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Integer points on a family of elliptic curves

By ANDREJ DUJELLA (Zagreb) and ATTILA PETHŐ (Debrecen)

Dedicated to Professor Kálmán Győry
on the occasion of his 60th birthday

Abstract. Let the sequence (ck) be given by the recursion

c0 = 0, c1 = 8, ck+2 = 14ck+1 − ck + 8, k ≥ 0.

Let the elliptic curve Ek be defined by the equation y2 = (x + 1)(3x + 1)(ckx + 1).
We prove in this paper that if the rank of Ek(Q) is equal to two, or k ≤ 40, with the
possible exceptions k = 23 and k = 37, then all integer points on Ek are given by

(x, y) ∈ {(−1, 0), (0,±1), (ck−1,±sk−1tk−1(2ck − sktk)),

(ck+1,±sk+1tk+1(2ck + sktk))}.

where ck + 1 = s2
k and 3ck + 1 = t2k.

1. Introduction

A set D of m positive integers is called a Diophantine m-tuple if
the product of any two distinct elements of D increased by 1 is a perfect
square. The first example of a Diophantine quadruple – {1, 3, 8, 120} – was
found by Fermat (see [6, p. 517]). In 1969, Baker and Davenport [2]
proved that if d is a positive integer such that {1, 3, 8, d} is a Diophantine
quadruple, then d has to be 120.
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Recently, in [9], we generalized this result to all Diophantine triples
of the form {1, 3, c}. The fact that {1, 3, c} is a Diophantine triple implies
that c = ck for some positive integer k, where the sequence (ck) is given
by

c0 = 0, c1 = 8, ck+2 = 14ck+1 − ck + 8, k ≥ 0.

Let ck + 1 = s2
k, 3ck + 1 = t2k with positive integers sk, tk. It is easy to

check that
ck±1ck + 1 = (2ck ± sktk)2.

The main result of [9] is the following theorem.

Theorem 1. Let k be a positive integer. If d is an integer which
satisfies the system of equations

(1) d + 1 = x2
1, 3d + 1 = x2

2, ckd + 1 = x2
3,

then d ∈ {0, ck−1, ck+1}.
Eliminating d from the system (1) we obtain the following system of

Pellian equations

x2
3 − ckx2

1 = 1− ck(2)

3x2
3 − ckx2

2 = 3− ck.(3)

We used the theory of Pellian equations and some congruence relations to
reformulate the system (2) and (3) to four equations of the form vm = wn,
where (vm) and (wn) are binary recursive sequences. After that, a com-
parison of the upper bound for the solutions obtained from the theorem of
Baker and Wüstholz [3] with the lower bound obtained from the con-
gruence condition modulo c2

k finished the proof for k ≥ 76. The statement
for 1 ≤ k ≤ 75 was proved by a variant of the reduction procedure due to
Baker and Davenport [2].

Similar results are proved in [7] and [8] for Diophantine triples of the
form {k − 1, k + 1, 4k} and {F2k, F2k+2, F2k+4}. In the second triple Fn

denotes the n-th Fibonacci number.
It is clear that every solution (d, x1, x2, x3) ∈ Z4 of (1) induce an

integer point on the elliptic curve

(4) Ek : y2 = (x + 1)(3x + 1)(ckx + 1),

with y = x1x2x3 and x = d. The purpose of the present paper is to prove
that the converse of this statement is true, provided the rank of Ek(Q) is
equal to 2. As we will see in Proposition 2, for all k ≥ 2 the rank of Ek(Q)
is always ≥ 2. Our main result is
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Theorem 2. Let k be a positive integer. If rank(Ek(Q)) = 2 or

k ≤ 40, with the possible exceptions k = 23 and k = 37, then all integer

points on Ek are given by

(x, y) ∈ {(−1, 0), (0,±1), (ck−1,±sk−1tk−1(2ck − sktk)),

(ck+1,±sk+1tk+1(2ck + sktk))}.

