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Euler products, Farey series and
the Riemann hypothesis

By S. KANEMITSU (Iizuka) and M. YOSHIMOTO (Fukuoka)

Dedicated to Professor Dr. Kálmán Győry on his sixtieth birthday

Abstract. For an integrable even function f with average value
R 1
0 f(u)du = 0 on

the unit interval we consider the error term Ef (x) =
PΦ(x)

ν=1 f(ρν), where the summation
extends over all Farey points of order [x] through which we form the Mellin transform
F (s) = sζ(s)

R∞
1 Ef (x)x−s−1dx associated to f . We consider the equivalent assertions

to the RH in terms of Farey series through some special choices of f .
In §2, for f given as a Fourier cosine series, we shall establish a Hecke-like corre-

spondence between f(τ) and F (s) with Ramanujan-like expansion of f with respect to
the summatory functions of Ramanujan’s function.

Then we shall go on to study a class of gap Fourier series. In Theorem 3 we shall
consider the Weierstrass function f(u) with a prime power gap (fractal). In Theorems 4
and 5 we shall consider a class of Fourier series f containing as a subclass, Riemann’s
and Takagi’s function, respectively.

1. Introduction and statement of results

The purpose of the present paper is to examine the dynamical system-
atic aspect of the equivalence problem to the Riemann Hypothesis (RH)
in terms of Farey series (first posed by Mikolás [8], [9]) as enunciated
in Remark 3.2 of [7], thus flowing in a direction slightly different from,

Mathematics Subject Classification: 11M26, 11N99, 11B57, 26A99.
Key words and phrases: Riemann hypothesis, Euler product, Farey series.
The first author was supported in part by Grant-in-aid for Scientific Research (C) (No.

11640051), the Japan Society for the Promotion of Science.



432 S. Kanemitsu and M. Yoshimoto

though in the same vein as, Parts I–IV [6], [15], [7] and [16]. (For the RH,
cf. the paragraph containing (9) below.)

To proceed we define the Farey series Fx = F[x] of order [x], [x] denot-
ing the integral part of x, to be the increasing sequence of irreducible frac-
tions ρν between 0 and 1 (0 exclusive) with denominator ≤ x. Then since
the number of ρν ’s with denominator n equals φ(n) =

∑
k≤n, (k,n)=1 1,

Euler’s function, (k, n) denoting the g.c.d. of k and n, the total number
#Fx of F equals

Φ(x) =
∑

n≤x

φ(n),

the summatory function of Euler’s function.
Now recall that if f ∈ C1, then the Euler–Maclaurin sum formula

implies that

Φ(x)∑
ν=1

f(ρν) = Φ(x)
∫ 1

0

f(u)du +
1
2
(f(1)− f(0))(1)

+
∑

n≤x

M
(x

n

) ∫ 1

0

B1(nu)f ′(u)du,

where

(2) M(x) =
∑

n≤x

µ(n)

denotes the summatory function of the Möbius function µ(n), and B1(u)
denotes the 1st periodic Bernoulli polynomial given by the saw-tooth
Fourier series

B1(u) = − 1
π

∞∑
n=1

sin 2πnu

n

for u /∈ Z and B1(u) = 0 for u ∈ Z (Z denotes the ring of integers).
Bearing (1) in mind, we define the error term Ef (x) as in previous

papers by

(3) Ef (x) =
Φ(x)∑
ν=1

f(ρν)− Φ(x)
∫ 1

0

f(u)du
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associated to an integrable “core” function f . In some earlier papers we
sometimes subtracted the second term 1

2 (f(1)− f(0)), which can be taken
to be 0, since, on symmetry grounds, we may confine ourselves to even
functions f only,

(4) f(1− u) = f(u).

At this point giving an example is in order to get a general perspective.
Consider the discrete dynamical system {ϕn(u)} on the unit interval

(for dynamical systems, see e.g. Collett and Eckmann [1]) defined as
the iterates of the tent function

ϕ(u) =





2u 0 ≤ u ≤ 1
2

2− 2u
1
2
≤ u ≤ 1,

ϕ1(u) = ϕ(u) and ϕn+1(u) = ϕ(ϕn(u)) (n ∈ N).
Then it can be shown [18] that the RH is equivalent to

Φ(x)∑
ν=1

ϕN (ρν) =
1
2
Φ(x) + O

(
x

1
2+ε

)
.

