Scarcity of finite polynomial orbits

By F. HALTER-KOCH (Graz) and W. NARKIEWICZ (Wrocław)
To Professor Kálmán Györy on his 60th birthday

Abstract

Let R be a finitely generated integral domain of zero characteristics. If the index of the group of units of R in the group of units of the integral closure of R is finite then R contains only finitely many inequivalent finite non-linear polynomial orbits. This applies in particular to all integrally closed domains.

1. Let R be an integral domain and R^{\times}its group of units. For $n \geq 1$, a finite sequence

$$
\begin{equation*}
\bar{x}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \tag{1}
\end{equation*}
$$

of elements $x_{i} \in R$ will be called a polynomial sequence (of length n) if there exists some polynomial $f \in R[X]$ such that for $i=0,1,2, \ldots, n-1$ one has

$$
\begin{equation*}
f\left(x_{i}\right)=x_{i+1} \tag{2}
\end{equation*}
$$

In this case we say that (1) is a sequence of the polynomial f. A polynomial sequence (1) is called linear if it is a sequence of a linear polynomial, otherwise it is called non-linear. It has been observed in [HKN2] that a sequence (1) is a polynomial sequence if and only if the

Mathematics Subject Classification: 11C08, 11R09, 12E05, 58F08, 58F20.
Key words and phrases: polynomial mappings, integral domains, polynomial orbits, finitely generated rings, unit equations.

Lagrange interpolation polynomial (of degree at most $n-1$) satisfying (2) has its coefficients in R.

A polynomial sequence (1) is called a finite orbit if the elements $x_{0}, x_{1}, \ldots, x_{n-1}$ are all distinct and $x_{n}=x_{i}$ holds for some $i<n$; if moreover $i=0$ then (1) is called a cycle. By definition every finite orbit contains a unique cycle. A cycle of length 1 of a polynomial f is just a fixpoint of f.

Observe that if (1) is a polynomial sequence or an orbit or a cycle, $a \in R$ and $\epsilon \in R^{\times}$, then the sequence

$$
\bar{y}=\left\{a+\epsilon x_{0}, a+\epsilon x_{1}, \ldots, a+\epsilon x_{n}\right\}
$$

is again a polynomial sequence, an orbit or a cycle, respectively. In such case we shall call the sequences \bar{x} and \bar{y} equivalent.
2. A cycle (1) is called normalized if $n \geq 2, x_{0}=0$ and $x_{1}=1$. It has been established in [HKN2] that if R is a finitely generated domain of zero characteristic then there can be only finitely many normalized cycles in R. The proof given there is essentially based on the existence of a uniform bound, depending only on R and n, for the cardinality of the set of non-trivial solutions of the unit equation

$$
\begin{equation*}
a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{r} u_{r}=b \tag{3}
\end{equation*}
$$

(with arbitrary fixed non-zero $a_{1}, a_{2}, \ldots, a_{r}, b \in R$) in such rings, a solution being called non-trivial if none of subsums of the left hand-side vanishes. In the case of finitely generated integral domains of zero characteristic this is assured by results of K. Győry, J. H. Evertse and H. P. Schlickewei ([EG], [S]) and if we assume that this condition is satisfied in a ring R of positive characteristic then the argument given in [HKN2] works, provided the characteristic is not equal to 2 or 3 .

The purpose of this note is twofold. First we shall show that the arguments given in [HKN2] can be modified so that they work for rings of arbitrary characteristic, provided there is a uniform bound for the number of solutions of (3) in R in the cases $r=2,3$ and 5 (this is obviously satisfied if R^{\times}is finite). Secondly we shall show that if R is a finitely generated domain of zero characteristic and the index of the group of units of R in the group of units of its integral closure is finite then there are only finitely many inequivalent non-linear finite polynomial orbits in R.

Theorem 1. Let R be an integral domain and assume that for every non-zero $b \in R$ each of the equations

$$
\begin{gather*}
x_{1}+b x_{2}=1 \tag{4}\\
b\left(x_{1}+x_{2}\right)+x_{3}=1 \tag{5}\\
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1 \tag{6}
\end{gather*}
$$

has only finitely many non-trivial solutions $x_{i} \in R^{\times}$. Then there are only finitely many normalized cycles of a given length n in R.

We recall first certain simple properties of normalized cycles which will be used in the sequel. For the proof of Lemma 1 (i)-(iv) see Lemma 12.8 and its corollaries in $[\mathrm{N}]$ and the assertion (v) is trivial (cf. [HKN2]).

