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On optimal linear congruences for L2(k, χω1�k)
By JERZY URBANOWICZ (Warszawa)

Dedicated to Professor Kálmán Győry
on the occasion of his 60th birthday

Abstract. Our purpose in the paper is to investigate divisibility properties of
2-adic L-functions attached to quadratic characters at integers. Following Uehara’s
ideas we extend the linear congruence relations proved in [6], [8] and [10] (see also [3],
[4], [5], [6] and [7]). For any two-element subset L of the set {−1, 0, 1, 2} we determine
the so-called optimal linear congruence relations for L2

�
k, χω1−k

�
, with k ∈ L.

1. Notation

For prime p as usual we denote by Cp the completion of the algebraic
closure of Qp. Qp denotes the field of p-adic numbers. For a, b ∈ Cp and
α ∈ Q the notation a ≡ b (mod pα) means that |a − b|p ≤ p−α. | · |p
denotes the normalized (such that |p|p = 1/p) absolute value on Cp. For
a, b ∈ Z and α ∈ N these congruences are the usual congruences for integral
rational numbers. We say that a ∈ Cp is p-integral if a ≡ 0 (mod p0). For
a ∈ Q, if a is p-integral in the above sense then its denominator is not
divisible by p. We say that p-integral number a is divisible by pα (α ≥ 1)
if a ≡ 0 (mod pα). We write pα | a. If for p-integral number a we have
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a 6≡ 0 (mod pα), we write pα - a and say that a is not divisible by pα. For
α ∈ N if pα | a and pα+1 - a, we set pα‖a. For α, β ∈ N and pα‖a, we write
gcd(pβ , a) = pα (resp. pβ) if α ≤ β (resp. β < α). If a ≡ b (mod pβ), we
have

(1.1) gcd
(
pβ , a

)
= gcd

(
pβ , b

)
.

Moreover if m,n ∈ Cp are p-integers not divisible by p, we observe that

(1.2) gcd
(
pβ , a

)
= gcd

(
pβ ,

a

m

)
= gcd(pβ , an).

We say that a (∈ C2) is even if a is 2-integral and divisible by 2. We say
that a is odd if a is 2-integral and is not even.

As usual let log = logp, ω = ωp denote the p-adic logarithm and the
Teichmüller character at p respectively. For a Dirichlet character χ let
Lp(s, χ) be the Kubota–Leopoldt L-function. For details see [9].

For k ∈ Z let lk = lk,p denote the so-called multilogarithms, which
are locally analytic functions on the set Cp − {1} defined inductively by
l0(s) = −s/(1−s), dlk(s) = lk−1(s)ds/s and lim

s→0
lk(s) = 0. For details, see

[1]. Moreover if k ≤ 0, we have lk(s) = s(−1)kR−k(s)/(1 − s)1−k, where
Rn ∈ Z[x] (n ≥ 0) are the so-called Frobenius polynomials defined in [2].
If k = −1 we have l−1(s) = s/(1 − s)2 in particular. If k = 1, we have
l1(s) = − logp(1− s).

The main interest of the multilogarithms is that they give the Coleman
formulas

Lp(k, χω1−k) = (1− χ(p)p−k)
τ
(
χ, ζM

)

M

M−1∑
a=1

χ(a)lk,p

(
ζ−a
M

)
.

Here χ is a primitive non-trivial Dirichlet character modulo M and through-
out the paper we denote by ζM a primitive Mth root of unity in Cp.

For a fundamental discriminant d ( 6= 1) as usual we denote by χd the
associated quadratic character (Kronecker symbol). We set χ1 = 1. De-
note by Td the set of all fundamental discriminants dividing d. Throughout
the paper, for t, c ∈ Z (t 6= 0, c ≥ 1) we denote by ν(t) the number of dis-

tinct prime factors of t and adopt the notation
c∑

a=1

′ to a sum taken over

integers a prime to c. As usual φ denotes Euler’s phi function.
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The proofs of the main theorems of the paper (Theorems 1 and 2) are
based on the following lemma.