This follows from a more general result that the RH is equivalent to

Φ(x)∑
ν=1

TN (ρν) = Φ(x)
∫ 1

0

TN (u)du + O
(
x

1
2+ε

)
,

where

TN (u) =
N∑

n=1

1
2n

ϕn(u)

denotes the directly connected n tents of length 1
2n .

Since T (u) = limN→∞ TN (u) denotes the well-known Takagi function
(ref. [13]) given by the gap (lacunary) Fourier series

(5) T (u) =
∞∑

m=0

∞∑
n=0

1
2m(2n + 1)2

cos 2π2m(2n + 1)u,

we are naturally led to consider the “infinite sum” of a discrete dynamical
system.
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In view of the remark on pp. 329–330 of [1] the Weierstrass function

f(u) =
∞∑

n=−∞
cos 2πβnu

is self-similar: f(βu) = f(u) i.e. has a fractal figure as its graph.
We may say that in this paper we investigate the equivalence problem

in terms of “attractors” of a class of discrete dynamical systems putting
off the consideration of that side of affairs which is more directly related
to dynamical systems till [18].

Turning back to a general situation we also note that we may assume
f has its average value 0,

(6)
∫ 1

0

f(u)du = 0

by considering f(u)− ∫ 1

0
f(u)du instead of f .

For the core function f given as a Fourier cosine series (which is the
main object of our study)

f(u) =
∞∑

n=0

c(n) cos 2πnu,

average value 0 signifies that c(0) = 0, i.e.

(7) f(u) =
∞∑

n=1

c(n) cos 2πnu.

On the assumption of (4) and (6), the error term reduces to

(8) Ef (x) =
Φ(x)∑
ν=1

f(ρν) =
∑

n≤x

M
(x

n

) ∑

m≤n

f
(m

n

)
.

Recall that the RH to the effect that the Riemann zeta-function ζ(s)
has no zeros on the critical line <s = σ = 1

2 is equivalent to (cf. e.g. [3],
[14])

(9) M(x) = O
(
x

1
2+ε

)
,
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through which we study the equivalence problem.
As a main tool define the Mellin transform F (s) associated to f :

(10) F (s) = sζ(s)
∫ ∞

1

Ef (x)x−s−1dx

for σ > 1, say.
The pair (f, F ) (sometimes with subscripts) will always appear in this

context throughout in what follows. Namely, f and F are in correspon-
dence as a Mellin transform pair through Ef (x).

In particular, if Ef (x) = (M ∗a)(x) =
∑

n≤x M
(

x
n

)
a(n) with suitable

a(n), then F (s) can be expressed as a Dirichlet series

(11) F (s) =
∞∑

n=1

a(n)
ns

.

Conversely, if F (s) is given by (11), then Ef = M ∗ a, and f can be
sometimes determined explicitly.

The principle which we apply to establishing equivalence is the fol-
lowing.

The Principle ([16], Lemma 1]). (i) If f is of Lipschitz class, then the
RH implies

Ef (x) = (Main term) + O
(
x

1
2+ε

)

or else we apply the Abelian theorem [17] to conclude the same.
(ii) Conversely, if Ef (x) = O

(
x

1
2+ε

)
and F (s) does not vanish for

σ > 1
2 , then ζ(s) dose not vanish for σ > 1

2 , which is equivalent to the RH.

We shall make frequent use of the following.

Notation.
• Lipschitz space Λα = {f : [0, 1] → C | |f(u)− f(v)| < M |u− v|α

for an absolute constant M}.
• Ramanujan’s sum ck(n) =

∑
1≤h≤k, (h,k)=1 e2πinh/k to the modulus k.