Lemma 1. Let (1) be a normalized cycle in an integral domain R. For any integer i put $x_{i}=x_{r}$ if r is the smallest non-negative residue of i modulo n.
(i) For all i we have $x_{i+1}-x_{i} \in R^{\times}$.
(ii) If $i \mid j$ then $x_{i} \mid x_{j}$.
(iii) If n does not divide $r-s$ then $\left(x_{r}-x_{s}\right) / x_{r-s} \in R^{\times}$.
(iv) If $(k, n)=1$ then $x_{k} \in R^{\times}$.
(v) If $r \mid n$ and $r<n$ then

$$
\left(0,1, \frac{x_{2 r}}{x_{r}}, \frac{x_{3 r}}{x_{r}}, \ldots, \frac{x_{n-r}}{x_{r}}, 0\right)
$$

and

$$
\left(0,1, \frac{x_{1+2 r}-1}{x_{1+r}-1}, \frac{x_{1+3 r}-1}{x_{1+r}-1}, \ldots, \frac{x_{1+n-r}-1}{x_{1+r}-1}, 0\right)
$$

are normalized cycles of length n / r in R.
Lemma 2 ([HKN2]). Let R be an integral domain in which the equation (5) has for $b=1$ only finitely many non-trivial solutions in R^{\times}. If a non-zero element $a \in R$ has at least two distinct representations as a sum of two units, then the principal ideal $a R$ lies in a finite set of principal ideals of R.

Lemma 3 ([HKN2]). Let R be an integral domain in which each equation (5) has only finitely many non-trivial solutions in R^{\times}. Then there are only finitely many normalized cycles of length $n \geq 3$ in R in which one of the elements $x_{2}, x_{3}, \ldots, x_{n-1}$ is fixed.

Lemma 4 ([HKN2]). Let R be a domain in which each equation (4) has only finitely many solutions in R^{\times}. For every non-zero principal ideal $a R$ of R there exists a finite set $E \subset R$ with the following property: if (1) is a normalized cycle of length $n \geq 2$ and $x_{2} R=a R$ then $x_{2} \in E$.
3. Now we can prove the theorem. One argues by recurrence and since the assertion is trivially true for $n=2$ assume it to be true for all integers smaller than n. If n is not twice an odd prime then one can simply repeat the arguments from [HKN2] given there in cases (a) to (d), where the characteristic of R is irrelevant.

So let (1) be a cycle of length $n=2 p$ with prime $p>2$ and assume that the assertion holds for cycles of length p. Lemma 1 (i) shows that

$$
\alpha=x_{2}-1, \beta=x_{3}-x_{2}, \gamma=x_{4}-x_{3}
$$

lie in R^{\times}and the inductional assumption and Lemma 1 (v) imply that the ratio $\lambda=x_{4} / x_{2}$ lies in a fixed finite set. Observe now that λ is invertible. Indeed if a is a solution of the congruence $4 a \equiv 2 \bmod 2 p$ then by Lemma 1 (ii) we get $x_{4} \mid x_{4 a}=x_{2}$ and $x_{2} \mid x_{4}$.

We have to consider two cases. First assume that the element x_{3} is invertible. Then

$$
x_{3}-\alpha-\beta=1
$$

and if this equality is non-trivial then x_{3} lies in a fixed finite set and it suffices to apply Lemma 3 to get the assertion. Otherwise one of the summands must be equal to 1 and since $x_{3}=1$ and $\alpha=-1$ (which implies $x_{2}=0$) are both impossible, we must have $x_{3}-x_{2}=\beta=-1$ which leads to

$$
x_{2}=\lambda^{-1} x_{3}+\lambda^{-1} \gamma=x_{3}+1 .
$$

If these two representations of x_{2} as sums of two units are distinct then $x_{2} R$ lies in a finite set by Lemma 2 , thus x_{2} lies in a finite set by Lemma 4 and the assertion follows by Lemma 3. Otherwise one has either $\lambda^{-1} x_{3}=x_{3}$, implying $\lambda=1$ and $x_{2}=x_{4}$ which is not possible, or $\lambda^{-1} x_{3}=1$, giving
$x_{3}=\lambda$ and since λ lies in a finite set it suffices to use Lemma 3. This settles the case $x_{3} \in R^{\times}$.