2. Torsion group

Under the substitution x ↔ 3ckx, y ↔ 3cky the curve Ek is trans-
formed into the following Weierstraß form

E′
k : y2 = x3+(4ck+3)x2+(3c2

k+12ck)x+9c2
k = (x+3ck)(x+ck)(x+3).

There are three rational points on E′
k of order 2, namely

Ak = (−3ck, 0), Bk = (−ck, 0), Ck = (−3, 0),

and also other two, more or less obvious, rational points on E′
k, namely

Pk = (0, 3ck), Rk = (sktk + 2sk + 2tk + 1, (sk + tk)(sk + 2)(tk + 2)).

Note that if k = 1, then R1 = C1 − P1.

Lemma 1. E′
k(Q)tors ' Z/2Z× Z/2Z.

Proof. From [17, Main Theorem 1] it follows immediately that
E′

k(Q)tors ' Z/2Z × Z/2Z or E′
k(Q)tors ' Z/2Z × Z/6Z, and the later

is possible iff there exist integers α and β such that α
β /∈ {−2,−1,− 1

2 , 0, 1}
and

ck − 3 = α4 + 2α3β, 3ck − 3 = 2αβ3 + β4.

Now, we have

(5) 4ck − 6 = (α2 + αβ + β2)2 − 3α2β2.

Since ck is even, the left hand side of (5) is ≡ 2 (mod 8). If α and β

are both even then the right hand side of (5) is divisible by 8, and if α

and β are both odd then the right hand side of (5) is ≡ 6 (mod 8), a
contradiction. Hence, E′

k(Q)tors ' Z/2Z× Z/2Z. ¤
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3. The independence of Pk and Rk

In this section we will often use the following 2-descent proposition
(see [12, 4.1, p. 37]).

Proposition 1. Let P = (x′, y′) be a Q-rational point on E, an elliptic
curve over Q given by the equation

y2 = (x− α)(x− β)(x− γ),

where α, β, γ ∈ Q. Then there exists a Q-rational point Q = (x, y) on E
such that 2Q = P iff x′ − α, x′ − β, x′ − γ are all Q-rational squares.

Lemma 2. Pk, Pk + Ak, Pk + Bk, Pk + Ck /∈ 2E′
k(Q).

Proof. We have:

Pk + Ak = (−ck − 2,−2ck + 2),

Pk + Bk = (−3ck + 6, 6ck − 18),

Pk + Ck = (c2
k − 4ck,−c3

k + 4c2
k − 3ck).

It follows immediately from Proposition 1 that Pk, Pk + Ak, Pk + Bk /∈
2E′

k(Q). If Pk +Ck ∈ 2E′
k(Q), then c2

k− ck = ¤, which is impossible. ¤
Lemma 3. Rk, Rk + Ak, Rk + Bk, Rk + Ck /∈ 2E′

k(Q).

Proof. We have:

Rk = (sktk + 2sk + 2tk + 1, (tk + sk)(sk + 2)(tk + 2)),

Rk + Ak = (2sk − 2tk − sktk + 1, (sk − tk)(sk + 2)(tk − 2)),

Rk + Bk = (2tk − 2sk − sktk + 1, (tk − sk)(sk − 2)(tk + 2)),

Rk + Ck = (sktk − 2sk − 2tk + 1, (tk + sk)(2− sk)(tk − 2)).

Since 2sk−2tk− sktk +4 = (sk +2)(2− tk) < 0 and 2tk−2sk− sktk +4 =
(tk + 2)(2− sk) < 0, we have Rk + Ak, Rk + Bk /∈ 2E′

k(Q).
If Rk ∈ 2E′

k(Q), then (tk + sk)(tk +2) = ¤ and (tk + sk)(sk +2) = ¤.
Let d = gcd(tk + sk, tk + 2, sk + 2). Then d divides (tk + 2) + (sk + 2) −
(tk + sk) = 4, and since sk and tk are odd, we conclude that d = 1. Hence,
we have

(6) tk + sk = ¤, tk + 2 = ¤, sk + 2 = ¤.
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Consider the sequence (tk + sk)k∈N. It follows easily by induction that
tk + sk = 2ak+1, where

(7) a0 = 0, a1 = 1, ak+2 = 4ak+1 − ak, k ≥ 0.