• σz(n) :=
∑

d|n dz, the sum-of-divisors function.
• With Bk(t) denoting the k-th Bernoulli polynomial, we let Bk(t) =

Bk({t}) = Bk(t− [t]) be the k-th periodic Bernoulli polynomial.
• In Example 1 we shall use Ss(x) =

∑
n≤x

M
(

x
n

)
and ψ(x) =

∑
pm≤x

log p,

the von Mangoldt function (in particular, S−1(x) = Φ(x), S0(x) = 1).
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2. Hecke-like correspondence and Euler product

In the special case where f(u) is given as a Fourier (cosine) series,
the pair (f, F ) gives a Hecke-like correspondence, by which we mean an
analogy between our pair (in which the argument u of f runs through [0, 1]
only) and the Fourier expansion

f(τ) =
∞∑

n=1

c(n)e2πinτ τ ∈ H (the upper half-plain)

of a modular (cusp) form f and the associated Hecke L-function

F (s) =
∞∑

n=1

a(n)
ns

(c.f. e.g. Hecke [2], Ogg [10]).
More specifically, we have

Theorem 1. Suppose f(u) has the Fourier expansion

(12) f(u) =
∞∑

n=1

c(n) cos 2πnu

satisfying the condition

(13)
∞∑

n=1

|c(n)|d(n) < ∞,

where d(n) denotes the divisor function, then we have the Ramanujan-like

expansion [12]

(14) Ef (x) =
∞∑

n=1

c(n)Cx(n),

where Cx(n) denotes the summatory function Cx(n) =
∑

k≤x ck(n) of

Ramanujan’s sum, and with

(15) a(n) = n

∞∑
m=1

c(nm)
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the generating Dirichlet series (11) has the expansion

(16) F (s) =
∞∑

n=1

1
ns−1

∞∑
m=1

c(nm) =
∞∑

n=1

c(n)σ1−s(n).

Conversely, if F (s) is given by (11), absolutely convergent for σ > 1,

say then the Fourier coefficients of f are given by

(17) c(n) =
1
n

∞∑

k=1

µ(k)
k

a(kn).

Proof. By definition,

Cx(n) =
∑

k≤x

k∑

h=1
(h,k)=1

cos 2πn
h

k
=

Φ(x)∑
ν=1

cos 2πnρν =
∑

m|n
M

( x

m

)
m

by [15].
Hence

Ef (x) =
∞∑

n=1

c(n)
∑

m|n
M

( x

m

)
m

which gives (14) after changing the order of summation.
Since

|Ef (x)| ≤
∞∑

n=1

|c(n)|
∑

m|n

x

m
m = x

∞∑
n=1

|c(n)|d(n) = O(x)

by (13), this secures the problems of convergence, and
∫ ∞

1

∣∣∣∣
Ef (x)
xs+1

∣∣∣∣ dx = O

(∫ ∞

1

x−σdx

)
= O(1) for σ > 1,

whence it follows that F (s) is absolutely convergent and (16) follows.
Conversely, by the Mellin inversion we deduce (17), where coefficients

are given by (17).
We note that (17) is the Möbius inversion of (15) and hence that (15)

and (17) are well-known Möbius inversion of infinite series. ¤
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We may summarize this Heck-like correspondence schematically as
follows.

f(τ) =
∞∑

n=1

c(n)e2πinτ ←→ F (s) =
∞∑

n=1

a(n)
ns

dynamical system
generating Fourier series

generating Dirichlet series
≈ zeta-function with
Euler product if a is multiplica-
tive

Example 1 (See [6]).

f(τ) F (s) Ef (x)
∞∑

n=1
c(n)e2πinτ

∞∑
n=1

c(n)σ1−s(n) =
∞∑

n=1

a(n)
ns (M ∗ a)(x)

cos 2πτ 1 M(x)
∞∑

n=1
e2πinτn−z (<z > 1) ζ(z)ζ(s + z − 1) ζ(z)Sz−1(x)

B2n(τ) (n ∈ N) B2nζ(s + 2n− 1) B2nS2n−1(x)

log 2 sinπτ ζ ′(s) ψ(x)

Remark 1. As in the above scheme, if a(n) is multiplicative, then F (s)
has an Euler product, and this new principle of Hecke-like correspondence
provides us with a powerful tool for attacking the problem of determining
the relation between f and F . A more thorough study in this direction
will be conducted elsewhere.

Although we state here the Fourier cosine series only, bearing in mind
an application to Farey series, we may consider more general Fourier series
in this respect.

We now state the main result on Euler product.

