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Additive functions with monotonic norm

By IMRE Z. RUZSA (Budapest)

To Kálmán Győry and András Sárközy,
on the occasion of their 60th birthday

Abstract. We describe all Hilbert-space valued additive functions with mono-
tonic norm.

1. Introduction

A classical 1946 theorem of Erdős asserts that if a real-valued additive
arithmetical function is monotonic, it must be of the form c log n with
some constant c. Since then many variants and generalizations have been
published. Among others, Katalin Kovács [1] proved that if f is an
additive function with values in Rd and |f(n)| is increasing from some
point on, then f must be of the form a log n with some constant a ∈ Rd.
She also pointed out that the theorem cannot be extended to functions
with values in an infinite dimensional Hilbert space. Indeed, if H is an
infinite dimensional Hilbert space and ep ∈ H are orthogonal unit vectors
for each prime p, then the additive function defined at prime powers by
f(pk) =

√
log pkep will satisfy |f(n)| = √

log n for all n.
In this paper we describe all Hilbert-space valued additive functions

with monotonic norm.
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While a Hilbert-space valued arithmetical function may not be the
most natural object, this is the first instance that the class of “regular”
functions in some sense can be completely described and it is genuinely
wider than the set of logarithmic functions.

Theorem 1.1. Let H be a Hilbert space, f : N → H an additive

function and suppose that |f(n)| is monotonic for n > n0. Then there are

nonnegative real numbers α, β such that

(1.1) |f(n)| = α(log n)2 + β log n

for all n. If β = 0, then f(n) = a log n for all n with some a ∈ H

satisfying |a| =
√

α. If β > 0, then H is infinite dimensional, and there

are nonempty orthogonal subspaces Ep for each prime p, and a vector a

satisfying |a| = √
α and orthogonal to all the Ep such that f is of the form

f(n) = a log n + g(n), and the additive function g satisfies

(1.2) g(pk) ∈ Ep, |g(pk)| =
√

β log pk

for every prime-power pk. Conversely, every function defined in this way

satisfies (1.1), thus its norm is monotonic.

2. Quadritive functions

We will study the functions that can occur as |f(n)|2. By considering
the coordinates we see that

|f(n)|2 =
∑

fi(n)2

with additive functions fi. We will consider a slightly wider class which
can be characterized by a functional equation.

Definition 2.1. We call a real-valued arithmetical function F quadri-
tive (from quadratic + additive) if it satisfies

(2.1) F (abc) + F (a) + F (b) + F (c) = F (ab) + F (bc) + F (ca)

for all pairwise coprime triplets of natural numbers a, b, c.

In this section we establish some basic properties of quadritive func-
tions.



Additive functions with monotonic norm 549

Statement 2.2. For a real arithmetical function the following are
equivalent.

a) There are additive functions fi and constants ci = ±1 such that

(2.2) F (n) =
∞∑

i=1

cifi(n)2

for all n.

b) F can be expressed in the form

(2.3) F (n) =
∞∑

i=1

fi(n)gi(n)

with additive functions fi, gi.

c) F is quadritive.

In a) and b), the series are assumed to be pointwise convergent. Fur-
thermore, every quadritive function has representations in forms (2.2) and
(2.3) with the following stronger convergence property: for each n the
series have only finitely many nonzero terms.

Lemma 2.3. If a quadritive function vanishes on the set of numbers of
the form pk and pkql, where p, q are primes and k, l are natural numbers,
then it is identically 0.

Proof. Suppose that our function is not identically 0; then there is
a minimal n with F (n) 6= 0. By substituting a = b = c = 1 into (2.1) we
see that F (1) = 0, so this number satisfies n > 1. It cannot be a prime-
power or a product of two prime-powers by assumption, thus its canonical
decomposition contains at least 3 different primes. Let a, b be two prime-
powers from the canonical decomposition of n and put c = n/ab. Consider
equation (2.1) with these numbers a, b, c. We have a, b, c, ab, bc, ca < n,
thus all terms vanish save F (abc) = F (n), a contradiction. ¤

Lemma 2.4. Every real function F0, defined on the set of natural
numbers of the form pk or pkql, where p, q are primes and k, l are natural
numbers, can be extended to a function of the form (2.3). Furthermore,
this can be done so that in (2.3) for every fixed n there are only finitely
many nonzero values of fi(n) and gi(n).

Proof. Define, for each prime-power pk, an additive function hpk by

hpk(n) =
{

1, if pk‖n,

0 otherwise.
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Then we put

F =
∑

p,k

F0(pk)h2
pk +

∑

p,q,k,l

(
F0(pkql)− F0(pk)− F0(ql)

)
hpkhql .