Thus, (6) implies ak+1 = 2¤, and this is impossible by a theorem of
Mignotte and Pethő [14] (see also [16]) which says that ak = ¤, 2¤,
3¤ or 6¤ implies k ≤ 3.

If Rk+Ck ∈ 2E′
k(Q), then (tk+sk)(tk−2) =¤ and (tk+sk)(sk−2) =¤.

This implies tk + sk = ¤ and we obtain a contradiction as above. ¤

Lemma 4. If k ≥ 2, then Rk +Pk, Rk +Pk +Ak, Rk +Pk +Bk, Rk +
Pk + Ck /∈ 2E′

k(Q).

Proof. As in the proof of Lemmas 2 and 3, we use Proposition 1.
If Rk + Pk + Ak ∈ 2E′

k(Q) then 0 > ck(sk + 2)(sk − tk) = ¤, and
if Rk + Pk + Bk ∈ 2E′

k(Q) then 0 > ck(sk − 2)(sk − tk) = ¤. Hence,
Rk + Pk + Ak, Rk + Pk + Bk /∈ 2E′

k(Q).

If Rk + Pk ∈ 2E′
k(Q) then

(8)

3ck(tk + sk)(tk + 2) = ¤,

ck(tk + sk)(sk + 2) = ¤,

3(sk + 2)(tk + 2) = ¤.

Substituting 2ck = (tk + sk)(tk − sk) in (8) we obtain

(tk − sk)(tk + 2) = 6¤,

(tk − sk)(sk + 2) = 2¤,

(sk + 2)(tk + 2) = 3¤.

Let d = gcd(sk + 2, tk + 2). Then the relation t2k − 3s2
k = −2 implies d|6.

Since tk + 2 is odd, we have d ∈ {1, 3}. Hence we obtain

(9) tk − sk = 6¤ or tk − sk = 2¤.

But tk−sk = 2ak, where (ak) is defined by (7). Thus (9) implies ak = ¤ or
3¤. According to [14], this is possible only if k = 2. But (s2, t2) = (11, 19)
and (s2 + 2)(t2 + 2) 6= 3¤.
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If Rk + Pk + Ck ∈ 2E′
k(Q) then

3ck(tk + sk)(tk − 2) = ¤,

ck(tk + sk)(sk − 2) = ¤,

3(sk − 2)(tk − 2) = ¤.

Arguing as before, we obtain

(tk − sk)(tk − 2) = 6¤,

(tk − sk)(sk − 2) = 2¤,

(sk − 2)(tk − 2) = 3¤,

and conclude that

tk − sk = 6¤ or tk − sk = 2¤.

As we have already seen, it is possible only for (s2, t2) = (11, 19), but then
(s2 − 2)(t2 − 2) 6= 3¤. ¤

Proposition 2. If k ≥ 2, then the points Pk and Rk generate a sub-

group of rank 2 in E′
k(Q)/E′

k(Q)tors.

Proof. We have to prove that mPk + nRk ∈ E′
k(Q)tors, m,n ∈ Z,

implies m = n = 0.
Assume mPk+nRk = T ∈ E′

k(Q)tors = {O, Ak, Bk, Ck} with (m,n) 6=
(0, 0). If m and n are not both even, then T ≡ Pk, Rk or Pk + Rk

(mod 2E′
k(Q)), which is impossible by Lemmas 2, 3 and 4. Hence, m and

n are even, say m = 2m1, n = 2n1, and since by Lemma 1 Ak, Bk, Ck /∈
2E′

k(Q),

2m1Pk + 2n1Qk = O.