Theorem 2. Let f be given as the Fourier series (12):

f(u) =
∞∑

n=1

c(n) cos 2πnu.
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Then if c(n) is multiplicative,
∑∞

n=1 |c(n)|<∞, and f(0)=
∑∞

n=1 c(n) 6=0,
then we have for F given by (16)

F (s) = G(1)G(s)F̃ (s),

where

G(s) =
∞∑

n=1

c(n)
ns−1

=
∏
p

Gp(s),

with Gp(s) denoting

Gp(s) =
∞∑

m=0

c(pm)
pm(s−1)

,

and

F̃ (s) =
∏
p

Gp(s)−1 − p1−sGp(1)−1

1− p1−s
,

where in the product p runs through all primes.

Example 2.
(i) c(n) = µ(n)n−z, <z > 1.

G(s) =
1

ζ(s + z − 1)
, F̃ (s) =

∏
p

(
1− (pz − 1)−1(ps+z−1 − 1)−1

)
.

(ii) c(n) = φ(n)n−z, <z > 2.

G(s) =
ζ(s + z − 2)
ζ(s + z − 1)

, F̃ (s) =
∏
p

(
1 +

p− 1
(pz − 1)(ps+z−1 − 1)

)
.

(iii) c(n) = σw(n)n−z, <z > 1, <w < <z − 1.

G(s) = ζ(s + z − 1)ζ(s + z − w − 1), F̃ (s) =
1

ζ(s + 2z − w − 1)
.

Remark 2. In view of the special form of the expression (16), Theo-
rem 2 is a finer decomposition than those obtained in [4] and [5], where
the power arguments case and powers of arithmetic functions case are
considered, respectively.



440 S. Kanemitsu and M. Yoshimoto

3. Gap Fourier series as Weierstrass’, Riemann’s, and
Takagi’s function

In this section we consider core functions f given as gap (lacunary)
Fourier series, involving two kinds of parameters (α, b) or (κ, l) ((κ, l)),
where the first parameter in Greek alphabet can be complex while the last
one in alphabet is restricted to positive integers.

The first gap Fourier series that we consider is a Weierstrass function

f(u) = fα,b(u) =
∞∑

n=0

αn cos 2πbnu

with 0 < |α| < 1 and b ∈ N, b > 1. We can treat only the special case
β = pm, a prime power.

Theorem 3 (Weierstrass function). Let p be a fixed prime, m ∈ N,

and let f(u) = fα,pm(u) be a Weierstrass function

f(u) =
∞∑

n=0

αn cos 2πpmnu, 0 < |α| < 1.

Then

F (s) =
1 + α

∑m−1
n=1 pn(1−s)

(1− α)(1− αpm(1−s))
.

Further,

(i) if m = 1 and 0 < |α| < p−1/2; if p = 2, m ≥ 3 or p = 3, m ≥ 4, and

0 < |α| ≤ (p1/2 − 1)/(pm/2 − p1/2); or if p = 2, m = 2 or p = 3, m = 2, 3
or p = 5, m ≥ 2, and 0 < |α| ≤ p−m/2, then we have

RH ⇐⇒ Ef (x) = O
(
x

1
2+ε

)
,

(ii) if m = 1 and p−1/2 < |α| < 1; if p = 2, m ≥ 3 or p = 3, m ≥ 4,

and (p1/2 − 1)/(pm/2 − p1/2) < |α| ≤ p−m/2; or if p = 2, m = 2 or p = 3,

m = 2, 3 or p = 5, m ≥ 2, and p−m/2 < |α| ≤ (p1/2 − 1)/(pm/2 − p1/2),
then we have

RH ⇐⇒ Ef (x) =
x1+ log α

m log p

(1− α)m log p
+ O

(
x

1
2+ε

)
.
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Theorem 4. Let fκ,l(u) be a gap Fourier series

fκ,l(u) :=
∞∑

n=1

1
nκ

cos 2πnlu

for <κ > 1, l ∈ N. Then

(i) Fκ,l can be decomposed as

(18) Fκ,l(s) = ζ(κ)ζ(ls + κ− l)F̃κ,l(s),

with F̃κ,l having an Euler product

(19) F̃κ,l(s) =
∏
p

(
1 + p−κ

l−1∑
n=1

pn(1−s)

)
.

(ii) If 2<κ ≥ l + 2 + max{λ− 1, 0}, where

λ = 0 or
2 log

(
1 + 2−

1
2

)(
1− 2−

l−1
2

)

log 2

according as 1 ≤ l ≤ 3 or l ≥ 4, then we have

RH ⇐⇒ Efκ,l
(x) = O

(
x

1
2+ε

)
.