Now assume that x_{3} is not invertible. Then Lemma 1 (iv) implies that $n=6$ and x_{5} is invertible by Lemma 1 (iv). Lemma 1 (v) and the inductional assumption show that the element $\mu=\left(x_{5}-1\right) /\left(x_{3}-1\right)$ lies in a fixed finite set and since

$$
\mu=\frac{\left(x_{5}-1\right) / x_{4}}{\left(x_{3}-1\right) / x_{2}} \cdot \frac{x_{4}}{x_{2}},
$$

Lemma 1 (ii),(iii) show that that μ is invertible.
Since

$$
x_{5}-\alpha \mu-\beta \mu=1
$$

and $x_{5} \in R^{\times}$by Lemma 1 (iv) our assumption on unit equations in R implies that either x_{5} lies in a fixed finite set or $x_{5}=1$ or $-\alpha \mu=1$ or $-\beta \mu=1$. In the first case we are done by Lemma 3. If $\alpha \mu=-1$ then α and x_{2} lie in a finite set and again Lemma 3 is applicable. Since $x_{5}=1$ is impossible we have to deal with the remaining case

$$
\beta \mu=-1, \quad x_{5}=\alpha \mu .
$$

Now Lemma 1 (i) implies

$$
\delta=x_{5}-x_{4}=x_{5}-\lambda x_{2} \in R^{\times},
$$

and Lemma 1 (iii) yields (in view of $\lambda \in R^{\times}$)

$$
\epsilon=\left(x_{5}-1\right) / x_{2}=\lambda\left(x_{5}-1\right) / x_{4} \in R^{\times} .
$$

Thus we obtain three representations of x_{2} as sums of two units, namely

$$
x_{2}=\lambda^{-1} x_{5}-\lambda^{-1} \delta=\epsilon^{-1} x_{5}-\epsilon^{-1}=1+\alpha .
$$

If at least two of them are distinct then the assertion follows from Lemmas 2, 4 and 3 as above. If $\lambda^{-1} x_{5}=1$ then x_{5} lies in a finite set and the assertion follows by Lemma 3. Hence it remains to consider the cases $\lambda^{-1} x_{5}=\alpha=-\epsilon^{-1}$ and $\lambda^{-1} x_{5}=\alpha=\epsilon^{-1} x_{5}$.

First case: $\lambda^{-1} x_{5}=\alpha=-\epsilon^{-1}$. Here we have also $\epsilon^{-1} x_{5}=1$ and thus $x_{5}^{2}=\epsilon x_{5}=-\lambda$, hence x_{5} lies in a finite set and we are done by Lemma 3 .

Second case: $\lambda^{-1} x_{5}=\alpha=\epsilon^{-1} x_{5}$. Here we also have $\lambda^{-1} \delta=\epsilon=-1$ and hence $\lambda=-\delta$. Since $x_{5}=\alpha \mu=-\alpha=\lambda \alpha$ we obtain $\lambda=\mu=-1$ and $\beta=1$. Now $x_{4}=\lambda x_{2}=-x_{2} \neq x_{2}$ implies that the characteristic of R is different from 2.

The obvious five-term unit equation

$$
1=\left(1-x_{2}\right)+\left(x_{2}-x_{3}\right)+\left(x_{3}-x_{4}\right)+\left(x_{4}-x_{5}\right)+x_{5}
$$

takes now the form

$$
1=(-\alpha)+(-1)+(3+2 \alpha)+(-1)+(-\alpha) .
$$

If it is non-trivial, then α lies in a finite set and so does x_{2}, and the assertion follows by Lemma 3. If it is trivial, then in view of $\operatorname{char}(R) \neq 2$ we must have $\alpha=-1$ which leads to $x_{2}=0$, contradiction. This completes the proof of Theorem 1.
4. An integral domain R is called a finite factorization domain, if every non-zero element of R belongs to only finitely many principal ideals of R. By [HK], Krull domains and orders in algebraic number fields are examples of finite factorization domains. From Theorem 1 we derive the following finiteness result for inequivalent non-linear cycles:

Theorem 2. Let R be a finite factorization domain satisfying the assumptions of Theorem 1. Then there are only finitely many inequivalent non-linear cycles of a given length $n \geq 2$ in R.

Note that the assumptions of Theorem 2 are satisfied by all finitely generated integral domains of zero characteristic and in particular by all rings of integers of algebraic number fields. Note also that the non-linearity assumption is essential. Indeed, if R is the ring of integers of the n-th cyclotomic field $Q\left(\zeta_{n}\right)$ then every non-zero element of R lies in a cycle of length n realized by the linear polynomial $f(X)=\zeta_{n} X$ and therefore in this case there are infinitely many inequivalent cycles of length n.