Thus we obtain m1Pk + n1Rk ∈ E′
k(Q)tors. Arguing as above, we obtain

that m1 and n1 are even, and continuing this process we finally conclude
that m = n = 0. ¤
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4. Proof of Theorem 2 (rank(Ek(Q)) = 2)

Let E′
k(Q)/E′

k(Q)tors = 〈U, V 〉 and X ∈ E′
k(Q). Then there exist

integers m,n and a torsion point T such that X = mU + nV + T . Also
Pk = mP U+nP V +TP , Rk = mRU+nRV +TR with integers mP , nP , mR,
nR and with TP , TR ∈ E′

k(Q)tors. Let U = {O, U, V, U + V }. There exist
U1, U2 ∈ U , T1, T2 ∈ E′

k(Q)tors such that Pk ≡ U1 + T1 (mod 2E′
k(Q)),

Rk ≡ U2 + T2 (mod 2E′
k(Q)). Let U3 ∈ U such that U3 ≡ U1 + U2

(mod 2E′
k(Q)). Then Pk +Rk ≡ U3 +(T1 +T2) (mod 2E′

k(Q)). Now Lem-
mas 2, 3 and 4 imply that U1, U2, U3 6= O and accordingly {U1, U2, U3} =
{U, V, U + V }. Therefore X ≡ X1 (mod 2E′

k(Q)), where

X1 ∈ S = {O, Ak, Bk, Ck, Pk, Pk + Ak, Pk + Bk, Pk + Ck,

Rk, Rk + Ak, Rk + Bk, Rk + Ck, Rk + Pk,

Rk + Pk + Ak, Rk + Pk + Bk, Rk + Pk + Ck}.

Let {a, b, c} = {3, ck, 3ck}. By [13, 4.6, p. 89], the function ϕ :
E′

k(Q) → Q∗/Q∗2 defined by

ϕ(X) =





(x + a)Q∗2, if X = (x, y) 6= O, (−a, 0),

(b− a)(c− a)Q∗2, if X = (−a, 0),

Q∗2, if X = O
is a group homomorphism.

This fact and Theorem 1 imply that it is sufficient to prove that for
all X1 ∈ S \ Pk, X1 = (3cku, 3ckv), the system

(11) x + 1 = α¤, 3x + 1 = β¤, ckx + 1 = γ¤

has no integer solution, where ¤ denotes a square of a rational number,
and α, β, γ are defined by u + 1 = α, 3u + 1 = β, cku + 1 = γ if all
those numbers are 6= 0, and if e.g. u + 1 = 0 then we choose α = βγ (so
that αβγ = ¤). Note that for X1 = Pk we obtain the system x + 1 = ¤,
3x + 1 = ¤, ckx + 1 = ¤, which is completely solved in Theorem 1.

For X1 ∈ {Ak, Bk, Pk +Ak, Pk +Bk, Rk +Ak, Rk +Bk, Rk +Pk +Ak,
Rk + Pk + Bk} exactly two of the numbers α, β, γ are negative and thus
the system (11) has no integer solution.
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The rest of the proof falls naturally into 7 parts. By a′ we will denote
the square free part of an integer a.

1) X1 = O :
We have

(12) x + 1 = 3ck¤, 3x + 1 = ck¤, ckx + 1 = 3¤.

From the second equation in (12) we see that 3 - c′k and thus the first and
second equations imply that c′k divides 3x + 1 and x + 1. Accordingly,
c′k | 3(x + 1)− (3x + 1) = 2 and we conclude that c′k = 1 or 2. Hence,

ck = ¤, or ck = 2¤.

However, ck = s2
k − 1 = ¤ is obviously impossible, while ck = 2w2 leads

to the system of Pellian equations

s2
k − 2w2 = 1, t2k − 6w2 = 1.

This system is solved by Anglin [1], and the only positive solution is
(sk, tk, w) = (3, 5, 2) which corresponds to ck = c1 = 8, contradicting our
assumption that k ≥ 2. (Note that for c1 = 8 there is also no solution
because in this case the first and the third equations in (12) imply 3 | 7.)