(iii) For l + 1 + max{λ, 0} ≤ 2<κ < l + 2 + max{λ− 1, 0}, we have

RH ⇐⇒ Efκ,l
(x) =

ζ(κ)F̃κ,l

(
1
l (l − κ + 1)

)

(l − κ + 1)ζ
(

1
l (l − κ + 1)

)x
1
l (l−κ+1) + O

(
x

1
2+ε

)
.

In particular, for κ = 2, l = 3

RH ⇐⇒ Ef2,3(x) =
ζ(2)F̃2,3

(
2
3

)

2ζ
(

2
3

) x
2
3 + O

(
x

1
2+ε

)
,

where

F̃2,3

(
2
3

)
=

∏
p

(
1 + p−

4
3 + p−

5
3

)
.
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Corollary. For κ = l =2, f(u) is Riemann’s function
∞∑

n=1

1
n2 cos 2πn2u,

and

RH ⇐⇒ Ef (x) = O
(
x

1
2+ε

)
.

Theorem 5. For κ = (κ1, κ2) ∈ C2, l = (l1, l2) ∈ N2, let fκ,l(u) be

the gap-Fourier series:

f(u) = fκ,l(u) =
∞∑

m=0

∞∑
n=0

1
2mκ1(2n + 1)κ2

cos 2π2ml1(2n + 1)l2u,

with <κ1 > 0, <κ2 > 1, l1, l2 ∈ N. Then

(i) Fκ,l(s) can be decomposed, with Fκ2,l2 as given by (18), as follows:

Fκ,l(s) =
1− 2−κ2

1− 2−κ1
· 1− 2−l2s−κ2+l2

1− 2−l1s−κ1+l1
· 1 + 2−κ1

∑l1−1
n=1 2n(1−s)

1 + 2−κ2
∑l2−1

n=1 2n(1−s)
Fκ2,l2(s).

(ii) If 2<κ2 ≥ l2 + 2 and 2<κ1 ≥ l1 + 1 + max{λ1, 0}, with

λ1 = 0 or
2 log

(
1 + 2−

1
2

)(
1− 2−

l1−1
2

)

log 2

according as 1 ≤ l1 ≤ 3 or l1 ≥ 4, then we have

RH ⇐⇒ Ef (x) = O
(
x

1
2+ε

)
.

(iii) For l2 + 1 ≤ 2<κ2 < l2 + 2 and 2<κ1 ≥ l1 + 1 + max{λ1, 0}, where λ1

is as in (i), we have

RH ⇐⇒ Ef (x) = (Main-term) + O
(
x

1
2+ε

)
,

where

(Main-term) =
1− 2−κ2

1− 2−κ1
· 1− 2−l2s0−κ2+l2

1− 2−l1s0−κ1+l1
· 1 + 2−κ1

∑l1−1
n=1 2n(1−s0)

1 + 2−κ2
∑l2−1

n=1 2n(1−s0)

× ζ(k2)F̃κ2,l2(s0)
l2s0ζ(s0)

xs0 ,

F̃κ,l(s) as given by (19), and s0 = 1
l2

(l2 − κ2 + 1).
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Corollary. For κ1 = l1 = l2 = 1, κ2 = 2, f(u) is Takagi’s function∑∞
m=0

∑∞
n=0

1
2m(2n+1)2 cos 2π2m(2n + 1)u, and

RH ⇐⇒ Ef (x) = O
(
x

1
2+ε

)
.

4. Proofs

Lemma 1 (Generalization of Lemma 2 [15]). Suppose that

(∗) Ef (x) = cxβ + O
(
x

1
2+ε

)
for every ε > 0

holds. Then

(i) functions F (s) and F (s)/ζ(s) are regular for σ > 1
2 , s 6= β, 1,

(ii) in the half-plane σ > 1
2 , ζ(s) can have zeros only at possible zeros

of F (s).

Lemma 2. (i) ([16, Lemma 1]) Let 0 < α ≤ 1, 0 ≤ ξ1 < ξ2 ≤ 1 and

f ∈ Λα. Then

∑

ξ1<ρν≤ξ2

f(ρν) = Φ(x)
∫ ξ2

ξ1

f(t)dt + O
(
x2−α

)
.