Lemma 1 (see [8, Lemma 1], cf. [6, Lemma 3]). Let χ be a Dirichlet

character modulo M > 1 and let N be a multiple of M such that N/M > 0
is a rational square-free integer relatively prime to M . For arbitrary nat-

ural number T satisfying M |T |N we assume that ζT = ζMζT/M and set

Sk,χ(T ) =
T∑

a=1

′χ(a)lk(ζa
T ).

Then for any integer k we have

Sk,χ(N) = (−1)ν(N/M)
∏

p|(N/M)
p prime

(
1− χ(p)p1−k

)Sk,χ(M).

2. Quadratic fields

If d is the discriminant of a quadratic field, we denote by h(d), k2(d),
εd, resp. R2(d) the class number, the order of the K2-group of the integers,
the fundamental unit, resp. the second Borel regulator of the field Q(

√
d).

For k ∈ {−1, 0, 1, 2} we have

L(k, χd) =





−12w−1
2 (d)k2(d), if k = −1 and d > 1,

2w−1(d)h(d), if k = 0 and d < 0,

2d−1/2h(d) log εd, if k = 1 and d > 1,

2R2(d)|d|−3/2k2(d), if k = 2 and d < 0,

where w(−3) = 6, w(−4) = 4, w(d) = 2 if d < −4 and w2(8) = 48,
w2(5) = 120, w2(d) = 24 if d > 8. Here L(s, χ) is the classical, complex
Dirichlet L-function attached to χ. In the case when k = 2 we assume
that the so-called Lichtenbaum conjecture for imaginary quadratic fields
holds.
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Usually, the complex and p-adic formulas differ by an Euler factor.
Namely we have

Lp(k, χdω
1−k)

=





−12w−1
2 (d)

(
1− χd(p)p

)
k2(d), if k = −1 and d > 1,

2w−1(d)
(
1− χd(p)

)
h(d), if k = 0 and d < 0,

2d−1/2
(
1− χd(p)p−1

)
h(d)p log εd, if k = 1 and d > 1,

2R2,p(d)|d|−3/2
(
1− χd(p)p−2

)
k2(d), if k = 2 and d < 0,

where by analogy R2,p(d) denotes the second p-adic regulator of the cor-
responding field Q(

√
d). In the case when k = 2 the above equation is the

statement of a p-adic analogue of the Lichtenbaum conjecture for imagi-
nary quadratic fields.

3. The numbers Wk,e(n)

Let k, n ∈ Z and e ∈ T8. For n ≥ 0 write

γn,e =

{ −1, if n ≡ 1, 2 (mod 4) and e ∈ T8 − T4,

1, otherwise

and

Wk,e(n) =
n∑

l=0

(−1)l(k+1)(2l + 1)1−kγl,e

(
2n + 1
n− l

)
.

The numbers Wk,e(n) are 2-integral rational numbers. We have
ord2(Wk,e(n)) ≥ n. For details see [10].

4. Uehara’s functions

From now on we assume that p = 2, ω = ω2 and lk = lk,2. For any
Dirichlet character ψ modulo f and k ∈ Z let Lk,ψ denote the so-called
Uehara functions. These functions are defined by

Lk,ψ(s) =
1
2
(−1)k+1

(
lk(s)− lk(−s)

)
(s 6= ±1),
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if ψ is the trivial character, and

Lk,ψ(s) = (−1)k+1 τ(ψ, ζf )
f

f∑
a=1

′ψ(a)lk(ζa
f s) (s 6= ζa

f )

otherwise. For details see [8]. For ψ = χe set Lk,ψ = Lk,e.
The proof of the main result of the paper (Theorem 1) is based on

the following properties of Uehara’s functions implied by the identity of
Lemma 1 and proved in [8] and [10].