2) X1 = Ck :
We have

x + 1 = ck(ck − 1)¤,

3x + 1 = ck(ck − 3)¤,

ckx + 1 = (ck − 1)(ck − 3)¤.

If 3 - ck then, as in 1), we obtain c′k = 1 or 2, and ck = ¤ or 2¤, which is
impossible.

If ck = 3ek then e′k divides 3x + 1 and 3x + 3 and thus e′k = 1 or 2.
Hence,

ck = 3¤, or ck = 6¤.

The relation ck = 3¤ is impossible since it implies t2k − 1 = 9¤, while
ck = 6w2 leads to the system of Pellian equations

s2
k − 6w2 = 1, t2k − 18w2 = 1
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which has no positive solution according to [1].

3) X1 = Pk + Ck :
We have

x + 1 = 3(ck − 1)¤,

3x + 1 = (ck − 3)¤,

ckx + 1 = 3(ck − 1)(ck − 3)¤.

Since ck = s2
k − 1, we see that ck 6≡ 1 (mod 3), and thus x ≡ −1 (mod 3).

From the second equation we have that (ck − 3)′ is not divisible by 3, and
then the third equation gives ckx + 1 ≡ 0 (mod 3). This implies ck ≡ 1
(mod 3), a contradiction.

4) X1 = Rk :
We have

x + 1 = 6(tk − sk)(tk + 2)¤,

3x + 1 = 2(tk − sk)(sk + 2)¤,

ckx + 1 = 3(sk + 2)(tk + 2)¤.

From the relation t2k − 3s2
k = −2 it follows that gcd(tk − sk, sk + 2) =

gcd(tk − sk, tk + 2) = 1 or 3.
If 3 - tk − sk then [2(tk − sk)]′ divides x + 1 and 3x + 1, and thus

[2(tk − sk)]′ = 1 or 2. Accordingly,

tk − sk = 2¤ or tk − sk = ¤.

As we have already seen in the proof of Lemma 4, this implies

ak = ¤ or ak = 2¤,

and [14] implies again that k = 2. Now we obtain 120x + 1 = 91¤, which
is impossible modulo 4.

If tk − sk = 3zk then (2zk)′ divides x + 1 and 9x + 3. Hence (2zk)′

divides 6, which implies ak = ¤, 2¤, 3¤ or 6¤, and this is possible only if
k = 2. But for k = 2, tk − sk = 8 6≡ 0 (mod 3).
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5) X1 = Rk + Ck :
We have

x + 1 = 6(tk − sk)(tk − 2)¤, 3x + 1 = 2(tk − sk)(sk − 2)¤,

ckx + 1 = 3(sk − 2)(tk − 2)¤.

This case is completely analogous to the case 4).

6) X1 = Rk + Pk :
We have

x + 1 = (tk + sk)(tk + 2)¤, 3x + 1 = (tk + sk)(sk + 2)¤,

ckx + 1 = (sk + 2)(tk + 2)¤.

As in 4), we obtain that if 3 - tk + sk then (tk + sk)′ divides 2, and if
tk + sk = 3zk then z′k divides 6. Hence, we have ak+1 = ¤, 2¤, 3¤ or 6¤,
which is impossible for k ≥ 2.

7) X1 = Rk + Pk + Ck :
We have

x + 1 = (tk + sk)(tk − 2)¤, 3x + 1 = (tk + sk)(sk − 2)¤,

ckx + 1 = (sk − 2)(tk − 2)¤.

This case is completely analogous to the case 6). ¤
Remark 1. It is easy to check that rank(E1(Q)) = 1, and from the

proof of the first statement of Theorem 2 (parts 1), 2) and 3)) it is
clear that all integer points on E1 are given by (x, y) ∈ {(−1, 0), (0,±1),
(120,±6479)}. Hence Theorem 2 is true for k = 1.