On the RH, the error term can be reduced to O
(
x2− 3

2 α+ε
)

for every ε > 0,

where the range of integration is to be replaced by [η1, η2], ηi = h(ξi)/Φ(x)
(i = 1, 2), for α > 2

3 . And in particular, for any α, 0 < α ≤ 1, we have on

the RH ∑

ξ1<ρν≤ξ2

f(ρν) = Φ(x)
∫ η2

η1

f(t)dt + O
(
x2− 3

2 α+ε
)
.

(ii) ([17, Lemma 5]) Let {a(n)} be a complex sequence and F (s)
denote the generating function of a(n). Suppose that F (s) and a(n) satisfy

the following conditions:

(a) F (s) is absolutely convergent for σ > σa with σa ≤ 1,

(b) F (s) is continued to an analytic function to the half-plane σ > α with

finitely many singularities with 1
2 ≤ α < 1,

(c) F (s) ¿ |t|κ+ε for some κ ≥ 0 and every ε > 0 uniformly in the region

α < σ ≤ 1, |t| ≥ t0 > 0,
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(d) (µ ∗ a)(n) ¿ nβ+ε for sum β, 0 ≤ β (≤ σa),
(e) there exists a non-negative number θ satisfying

∞∑
n=1

|µ ∗ a|(n)
nσ

¿ (σ − 1)−θ as σ → 1.

Then, on the RH(α), we have

∑

n≤x

(µ ∗ a)(n) =
1

2πi

∫

C

F (s)
sζ(s)

xsds + O
(
xω+ε

)
,

where

ω = min
0≤ξ≤1

{max{β + 1− ξ, 1 + (κ− 1)ξ, α + κξ}},

and the contour C encircle all singularities of F (s)/ζ(s) in the strip

α < σ < 1.

In particular, in the special cases of κ = 0 and β = 0 we have ω =
max{α, β}, and ω = α + κ(1− α), respectively.

Proof of Theorem 2. We make use of the second equality of (16).
Writing

F (s) =
∞∑

n=1

c(n)
ns−1

σs−1(n) =
∏
p

∞∑

l=0

c(pl)
(pl)s−1

σs−1(pl),

we apply the well-known formula

σs−1(pl) =
1− (pl+1)s−1

1− ps−1
.

Then

F (s) =
∏
p

1
1− ps−1

(
Gp(s)−Gp(1)ps−1

)

=
∏
p

Gp(s)Gp(1)
Gp(s)−1 − p1−sGp(1)−1

1− p1−s
,

whence the result follows. ¤
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Proof of Theorem 3. The proof consists of two stages, i.e. prov-
ing that f is of Lipschitz class and obtaining the Euler product, whence
establishing the zero free region of F (s).

First we shall prove that
Case (1) if 0 < α < 1

p , then f ∈ Λ1,
Case (2) if α = p−τ0 , 0 < τ0 < 1, then f ∈ Λτ0

and Case (3) if α = 1
p , then f ∈ Λ1−ε, for every ε > 0.

For x, y ∈ [0, 1], we may classify the difference |x − y| according to
powers of p (the extremal case (x, y) = (0, 1), (1, 0) being clear):

1
pm+1

≤ |x− y| < 1
pm

, m = 0, 1, 2, . . .

Let 0 < τ ≤ 1 be fixed and let n be the variable of summation for
f(u). Then for 0 ≤ n ≤ m, we have

|cos 2πpnu− cos 2πpmv| ≤ 2πpn|u− v| < 2πpn−(1−τ)m|u− v|τ ,

while for n > m,

|cos 2πpnu− cos 2πpmv| ≤ 2 ≤ 2pm+1|u− v| ≤ 2pmτ+1|u− v|τ .

Hence, on taking the sum of resulting geometric progression, we infer that

|f(u)− f(v)| < 2
(

π

1− λp
p−(1−τ)m − πλp

1− λp
(λpτ )m

+
λp

1− λ
(λpτ )m

)
|u− v|τ if λp 6= 1,

and

|f(u)− f(v)| < 2
(

(m + 1)π +
p

p− 1

)
p−(1−τ)m|u− v| if λp = 1.

