, which is not divisible by 3 ,
- $\left(d_{3}, j_{1}, j_{2}\right)=\left(c_{k}, 2, \frac{c_{k}-1}{D_{2}}\right)$ or $\left(d_{3}, j_{1}, j_{2}\right)=\left(2 c_{k}, 1, \frac{c_{k}-1}{D_{2}}\right)$.

We expect that most of the systems (20)-(21) are not solvable. To exclude as early as possible the unsolvable systems we considered the equations (20) and (21) separately modulo appropriate prime powers.

As $8 \mid c_{k}$ and $c_{k} \mid d_{3}$, and d_{2} and j_{2} are odd, the equation (21) is solvable modulo 8 only if $-d_{2} j_{2} \equiv 1(\bmod 8)$.

Assume that equation (20) is solvable. Let p be an odd prime divisor of d_{2}. Then (20) implies

$$
d_{1} x_{1}^{2} \equiv j_{1} \quad(\bmod p),
$$

hence

$$
\left(d_{1} x_{1}\right)^{2} \equiv j_{1} d_{1} \quad(\bmod p)
$$

i.e. $\left(\frac{j_{1} d_{1}}{p}\right)=1$, where $(\dot{\bar{p}})$ denotes the Legendre symbol. Similarly, (21) implies $\left(\frac{j_{2} d_{3}}{p}\right)=1$. If q and r are odd prime divisors of d_{1} and d_{3} respectively, then we obtain the following conditions for the solvability of (20) and (21): $\left(\frac{-j_{1} d_{2}}{q}\right)=1$ and $\left(\frac{-j_{2} d_{2}}{r}\right)=1$.

Let finally p_{1} be an odd prime divisor of j_{2}, such that $\operatorname{ord}_{p_{1}}\left(j_{2}\right)$ is odd. Then a necessary condition for solvability of equation (21) is: $\left(\frac{d_{2} d_{3}}{p_{1}}\right)=1$.

We performed this test for $3 \leq k \leq 40$ and we found that, apart from the systems listed in the following table, all are unsolvable except those of the form

$$
\begin{aligned}
3 x_{1}^{2}-x_{2}^{2} & =2, \\
c_{k} x_{1}^{2}-x_{3}^{2} & =c_{k}-1,
\end{aligned}
$$

and this system is equivalent to the system (2) and (3) which is completely solved by Theorem 1.

We considered in the case $k=19$ equations (20) and (21), with the values of $d_{1}, d_{2}, d_{3}, j_{1}, j_{2}$ given in the table, modulo 5 . We obtained

$$
\begin{aligned}
x_{1}^{2}-4 x_{2}^{2} & \equiv 2(\bmod 5), \\
3 x_{1}^{2}-4 x_{3}^{2} & \equiv 1(\bmod 5) .
\end{aligned}
$$

k	$d_{1}, d_{2}, d_{3}, j_{1}, j_{2}$
19	$251210975091,44809,3371344269872647091408,2,40261110431$
$23 / 1$	380631510488414383527682077,11263976658479,
	$253754340325609589018454720,1,1$
$23 / 2$	$19509779867757,11263976658479,25375430325609589018454720$,
	1,19509779867761
$23 / 3$	$58529339603283,1,126877170162804794509227360,2$,
	6503259955919
35	20288310329233162249058888791445649852717,
	2254256703248129138784320976827294428079,
	$13525540219488774832705925860963766568480,1,1$
37	187060083,1489467623820555129,
	1311942540724389723505929002667880175005208,2,
	21040446251556347115048521645334887

The first congruence implies $x_{1}^{2} \equiv 1,2$ or $3(\bmod 5)$, and the second congrunce implies $x_{1}^{2} \equiv 0,2$ or $4(\bmod 5)$. Hence, $x_{1}^{2} \equiv 2(\bmod 5)$, which is a contradiction.

In the cases $k=23 / 3$ and $k=35$ we used arithmetical properties of some real quadratic number fields.

In the case $k=23 / 3$ we have $d_{3}=126877170162804794509227360$. The fundamental unit of the order $\mathbb{Z}\left[\sqrt{d_{3}}\right]=\mathbb{Z}\left[\sqrt{d_{2} d_{3}}\right]$ is $\varepsilon=11263976658481+\sqrt{d_{3}}$. By a theorem of Nagell [15, Theorem 108a] the base solution of the equation

$$
x_{3}^{2}-1268771701262804794509227360 x_{1}^{2}=-6503259955919
$$

satisfies $0<x_{1}^{(0)}<1$, which is impossible.
In the case $k=35$ the fundamental unit of the order $\mathbb{Z}\left[\sqrt{d_{1} d_{2}}\right]$ is $u+\sqrt{d_{1} d_{2}}$, where $u=6762770109744387416352962930481883284238$. A necessary condition for the solvability of the equation $d_{1} x_{1}^{2}-d_{2} x_{2}^{2}=1$ is that $2 d_{1} \mid(u+1)$ (see [11]). But $\frac{u+1}{2 d_{1}}=\frac{1}{6}$, and hence the last equation has no solution.

In the remaining three cases $k=23 / 1,23 / 2$ and 37 all our methods fail to work.

References

[1] W. A. Anglin, Simultaneous Pell equations, Math. Comp. 65 (1996), 355-359.
[2] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] A. Baker and G. WÜstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[4] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70.
[5] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
[6] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1992.
[7] A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
[8] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
[9] A. Dujella and A. Рethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
[10] J. Gebel, A. Рethő and H. G. Zimmer, Computing integral points on elliptic curve, Acta Arith. 68 (1994), 171-192.
[11] A. Grelak, A. Grytczuk, On the diophantine equation $a x^{2}-b y^{2}=c$, Publ. Math. Debrecen 44 (1994), 291-299.
[12] D. Husemöller, Elliptic Curves, Springer-Verlag, New York, 1987.
[13] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
[14] M. Mignotte and A. Pethő, Sur les carres dans certaines suites de Lucas, Théor. Nombres Bordeaux 5 (1993), 333-341.
[15] T. Nagell, Introduction to Number Theory, Almquist, Stockholm; Wiley, New York, 1951.
[16] K. Nakamula and A. Pethő, Squares in binary recurrence sequences, Number Theory, Diophantine, Computational and Algebraic Aspects (K. Győry, A. Pethő and V. T. Sós, eds.), Walter de Gruyter, Berlin, 1998, 409-421.
[17] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
[18] SIMATH manual, Saarbrücken, 1997.

```
ANDREJ DUJELLA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ZAGREB
BIJENIC̆KA CESTA 30
10000 ZAGREB
CROATIA
E-mail: duje@math.hr
ATTILA PETHÖ
INSTITUTE OF MATHEMATICS
COMPUTER SCIENCE
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN P.O. BOX 12
HUNGARY
E-mail: pethoe@math.klte.hu
```

(Received November 18, 1998; revised April 19, 1999)

[^0]: ${ }^{1}$ SIMATH is presently the only available computer algebra system which is capable to compute all integer points of elliptic curves. There is implemented the algorithm of Gebel, Pethő and Zimmer [10].