Lemma 2 (see [6], [8, Lemma 2] and [10, Lemma 1]). Given any odd

integer M , let χ by a primitive Dirichlet character modulo M . Suppose

that N is an odd multiple of M such that N/M (> 0) is a rational square-

free integer relatively prime to M . Let ψ be a primitive Dirichlet character

being either trivial or of even conductor coprime to N . Assume that for

arbitrary natural number T satisfying M |T |N we have ζT = ζMζT/M .

Then for any integer k we have

τ(χ, ζM )
M

N∑
a=1

′χ(a)Lk,ψ(ζa
N )

= (−1)ν(N/M)
∏

p|(N/M)
p prime

(
1− χψ(p)p1−k

)
L2

(
k, χψω1−k

)
,

unless k = 1 and the characters χ and ψ are trivial, in which case we have

N∑
a=1

′Lk,ψ(ζa
N ) =

{ −(log2 N)/2, if N is a prime number,

0, otherwise.

Remark. In the formulation of Lemma 2 of [8] there is a small error,
which implies the same error in Lemma 1 of [10]. The right hand sides of
the identities of the lemmas should be multiplied by (−1)k+1.

Lemma 3. Let c (> 1) be an odd natural number. If k 6= 0, 1 we

have

c∑
a=1

′lk(ζa
c ) = (−1)k+1+ν(c)

(
1− 2−k

)−1 ∏

p|c
p prime

(
1− p1−k

)
L2

(
k, ω1−k

)
.
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If k = 0 or 1 we have

c∑
a=1

′lk(ζa
c ) =





−1
2
φ(c), if k = 0,

− log2 c, if k = 1 and c is a prime number,

0, otherwise

Proof. Given r ∈ N we have

1
r

∑

ζr=1

lk(ζz) =
lk(zr)

rk

(see [1, Proposition 6.1]). Applying this formula with r = 2 we obtain

Lk,1(s) = (−1)k+1
(
lk(s)− 2−klk(s2)

)
(s 6= ±1).

Hence we have
c∑

a=1

′lk(ζa
c ) = (−1)k+1

(
1− 2−k

)−1
c∑

a=1

′Lk,1(ζa
c )

because

(
1− 2−k

) c∑
a=1

′lk(ζa
c ) = (−1)k+1

c∑
a=1

′(−1)k+1
(
lk(ζa

c )− lk(ζ2a
c )

)

= (−1)k+1
c∑

a=1

′Lk,1(ζa
c ).

Thus Lemma 3 in the case when k 6= 0 follows easily from Lemma 2.
If k = 0 we have

c∑
a=1

′l0(ζa
c ) =

c∑
a=1

′ ζa
c

1− ζa
c

=
c∑

a=1

′ 1
1− ζa

c

− φ(c) =
1
2
φ(c)− φ(c) = −1

2
φ(c),

which completes the proof. ¤
Lemma 4 (cf. [6, Lemma 2]). Given d ( 6= 1) an odd fundamental

discriminant we have

|d|∑
a=1

χd(a)l0(ζa
|d|) =




− |d|h(d)

τ
(
χd, ζ|d|

) , if d < 0,

0, otherwise.
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Proof. By the definition of l0 we have

|d|∑
a=1

χd(a)l0(ζa
|d|) =

|d|∑
a=1

χd(a)ζa
|d|

1− ζa
|d|

=
|d|∑

a=1

χd(a)
1− ζa

|d|
−

|d|∑
a=1

χd(a).

Hence and from Lemma 2 [6] the identity of the hypothesis of Lemma 4
follows immediately. ¤

In Lemmas 5 and 6 ξ (6= 1) denotes a primitive Nth root of unity,
where N is an odd natural number.

Lemma 5 (see [6] and [8, Lemma 4]). For any e ∈ T8 write α = sgn e
and set

wα =
αξ

1 + αξ2
.