Proof. It suffices to show that for every $n \geq 2$ there are only finitely many cycles of the form

$$
\begin{equation*}
\left(0, x_{1}, x_{2}, \ldots, x_{n-1}, 0\right) \tag{7}
\end{equation*}
$$

Let (7) be a cycle of the polynomial $f \in R[X]$. We may assume that f is the Lagrange interpolation polynomial corresponding to the data (2) with $x_{0}=0$, and then we have

$$
f(X)=a_{M} X^{M}+\cdots+A_{0} \in R[X],
$$

where $2 \leq M \leq n-1$ and $a_{M} \neq 0$. Since $f(0)=x_{1}$ it follows easily that the polynomial

$$
g(X)=\frac{1}{x_{1}} f\left(x_{1} X\right)=1+\sum_{i=1}^{n-1} a_{i} x_{1}^{i-1} X^{i}
$$

lies in $R[X]$,

$$
\left(0,1, \frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n-1}}{x_{1}}, 0\right)
$$

is a cycle of g, and since $M<n, g$ is uniquely determined by this cycle. By Theorem $1 R$ contains only finitely many normalized cycles and thus the coefficients of g lie in a finite set. In particular $a_{M} x_{1}^{M-1}$ lies in a finite set, say $a_{M} x_{1}^{M-1} \in\left\{c_{1}, \ldots, c_{k}\right\} \subset R$ and in view of $a_{M} \neq 0$ and $M \geq 2$ we see that for some i we have $c_{i} \in x_{1} R$ for some i and therefore there are only finitely many possibilities for the principal ideal $x_{1} R$. The polynomial g together with x_{1} uniquely determines f and thus the cycle (7). If we replace x_{1} by $x_{1} \epsilon$ for some $\epsilon \in R^{\times}$then instead of (7) we get the equivalent cycle $\left(0, \epsilon x_{1}, \ldots, \epsilon x_{n-1}, 0\right)$. This proves the theorem.

The preceding theorem does not cover linear cycles. They are described by the following statement which can be easily directly verified:

Theorem 3. Let R be an arbitrary integral domain and let $f(X)=$ $A X+B \in R[X], A \neq 0$.
(i) If A is a primitive root of unity of order $n>1$ and $A-1$ does not divide B then every element of R lies in a cycle of f having length n. If $A-1 \mid B$ then $x_{0}=B /(1-A)$ is a fixpoint and every element $x \neq x_{0}$ lies in a cycle of length n.
(ii) If $A=1$ and $B \neq 0$ and R has positive characteristic p then every element of R lies in a cycle of f having length p. If R has zero characteristic then f does not have any cycles in R.
(iii) If A is not a root of unity and $1-A \mid B$ then the element $B /(1-A)$ is a fixpoint of f. If $1-A$ does not divide B then f does not have any cycles in R.

Corollary. Let R be any infinite integral domain and $n \geq 2$. If R contains a root of unity of order n or if n is the characteristic of R, then R contains infinitely many inequivalent linear cycles of length n. In all other cases R contains only finitely many inequivalent linear cycles of length n.
5. Now we shall consider finite polynomial orbits which contain a cycle of length exceeding 2 and prove the following result:

Theorem 4. Assume that R is a finite factorization domain satisfying the following condition:

For any fixed non-zero $a, b, c \in R$ the equation

$$
a x+b y=c
$$

has at most finitely many solutions $x, y \in R^{\times}$.
(i) Let $\left(x_{0}, x_{1}, x_{2}\right)$ be a polynomial sequence in R where $x_{0} \neq x_{1}$ and $x_{0} \neq x_{2}$. Then there are only finitely many $y \in R$ such that (y, x_{0}, x_{1}, x_{2}) is also a polynomial sequence.
(ii) Let \bar{x} be a cycle of length $n \geq 3$ in R. Then there are only finitely many finite orbits of a given length $k \geq n$ in R which contain the cycle \bar{x}.

Proof. (i) Let $y \in R$ be such that $\left(y, x_{0}, x_{1}, x_{2}\right)$ is a polynomial sequence of some polynomial $f \in R[X]$. Then

$$
\begin{aligned}
& x_{0}-x_{1}=f(y)-f\left(x_{0}\right) \in\left(y-x_{0}\right) R, \\
& x_{0}-x_{2}=f(y)-f\left(x_{1}\right) \in\left(y-x_{1}\right) R .
\end{aligned}
$$

Since R is a finite factorization domain, there are only finitely many possibilities for the principal ideals $\left(y-x_{0}\right) R$ and $\left(y-x_{1}\right) R$. Hence we obtain

$$
y-x_{i}=A_{i} \epsilon_{i} \quad(i=0,1)
$$

where $\epsilon_{0}, \epsilon_{1} \in R^{\times}$and A_{0}, A_{1} belong to a finite set of non-zero elements of R. By assumption, the equation

$$
A_{0} \epsilon_{0}-A_{1} \epsilon_{1}=x_{1}-x_{0}
$$

has only finitely many solutions $\epsilon_{0}, \epsilon_{1} \in R^{\times}$, and the assertion follows.
(ii) By induction on k, using (i).