After a suitable rearrangement, this becomes an expression of type (2.3).
If evaluated at any natural number n, there are only finitely many nonzero
terms, thus the series will be automatically convergent. It is immediate to
check that it extends F0. ¤

Proof of Statement 2.2. To see that property a) implies quadritivity,
it is sufficient to check (2.1) for functions of the form F (n) = f(n)2 with
additive f . For such a function we have

F (abc) =
(
f(abc)

)2 =
(
f(a) + f(b) + f(c)

)2

= f(a)2 + f(b)2 + f(c)2 + 2
(
f(ab) + f(bc) + f(ca)

)
.

Expanding F (ab), F (bc), F (ca) similarly we immediately see that (2.1)
holds.

Next we prove that quadritivity implies properties b) and a). Let
F be a quadritive function. Let G be a function with property b) that
coincides with F on prime-powers and products of two prime-powers; such
a function exists by Lemma 2.4. This function also has a representation
in form (2.2). To see this we apply the identity

fg =
(

f + g

2

)2

−
(

f − g

2

)2

to each summand of (2.3). Since the representation provided by Lemma 2.4
had the property that for each n there were only finitely many nonzero
values of fi(n) and gi(n), the resulting series (2.2) will also be finite for
every n. The function G is quadritive by the already proved implication
b) −→ c).

Finally to deduce condition b) from a) we simply put gi = cifi. ¤
Statement 2.5. Every real function F0, defined on the set of natural

numbers of the form pk or pkql, where p, q are primes and k, l are natural
numbers, can be extended to a quadritive function, and this extension is
unique.

Proof. We take the extension provided by Lemma 2.4; it is quadri-
tive by Statement 2.2, and unicity follows from Lemma 2.3. ¤
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Definition 2.6. We call a real-valued arithmetical function F com-
pletely quadritive, if it satisfies (2.1) for all, not necessarily coprime triplets
of natural numbers a, b, c.

Statement 2.7. For a real arithmetical function the following are

equivalent.

a) There are completely additive functions fi, f∗ and constants ci = ±1
such that

(2.4) F (n) = f∗(n) +
∞∑

i=1

cifi(n)2

for all n.

b) F can be expressed in the form

(2.5) F (n) = f∗(n) +
∞∑

i=1

fi(n)gi(n)

with completely additive functions fi, gi and f∗.

c) F is completely quadritive.

We will not need this result, so we only outline the proof. It is com-
pletely analogous to that of Statement 2.2 with one exception. An additive
function is also quadritive, and similarly a completely additive function is
completely quadritive. From the proof of Statement 2.2 we learned as a
byproduct that an additive function can be expressed as a sum of squares
of additive function; however, the corresponding statement for completely
additive functions fails. (Indeed, a sum of squares of completely additive
function always satisfies F (p2) = 4F (p).) Thus the only difference is in
the formulation and proof of the analog of Lemma 2.4, which proceeds as
follows.

Lemma 2.8. Every real function F0, defined on the set of natural

numbers of the form p or pq, where p, q are primes, can be extended to a

function of the form (2.5).

Proof. Define, for each prime p, a completely additive function hp by

hp(n) = k, if pk‖n.
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Then we put

F =
∑

p

{(
2F0(p)− 1

2
F0(p2)

)
hp −

(
F0(p)− 1

2
F0(p2)

)
h2

p

}

+
∑
p<q

(
F0(pq)− F0(p)− F0(q)

)
hphq.

If evaluated at any natural number n, there are only finitely many nonzero
terms, thus the series will be automatically convergent and so it defines a
completely quadritive function. It is immediate to check that it extends F0.

After combining the linear terms into a single completely additive
function

f∗ =
∑

p

(
2F0(p)− 1

2
F0(p2)

)
hp

and a suitable rearrangement, this becomes an expression of type (2.5).
¤

Statement 2.9. Every real function F0, defined on the set of natu-

ral numbers of the form p or pq, where p, q are (not necessarily distinct)

primes, can be extended to a completely quadritive function, and this

extension is unique.

The proof of this statement is completely analogous to the proof of
Statement 2.5.

3. Regular quadritive functions

In this section we describe the monotonic quadritive functions.

Theorem 3.1. Let F be a quadritive function. If there is an n0 such

that F (n) is monotonic for n > n0, then F is of the form

(3.1) F (n) = α(log n)2 + β log n

with constants α, β.

The proof will proceed through several lemmas.
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Lemma 3.2. If a quadritive function F is monotonic for n > n0, then

(3.2) F (n) = O
(
(log n)3

)
.

Proof. Assume that F is increasing for n > n0. If it is always
negative, it is bounded and we are done. Assume it is eventually positive.