Then, in Case (1)
|f(u)− f(v)| ≤ M |u− v|τ ,

with

M = 2
(

π

1− λp
+

λp

1− λ

)
.

Since we can take τ = 1, we conclude that f ∈ Λ1.
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In Case (2),
|f(u)− f(v)| ≤ M |u− v|τ0

with

M = 2
(

παp

αp− 1
+

αp

1− α

)
,

so that f ∈ Λτ0 .
Finally, in Case (3) considering the upper bound of the function

g(y) =
(

πy + π +
p

p− 1

)
p−(1−τ)y (y ≥ 0),

we obtain
|f(u)− f(v)| ≤ Mε|u− v|1−ε

for every ε > 0, where

Mε = max
{

π +
p

p− 1
,

π

εe log p
p(1+ 2

π )

}
.

Hence we get necessarily part of our assertion.
Euler product representation (18) follows immediately from Theo-

rem 2 on noting that with the prescribed p

c(n) =
{ 0 if n 6= pml

αl if n = pml,

so that
G(s) = Gp(s) =

1
1− αpm(1−s)

.

It remains to examine a possible simple pole and non-vanishingness
of F (s) for σ > 1

2 .
The case where F (s) has a simple pole at s = 1 + log α

m log p is stated in
(ii) while the case where F (s) is regular (for σ > 1

2 ) is stated in (i).
The condition is stated in terms of inequalities in α at the end of

each if-clause, and non vanishingness conditions are stated preceding them.
¤

Proof of Theorem 4. Since

c(n) =
{

n−κ/l if n = ml

0 otherwise,
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we have

Gp(s) =
∞∑

m=0

p(l−ls−κ)m =
1

1− pl−ls−κ
,

so that

F̃ (s) = F̃κ,l(s) =
∏
p

(
1 + p−κ p1−s − pl(1−s)

1− p1−s

)

as asserted in (19).
The proof is similar in nature to that of Theorem 3, i.e. we distinguish

the cases where F (s) has a simple pole at s = l−κ+1
l or not and find the

conditions for nonvanishing of F (s), save for the necessity part to which
we apply an abelian theorem.

We shall illustrate the proof by the case κ = 2 and l = 3.
In this case we have the Euler product decomposition

(20) F (s) = F2,3(s) = ζ(2)ζ(3s− 1)F̃2,3(s),

where
F̃2,3(s) =

∏
p

(
1 + p−s−1 + p−2s

)
,

which is absolutely convergent for σ > 1
2 and has no zeros there.

On the RH we have F (s) ¿ |t|ε for σ > 1
2 , |t| > t0 > 0, ε > 0

arbitrary. Hence by Lemma 2, (ii) (noting that F (s) has a simple pole at
s = 2

3 )

Ef (x) =
ζ(2)
2ζ( 2

3 )
F̃2,3

(
2
3

)
x

2
3 + O

(
xω+ε

)
,

where ω = max{γ, 1
2} with γ such that

(a ∗ µ)(n) ¿ nγ+ε.

By (20) we obtain

(a ∗ µ)(n) ¿ σ1/3(n) ¿ n
1
3+ε,

so that we may take γ = 1
3 and the necessity part follows.

The sufficiency part follows from Lemma 1 since F (s) 6= 0 for σ > 1
2 .
¤
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Proof of Corollary to Theorem 4. This follows in the same way as
that for Theorem 4 on account of

F (s) = F2,2(s) =
ζ(2)ζ(2s)ζ(s + 1)

ζ(2s + 2)
6= 0

for σ > 1
2 . ¤

Proof of Theorem 5 and its Corollary. The Euler product decom-
position follows from

c(n) =

{ 2−κ1n2
∏

p 6=2

p−κ2np if n = 2l1n2
∏

p 6=2

pl2np

0 otherwise,

and the proof is similar to that for Theorem 4 (Fκ,l(s) = Fκ,l(s) if κ1 =
κ2 = κ, l1 = l2 = l).

We shall sketch the proof of Corollary to Theorem 5. In this case

F (s) = F(1,1),(1,2)(s) =
3
2

1− 2−s−1

1− 2−s
ζ(2)ζ(s + 1),

which is non-zero for σ > 1
2 .

Hence Lemma 2, (ii) applies. ¤
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