Then we have

L−1,e(ξ) =
∞∑

k=0

(4α)kw2k+1
α , L0,e(ξ) = ω−α,

L1,e(ξ) =
∞∑

k=0

(4α)kω2k+1
α

2k + 1
, L2,e(ξ) =

∞∑

k=0

(−16α)kω2k+1
−α

(2k + 1)2

(
2k

k

)−1

,

if e ∈ T4, and

L−1,e(ξ) = −
∞∑

k=0

(2α)k(2k − 1)ω2k+1
α , L0,e(ξ) =

∞∑

k=0

(−2α)kω2k+1
−α ,

L1,e(ξ) =
∞∑

k=0

(2α)kω2k+1
α

2k + 1
,

L2,e(ξ) =
∞∑

k=0

(−16α)kω2k+1
−α

(2k + 1)2

(
2k

k

)−1 k∑

l=0

(
2l

l

)
2−3l,

if e ∈ T8 − T4.

Remark. Uehara in a letter to the author has observed that the for-
mulas for L−1,e(ξ) and L2,e(ξ) given in the above lemma can be deduced
easily from his formulas for L0,e(ξ), L1,e(ξ), and differential properties of
Coleman’s multilogarithms. The details of the proof are left to the reader
as an exercise.
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Lemma 6 (see [10, Lemma 3]). For any e ∈ T8 and m ∈ Z write

α = (−1)m+1 sgn e and let

wα =
αξ

1 + αξ2
.

Then we have

Lm,e(ξ) =
∞∑

k=0

αkWm,e(k)
2k + 1

w2k+1
α .

5. Some special sequences

Let K be a finite non-empty subset of the rational integers. We will
consider linear combinations of Uehara’s functions at ξ with 2-adic integral
coefficients

x = {xk,e}(k,e)∈K×T8 ⊆ C2.

For any L ⊆ K the x is said to be defined on L if xk,e = 0 for k 6∈ L. Let

αk =
(

2k

k

)−1

and βk =
(

2k

k

)−1 k∑

l=0

(
2l

l

)
2−3l.

Given 2-adic integers ak,e(n) (∈ C2) with k ∈ K, e ∈ T8, n ≥ 0 we
consider some sequences of linear combinations of xk,e of the form

(5.3) yn(x) =
∑

(k,e)∈K×T8

ak,e(n)xk,e, n ≥ 0.

For any L ⊆ K the sequence (yn)n≥0 of this form is said to be defined on
L, if the sum is taken over (k, e) ∈ L× T8.

For x = {xk,e}(k,e)∈K×T8 we consider two sequences z = (zn)n≥0

and u = (un)n≥0 of the form (5.3). The sequences are defined on K =
{−1, 0, 1, 2} in the former case and on any finite subset K of Z in the latter
case by

z0 =
∑

(k,e)∈K×T8

xk,e, z1 = 2
∑

(k,e)∈K×T8

sgn e=(−1)k

xk,e,
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z2l+% = 2l+%
(
2l(2l + 1)2

(
(1− %)x−1,1 + x−1,−4

)

− (2l − 1)(2l + 1)2
(
(1− %)x−1,8 + x−1,−8

)

+ (2l + 1)2
(
(1− %)x0,−8 + x0,8

)

+ 2l(2l + 1)
(
(1− %)x1,1 + x1,−4

)

+ (2l + 1)
(
(1− %)x1,8 + x1,−8

)

+ 23lαl

(
(1− %)x2,−4+x2,1

)

+ 23lβl

(
(1− %)x2,−8 + x2,8

))
,

if l ≥ 1, % ∈ {0, 1}, and

u2l+% = 2%
∑

k,e

(−1)l(k+1)(2l + 1)1−kγl,exk,e, l ≥ 0, % ∈ {0, 1},

where the sum in the latter case is taken over all (k, e) ∈ K × T8 if % = 0,
and over (k, e) ∈ K × T8 with sgn e = (−1)k if % = 1.