Remark 2. As the coefficients of Ek grow exponentially, the compu-
tation of the rank of Ek for large k is difficult. The following values
of rank(Ek(Q)) were computed using the programs SIMATH ([18]) and
mwrank ([5]):

k 1 2 3 4 5 7 8∗ 9 10∗

rank(Ek(Q)) 1 2 3 3 2 4 4 3 3

In the cases k = 8, 10, the rank is computed assuming the Parity Con-
jecture. For k = 6, 11, 12, under the same conjecture, we obtained that
rank(Ek(Q)) is equal to 2 or 4. We also verified by SIMATH that for k = 3
and k = 4 (when rank(Ek(Q)) > 2) all integer points on Ek are given by
the values from Theorem 2.
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Remark 3. Let us mention that Bremner, Stroeker and Tzana-

kis [4] proved recently a similar result as the first statement of our Theo-
rem 2 for the family of elliptic curves

Ck : y2 =
1
3
x3 +

(
k − 1

2

)
x2 +

(
k2 − k +

1
6

)
x,

under the assumptions rank(Ck(Q)) = 1 and Ck(Q)/Ck(Q)tors = 〈(1, k)〉.

5. Proof of Theorem 2 (3 ≤ k ≤ 40)

We pointed out in Remark 2 that the coefficients of Ek are growing
very fast. Therefore, using SIMATH1 we were able to compute the inte-
ger points of Ek(Q) only for k ≤ 4. However, the following elementary
argument gives us the proof of the second statement of Theorem 2.

Notice the following relations

c0 = 0, c1 = 8, ck+2 = 14ck+1 − ck + 8, if k ≥ 0,(13)

t0 = 1, t1 = 5, tk+2 = 4tk+1 − tk, if k ≥ 0,(14)

s0 = 1, s1 = 3, sk+2 = 4sk+1 − sk, if k ≥ 0,(15)

ck + 1 = s2
k =⇒ ck = (sk + 1)(sk − 1),(16)

3ck + 1 = t2k =⇒ 3ck = (tk + 1)(tk − 1),(17)

3(ck − 1) = (tk + 2)(tk − 2),(18)

ck − 3 = (sk + 2)(sk − 2).(19)

We have 8 | ck for any k ≥ 0 by (13). Hence sk and tk are odd. We have
further 3 - ck − 1 by (16).

Assume that (x, y) ∈ Z2 is a solution of (4). Put D1 = gcd(x + 1,

3x + 1), D2 = gcd(x + 1, ckx + 1) and D3 = gcd(3x + 1, ckx + 1). As
D1 = gcd(x + 1, 3x + 1) = gcd(x + 1, 2), we have D1 = 1 if x + 1 is odd,
and D1 = 2 if x + 1 is even. We have further D2 = gcd(x + 1, ckx + 1) =

1SIMATH is presently the only available computer algebra system which is capable to

compute all integer points of elliptic curves. There is implemented the algorithm of

Gebel, Peth}o and Zimmer [10].
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gcd(x + 1, ck − 1) and D3 = gcd(3x + 1, ckx + 1) = gcd(3x + 1, ck − 3).
Hence D1, D2 and D3 are pairwise relatively prime.

Assume first D1 = 1. Then there exist x1, x2, x3 ∈ Z such that

x + 1 = D2x
2
1

3x + 1 = D3x
2
2

ckx + 1 = D2D3x
2
3.

Eliminating x we obtain the following system of equations

3D2x
2
1 −D3x

2
2 = 2

ckx2
1 −D3x

2
3 =

ck − 1
D2

.

Similarly, if D1 = 2, then (4) implies

x + 1 = 2D2x
2
1

3x + 1 = 2D3x
2
2

ckx + 1 = D2D3x
2
3,

from which we obtain

3D2x
2
1 −D3x

2
2 = 1

2ckx2
1 −D3x

2
3 =

ck − 1
D2

.