We shall find a number n1 ≥ n0, take a positive number a such that

(3.3) F (n) ≤ a(log n)3

holds for all n ≤ n1, and show by induction that (3.3) holds for all n. We
describe the inductive step, and during this we will find conditions for n1

that will guarantee that the induction works.
Assume we know (3.3) for all numbers < n. We try to deduce it for

n as follows. Let m be the smallest even integer such that

(3.4) n ≤ (m− 1)m(m + 1).

The numbers m− 1,m, m + 1 are pairwise coprime, thus we have

F (n) ≤ F
(
(m− 1)m(m + 1)

)

= F
(
(m− 1)m

)
+ F

(
(m− 1)(m + 1)

)
+ F

(
m(m + 1)

)

− F (m− 1)− F (m)− F (m + 1).

(3.4) shows m > n1/3, thus if n1 is so large that f(n) > 0 for n > n
1/3
1 ,

then we can conclude

F (n) ≤ F
(
(m−1)m

)
+F

(
(m−1)(m+1)

)
+F

(
m(m+1)

) ≤ 3F
(
m(m+1)

)
,

where the last step follows from monotonicity.
This m satisfies m ∼ n1/3, thus m(m+1) ∼ n2/3. If n is large enough,

then m(m + 1) ≤ 2n2/3 < n3−1/3
; this follows from n > n1 if n1 exceeds

a certain absolute constant. Then we can use the induction hypothesis to
obtain

F (n) ≤ 3a
(
log n3−1/3

)3

= a
(
log n

)3

as wanted. ¤
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Lemma 3.4. If a quadritive function F is monotonic for n > n0, then

F (n + 1)− F (n) → 0

for almost all n (in the sense of asymptotic density).

Proof. Assume that F is increasing. By the previous lemma we have

−b ≤ F (n) ≤ a(log n)3

for all n with certain positive constants a, b. Then |F (n + 1)− F (n)| > ε

can have at most
1
ε

(
b + a(log x)3) = o(x)

solutions in numbers n0 ≤ n ≤ x. ¤

Lemma 3.4. If a quadritive function F satisfies

(3.5) F (n + 1)− F (n) → 0 for almost all n,

then equation (2.1) holds for all triplets satisfying (a, b) = (a, c) = 1.

Proof. By a repeated application of (3.5) we see that F (n + k) −
F (n) → 0 for any fixed k for a sequence of n’s of density 1.

We will select integers x, y coprime to abc and apply equation (2.3) to
the following triplets: (a, b, x), (a, c, y), (a, bc, x). By adding the first two
equations and substracting the third we obtain, after some cancellation
and rearrangement,

F (abc) + F (a) + F (b) + F (c)− F (ab)− F (bc)− F (ca)(3.6)

=
(
F (bx)− F (y)

)
+

(
F (abcx)− F (acy)

)

− (
F (abx)− F (ay)

)− (
F (bcx)− F (cy)

)
.

We put x = abct + 1, y = ab2ct + 1. This choice guarantees the required
coprimality assumptions and also bx− y = b− 1 independently of t. Con-
sequently the first term of the right side of (3.6) tends to 0 for almost all t,
and so do the other terms by a similar argument. So the right side of (3.6)
tends to 0 for almost all t, consequently the left side, which is independent
of t, must be 0. ¤
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Lemma 3.5. If a quadritive function F satisfies F (n+1)−F (n) → 0
for almost all n, then equation (2.1) holds for all triplets (that is, F is

completely quadritive).

Proof. We select integers x, y coprime to abc and apply equation
(2.3) to the same triplets (a, b, x), (a, c, y), (a, bc, x). We can do this, since
these triplets satisfy the condition of the previous lemma. We obtain (3.6)
again. From now on we can literally repeat the proof of the previous
lemma. ¤

Lemma 3.6. Any quadritive function which is monotonic from some

point on is completely quadritive.

Proof. Follows from Lemmas 3.3 and 3.5. ¤

Lemma 3.7. Let F be completely quadritive and n > 1 an integer.

There are real numbers αn, βn such that

(3.7) F (nk) = αn(log nk)2 + βn log nk

for every nonnegative integer k.

Proof. On substituting a = b = n, c = nk into (2.1) we obtain

(3.8) F (nk+2) = 2F (nk+1)− F (nk) + F (n2)− 2F (n).

Now select α, β so that (3.7) holds for k = 1, 2. Using (3.6) an easy induc-
tion shows that it will hold for all k ≥ 3. It holds for k = 0 automatically,
since both sides of (3.7) vanish. ¤

Proof of Theorem 3.1. Take a quadritive function F monotonically
increasing from a point on. By Lemma 3.6 we know that F is completely
quadritive, thus by the previous lemma for each n there are constants αn,
βn such that

F (nk) = αn(log nk)2 + βn log nk.