Let y = (yn)n≥0 be a sequence of the form (5.3). Let c = c(y) be a
non-negative number such that there exist 2-adic integers xk,e not all even
satisfying

yn(x) ≡ 0 (mod 2c), n ≥ 0,

and if for some 2-adic integers xk,e we have

yn(x) ≡ 0 (mod 2c+1), n ≥ 0,

then all the numbers xk,e are even.

Lemma 7 (see [8, Lemma 5]). Let K = {−1, 0, 1, 2} and let L be

a non-empty subset of K. Write c(L) = c(z), where z = (zn)n≥0 is the

sequence given above, defined on L. Then we have

c(L) = 12, 9, 5, resp. 2,

if card(L) = 4, 3, 2, resp. 1, unless L = {−1, 1} or {0, 2}, in which cases

c(L) = 6.
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Lemma 8 (see [10, Lemma 5]). Let m ≥ 1 be an integer and let

K = {−m + 2,−m + 3, . . . , 1}.

Then we have

c(un) = 3m− 1 + ord2

(
(m− 1)!

)
.

Remark. Lemma 8 is also valid for any set consisting of m consecutive
integers. In order to prove it we apply the same reasoning as in the proof
of Lemma 5 [10].

6. Linear combinations of Lk,e(ξ)

Recall that N is an odd natural number and ξ (6= 1) is a primitive
Nth root of unity in C2. Given 2-adic integers {xk,e}(k,e)∈K×T8 ⊆ C2 not
all even, defined on a non-empty subset L of K, our purpose is to evaluate
the linear combinations

∑

(k,e)∈K×T8

xk,eLk,e(ξ),

modulo powers of 2. In order to obtain the congruences stated in Lemma 9
we appeal to Lemmas 5 and 7. Combining the obtained congruences with
Lemmas 1 and 2 we shall derive some new congruences for linear combina-
tions of the values of 2-adic L-functions L2(k, χω1−k) with arbitrary 2-adic
integral coefficients, where χ are primitive quadratic Dirichlet characters.

Lemma 9 (see [8, Lemma 5]). Set K = {−1, 0, 1, 2}. Let xk,e (k ∈ K,

e ∈ T8) be 2-adic integers not all even defined on a non-empty subset L

of K. Then we have

∑

(k,e)∈L×T8

xk,eLk,e(ξ) ≡ 0 (mod 2λ),

where 2λ is the greatest common divisor of

2c(L) and zn, 0 ≤ n ≤ max
(
2c(L)− 4, 2

)
,

and

c(L) = 12, 9, 5, resp. 2,
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if card(L) = 4, 3, 2, resp. 1, unless L = {−1, 1} or {0, 2}, in which cases

c(L) = 6.

Proof. We first observe that for n even

2zn = zn+1 + z̃n+1,

where the z̃n+1 comes from zn+1 by replacing xk,−4 (resp. xk,1, xk,−8 or
xk,8) by xk,1 (resp. xk,−4, xk,8 or xk,−8).

In [8, Lemma 5] the congruence of Lemma 9 was proved modulo the
greatest common divisor of 2c(L) and zn, 0 ≤ n ≤ 2c(L)−2. Now it suffices
to use the congruences

z2l+1 ≡ 2l+1η (mod 2l+2), z̃2l+1 ≡ 2l+1η̃ (mod 2l+2),

z2l ≡ 2l
(
η + η̃

)
(mod 2l+1),

where l ≥ 1 and

η = x−1,−8 + x0,8 + x1,−8 + x2,8.

These congruences follow immediately by the definition of the z2l+%. In-
deed we have

z2l+% ≡ 2l+%
((

(1− %)x−1,8 + x−1,−8

)
+

(
(1− %)x0,−8 + x0,8

)

+
(
(1− %)x1,8 + x1,−8

)
+

(
(1− %)x2,−8 + x2,8

))
(mod 2l+%+1)

because ord2

(
23lαl

) ≥ 2l and ord2

(
23lβl

)
= 0.