Hence, to find all integer solutions of (4), it is enough to find all integer
solutions of the systems of equations

d1x
2
1 − d2x

2
2 = j1,(20)

d3x
2
1 − d2x

2
3 = j2,(21)

where
• d1 = 3D2, D2 is a square-free divisor of ck − 1 = (tk + 2)(tk − 2)/3,
• d2 = D3, D3 is a square-free divisor of ck−3 = (sk +2)(sk−2), which

is not divisible by 3,
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• (d3, j1, j2) = (ck, 2, ck−1
D2

) or (d3, j1, j2) = (2ck, 1, ck−1
D2

).

We expect that most of the systems (20)–(21) are not solvable. To
exclude as early as possible the unsolvable systems we considered the equa-
tions (20) and (21) separately modulo appropriate prime powers.

As 8 | ck and ck | d3, and d2 and j2 are odd, the equation (21) is
solvable modulo 8 only if −d2j2 ≡ 1 (mod 8).

Assume that equation (20) is solvable. Let p be an odd prime divisor
of d2. Then (20) implies

d1x
2
1 ≡ j1 (mod p),

hence
(d1x1)2 ≡ j1d1 (mod p),

i.e.
(

j1d1
p

)
= 1, where

(
·
p

)
denotes the Legendre symbol. Similarly, (21)

implies
(

j2d3
p

)
= 1. If q and r are odd prime divisors of d1 and d3 respec-

tively, then we obtain the following conditions for the solvability of (20)
and (21):

(
−j1d2

q

)
= 1 and

(
−j2d2

r

)
= 1.

Let finally p1 be an odd prime divisor of j2, such that ordp1(j2) is odd.

Then a necessary condition for solvability of equation (21) is:
(

d2d3
p1

)
= 1.

We performed this test for 3 ≤ k ≤ 40 and we found that, apart from
the systems listed in the following table, all are unsolvable except those of
the form

3x2
1 − x2

2 = 2,

ckx2
1 − x2

3 = ck − 1,

and this system is equivalent to the system (2) and (3) which is completely
solved by Theorem 1.

We considered in the case k = 19 equations (20) and (21), with the
values of d1, d2, d3, j1, j2 given in the table, modulo 5. We obtained

x2
1 − 4x2

2 ≡ 2 (mod 5),

3x2
1 − 4x2

3 ≡ 1 (mod 5).
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k d1, d2, d3, j1, j2

19 251210975091, 44809, 3371344269872647091408, 2, 40261110431

23/1 380631510488414383527682077, 11263976658479,
253754340325609589018454720, 1, 1

23/2 19509779867757, 11263976658479, 25375430325609589018454720,
1, 19509779867761

23/3 58529339603283, 1, 126877170162804794509227360, 2,
6503259955919

35 20288310329233162249058888791445649852717,
2254256703248129138784320976827294428079,

13525540219488774832705925860963766568480, 1, 1

37 187060083, 1489467623820555129,
1311942540724389723505929002667880175005208, 2,

21040446251556347115048521645334887

The first congruence implies x2
1 ≡ 1, 2 or 3 (mod 5), and the second

congrunce implies x2
1 ≡ 0, 2 or 4 (mod 5). Hence, x2

1 ≡ 2 (mod 5), which
is a contradiction.

In the cases k = 23/3 and k = 35 we used arithmetical properties of
some real quadratic number fields.

In the case k = 23/3 we have d3 = 126877170162804794509227360.
The fundamental unit of the order Z[

√
d3 ] = Z[

√
d2d3 ] is

ε = 11263976658481 +
√

d3. By a theorem of Nagell [15, Theorem 108a]
the base solution of the equation

x2
3 − 1268771701262804794509227360x2

1 = −6503259955919

satisfies 0 < x
(0)
1 < 1, which is impossible.

In the case k = 35 the fundamental unit of the order Z[
√

d1d2 ] is
u +

√
d1d2, where u = 6762770109744387416352962930481883284238. A

necessary condition for the solvability of the equation d1x
2
1 − d2x

2
2 = 1 is

that 2d1|(u + 1) (see [11]). But u+1
2d1

= 1
6 , and hence the last equation has

no solution. ¤
In the remaining three cases k = 23/1, 23/2 and 37 all our methods

fail to work.
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