Observe that in Theorem 4 the assumption $n \geq 3$ is necessary. In fact, if $n=1$ then a counterexample is given already in $R=\mathbb{Z}$ where the cycle $(0,0)$ of length 1 is for any $k \geq 1$ contained in orbits $(k, 0,0\}$ of the polynomial $f_{k}(X)=X(X-k)$ and all these orbits are inequivalent. In case $n=2$ let R be an integral domain such that R^{\times}is infinite. Then the cycle $(0,1,0)$ is for any $\epsilon \in R^{\times} \backslash\{ \pm 1\}$ contained in the orbit $(\epsilon, 0,1,0)$ of the polynomial $f_{\epsilon}(X)=\epsilon^{-1}(X-\epsilon)(X-1) \in R[X]$ and again all these orbits are inequivalent.

Theorem 5. Let R be a finitely generated domain of zero characteristic, denote by \bar{R} its integral closure and suppose that the unit index $\left[\bar{R}^{\times}: R^{\times}\right]$is finite. Then there are only finitely many inequivalent finite non-linear orbits in R.

Proof. By Theorem 7 of [HK] R is a finite factorization domain and by $[\mathrm{EF}],[\mathrm{S}]$ all assumptions concerning unit equations in Theorems 1, 2 are satisfied.

Note that a nonlinear cycle has length $n \geq 3$. Indeed, the cycle (x_{0}, x_{0}) of length 1 is realized by $f(X)=X$ and the cycle $\left(x_{0}, x_{1}, x_{0}\right)$ of length 2 is a cycle of $f(X)=-X+x_{0}+x_{1}$, hence they are linear. By Theorem 4 every non-linear cycle is contained in only finitely many finite orbits of a given length. However it has been proved in [NP] that the lengths of finite orbits in R is bounded by a constant depending only on R. Hence there are only finitely many finite orbits containing a given non-linear cycle. By Theorem 2 there are only finitely many inequivalent non-linear cycles of a given length, and by [HKN1] the length of a cycle in R is bounded by a constant depending only on R. This shows that there are only finitely many inequivalent non-linear finite orbits in R at all.

Corollary. Suppose that R is either an order in an algebraic number field or a finitely generated and integrally closed domain of zero characteristic. Then there are only finitely many inequivalent finite non-linear orbits in R.

References

[EG] J. H. Evertse and K. Győry, On the number of solutions of weighted unit equations, Compos. Math. 66 (1988), 329-354.
[HK] F. Halter-Koch, Finiteness theorems for factorizations, Semigroup Forum 44 (1992), 112-117.
[HKN1] F. Halter-Koch and W. Narkiewicz, Polynomial cycles in finitely generated domains, Monatsh. Math. 119 (1995), 275-279.
[HKN2] F. Halter-Koch and W. Narkiewicz, Polynomial cycles and dynamical units, Proc. Conf. Analytic and Elementary Number Theory, Wien 1997, 70-80.
[N] W. Narkiewicz, Polynomial Mappings, Lecture Notes in Math. 1600, Springer 1995.
[NP] W. Narkiewicz and T. Pezda, Finite polynomial orbits in finitely generated domains, Monatsh. Math. 124 (1997), 309-316.
[P] T. Pezda, Polynomial cycles in certain local domains, Acta Arith. 66 (1994), 11-22.
[S] H. P. Schlickewer, S-units equations over number fields, Invent. Math. 102 (1990), 95-107.
F. HALTER-KOCH

INSTITUT FÜR MATHEMATIK
KARL-FRANZENS UNIVERSITÄT
HEINRICHSTRASSE 36/IV
A-8010 GRAZ
AUSTRIA
E-mail: franz.halterkoch@balu.kfunigraz.ac.at
W. NARKIEWICZ

INSTITUTE OF MATHEMATICS
WROCEAW UNIVERSITY
PLAC GRUNWALDZKI $2-4$
PL-50-384 WROCもAW
POLAND
E-mail: narkiew@math.uni.wroc.pl
(Received June 14, 1999)