By the above, we have

z2c(L)−2 ≡ 2c(L)−1
(
η + η̃

)
(mod 2c(L))

z2c(L)−3 ≡ 2c(L)−1η (mod 2c(L))

z2c(L)−4 ≡ 2c(L)−2
(
η + η̃

)
(mod 2c(L)−1),

z2c(L)−5 ≡ 2c(L)−2η (mod 2c(L)−1),

provided c(L) > 2. Therefore we may ignore z2c(L)−2 and z2c(L)−3 if
c(L) > 2. ¤

Appealing to Lemmas 6 and 8 we obtain:
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Lemma 10 (see [10, Lemma 6]). Let m ≥ 1 be an integer and let

K = {−m + 2,−m + 3, . . . , 1}.

Let xk,e (k,∈ K, e ∈ T8) be integers in C2 not all even. Then we have

(i)
∑

(k,e)∈K×T8

xk,eLk,e(ξ) ≡ 0 (mod 2λ),

where 2λ is the greatest common divisor of

2c(un) and un, 0 ≤ n ≤ 4m− 1,

(ii) for an arbitrary integer s

∑

(k,e)∈K×T8

xk,eLk+s,e(ξ) ≡ 0 (mod 2λ).

7. Main theorems

In this section we extend linear congruence relations proved in [8] and
[10]. We follow Uehara’s ideas from [6] and give a further generalization
of the Gras–Uehara type congruence for linear combinations of the val-
ues of 2-adic L-functions L2

(
k, χω1−k

)
, where χ is a quadratic Dirichlet

character. We restrict our attention to the cases when k is taken over
an arbitrary non-empty subset L of the set K = {−1, 0, 1, 2} or when k

is taken over an arbitrary finite set of consecutive integers. These cases
were considered in [8] and [10] respectively. It appears to be still an open
problem to find the Gras–Uehara type congruence when k is taken over
any finite subset of the rational integers.

Let d be an odd fundamental discriminant and let m > 1 be a natural
number. Throughout the paper let Ψ, Θ : N → C2 be multiplicative
functions such that Ψ(s) ≡ Θ(s) ≡ 1 (mod 2) if s | m. Let δX,Y denote
the Kronecker delta function, that is, δX,Y = 1 if X = Y and is zero
otherwise. For k ∈ Z and e ∈ T8 we write

L
[m,Θ]
2

(
k, χedω

1−k
)

= 0
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if d = e = k = 1, and

L
[m,Θ]
2

(
k, χedω

1−k
)

=
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p1−k

)− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
L2

(
k, χedω

1−k
)

otherwise. Set

L
[m,Θ]
2,∗

(
k, χdω

1−k
)

=





h(d), if k = 0 and d < 0,

0, if k = 0 and d > 0,
(
1− χd(2)2−k

)−1
L

[m,Θ]
2

(
k, χdω

1−k
)
, otherwise.

If Θ(s) = 1 for s | m, we have L
[m,Θ]
2

(
k, χedω

1−k
)

= L
[m]
2

(
k, χedω

1−k
)

and

L
[m]
2

(
k, χedω

1−k
)

=





0, if d = e = k = 1,
∏
p|m

p prime

(
1− χed(p)p1−k

)
L2

(
k, χeω

1−k
)
, otherwise.

Now we are ready to extend the main theorems of the papers [8] and
[10]. Let m, s > 1 be square-free natural numbers with s | m. We shall
apply the following identity

(7.4)
∑

t|s
Θ(t)

∏

p|(s/t)
p prime

(1−Θ(p))
∏

p|t
p prime

(1− Φ(p)) =
∏

p|s
p prime

(1− Φ(p)Θ(p)),

see [6, (3.1)].