Since this is an increasing function of k, we know that αn ≥ 0. We will
show that αn and βn are independent of n. To this end take another
integer m 6= n. Take two large integers x, y satisfying

x =
[
y

log n

log m

]
,
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so that mx ≤ ny “but just”. We have

(3.9) αm(log mx)2 + βm log mx ≤ αn(log ny)2 + βn log ny.

Since log mx = log ny + O(1), the left side is = αm(log ny)2 + O(log ny),
and this shows that αm ≤ αn. By exchanging the roles of m and n we see
that αn ≤ αm, so that αm = αn = α, say.

Now (3.9) reduces to

(3.10) βm log mx − βn log ny ≤ α(log ny − log mx)(log ny + log mx).

Introduce the notation

δ = log ny − log mx = log m

{
y

log n

log m

}
.

The left side of (3.10) can be rewritten as (βm−βn) log ny −βmδ, and the
right side as αδ(log ny + log mx) ≤ 2αδ log ny. Thus we obtain

(βm − βn) log ny ≤ δ(βm + 2α log ny),

or

βm − βn ≤ δ

(
βm

log ny
+ 2α

)
.(3.11)

Here the coefficient of δ stays bounded, and by a suitable choice of y
we can make δ arbitrarily small by the familiar results on diophantine
approximation. Thus the right side of (3.11) can be arbitrarily small, and
we conclude that βm ≤ βn. Since the roles of m and n are symmetrical,
similarly we obtain βn ≤ βm and hence βm = βn for all pairs of integers.

¤

4. Additive functions with monotonic norm

Now we prove Theorem 1.1.
Let f be an additive function with monotonic norm. We know that

(4.1) |f(n)|2 = α(log n)2 + β log n.

First observe that for every pair of coprime integers we have

|f(mn)|2 = |f(m) + f(n)|2 = |f(m)|2 + |f(n)|2 + 2
(
f(m), f(n)

)
,
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thus

(4.2)
(
f(m), f(n)

)
=

1
2
(|f(mn)|2 − |f(m)|2 − |f(n)|2) = α log m log n.

Now we show that f(n)/ log n converges. For coprime m, n we have

∣∣∣∣
f(m)
log m

− f(n)
log n

∣∣∣∣
2

=
|f(m)|2
(log m)2

+
|f(n)|2
(log n)2

− 2

(
f(m), f(n)

)

log m log n
(4.3)

= β

(
1

log m
+

1
log n

)
;

the last equality follows from equation (4.2). Consequently
∣∣∣∣
f(m)
log m

− f(n)
log n

∣∣∣∣ ≤
c

log min(m, n)

with c =
√

2β. (As a byproduct, we get that β ≥ 0.)
To estimate the above difference for any two, not necessarily coprime

integers m,n select a prime p > max(m,n). On applying the above in-
equality for the pairs (m, p) and (n, p) the triangle inequality gives

∣∣∣∣
f(m)
log m

− f(n)
log n

∣∣∣∣ ≤
∣∣∣∣
f(m)
log m

− f(p)
log p

∣∣∣∣ +
∣∣∣∣
f(p)
log p

− f(n)
log n

∣∣∣∣ ≤
2c

log min(m,n)
.

Hence f(n)/ log n is a Cauchy-sequence, thus the limit a = lim f(n)/ log n

exists. It satisfies

|a|2 = lim
n→∞

|f(n)|2
(log n)2

= α.

by (4.1).
Write f(n) = a log n + g(n) (so that g(n)/ log n → 0). Substituting

this into (4.3) we see that

∣∣∣∣
g(m)
log m

− g(n)
log n

∣∣∣∣
2

= β

(
1

log m
+

1
log n

)

for coprime m,n. Now fix n and let m → ∞ through the primes. Since
g(m)/ log m → 0, the above formula yields

(4.4) |g(n)|2 = β log n.



558 Imre Z. Ruzsa : Additive functions with monotonic norm

If β = 0, then this implies g(n) = 0, f(n) = a log n for all n and we are
finished.

Assume now β 6= 0. If (m,n) = 1, then we have

(
g(m), g(n)

)
=

1
2
(|g(mn)|2 − |g(m)|2 − |g(n)|2) = 0.

For a prime p, let Ep be the subspace generated by the values of g(pk).
These subspaces are pairwise orthogonal by the above formula. Equation
(1.2) is a particular case of (4.4).

Finally we show that they are all orthogonal to a, which is equivalent
to saying that

(
a, g(n)

)
= 0 for all n. To see this just observe that

|f(n)|2 = α(log n)2 + β log n

= |a log n + g(n)|2 = α(log n)2 + 2
(
a, g(n)

)
log n + β log n.

This concludes the proof.
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