Theorem 1 (cf. [8, Main Theorem], [10, Theorem]). Let m > 1 be

a square-free odd natural number having ν prime factors and let Ψ, Θ :
N → C2 be multiplicative functions satisfying Ψ(s) ≡ Θ(s) ≡ 1 (mod 2)
if s | m. Let K have the same meaning as in Lemma 9 (resp. Lemma 10)
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and let x = {xk,e}(k,e)∈K×T8 be a set of 2-adic integers not all even. Set

Λ1(m,Θ) = −1
2

∑

p|m
p prime

Θ(p) log2 p
∏

q|(m/p)
q prime

(1−Θ(q)).

Then the number

Λ(x,m, Ψ,Θ) :=
∑

(k,e)∈K×T8

xk,e

∑

d∈Tm

Ψ(|d|)L[m,Θ]
2

(
k, χedω

1−k
)
+x1,1Λ1(m, Θ)

is a 2-adic integer divisible by 2ν+λ, where λ has the same meaning as in

Lemma 9 if K = {−1, 0, 1, 2} and x is defined on a non-empty finite subset

L of K (resp. Lemma 10 if K is a finite set of consecutive integers).

Proof. Write

Λ2(x,m, Θ) =
∏

p|m
p prime

(
1−Θ(p)

) ∑

(k,e)∈K×T8
(k,e)6=(1,1)

xk,eL2

(
k, χeω

1−k
)
.

and

L′2
(
k, χedω

1−k
)

=

{
0, if e = d = k = 1,

L2

(
k, χedω

1−k
)
, otherwise.

We proceed in the same manner as in the proof of the Main Theorem in
[8] (resp. the Theorem in [10]). Making use of (7.4), for any multiplicative
function Φ : N→ C2 and fixed u, s with u | s we obtain

(7.5)

Θ−1(u)
∑

u|t|s
Θ(t)

∏

p|(s/t)
p prime

(1−Θ(p))
∏

p|(t/u)
p prime

(1− Φ(p))

=
∏

p|(s/u)
p prime

(1− Φ(p)Θ(p)).

This follows from (7.4) by a simple induction on the number of prime
factors of s/u. We observe that for any functions f and g

(7.6)
∑

d|m
f(d)

∑

c|d
g(c)h(d, c) =

∑

d|m
g(d)

∑

d|c|m
f(c)h(c, d).
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Therefore we have

Λ(x,m, Ψ,Θ)− x1,1Λ1(m,Θ) + Λ2(x, m,Θ)

=
∑

(k,e)∈K×T8

xk,e

∑

d∈Tm

Ψ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)χed(p)p1−k

)
L′2

(
k, χedω

1−k
)

=
∑

(k,e)∈K×T8

xk,e

∑

d∈Tm

Ψ(|d|)Θ−1(|d|)L′2
(
k, χedω

1−k
)

×
∑

c∈Tm
pd∈Tc

Θ(|c|)
∏

p|(m/c)
p prime

(1−Θ(p))
∏

p|(c/d)
p prime

(1− χed(p)p1−k)

=
∑

(k,e)∈K×T8

xk,e

∑

d∈Tm

Θ(|d|)
∏

p|(m/d)
p prime

(1−Θ(p))

×
∑

c∈Td

Ψ(|c|)Θ−1(|c|)
∏

p|(d/c)
p prime

(
1− χec(p)p1−k

)
L′2

(
k, χecω

1−k
)
.

Consequently appealing to Lemma 2 we obtain

Λ(x, m,Ψ, Θ)

=
∑

1 6=d∈Tm

Θ(|d|)µ(|d|)
∏

p|(m/d)
p prime

(1−Θ(p))
|d|∑

a=1

′
( ∑

k∈K
e∈T8

xk,eLk,e

(
ζa
|d|

))

×
( ∑

c∈Td

µ(|c|)Ψ(|c|)Θ−1(|c|)τ(
χc, ζ|c|

)|c|−1χc(a)
)

=
∑

1 6=d∈Tm

Θ(|d|)µ(|d|)
∏

p|(m/d)
p prime

(1−Θ(p))
|d|∑

a=1

′
( ∑

k∈K
e∈T8

xk,eLk,e

(
ζa
|d|

))

×
( ∏

p|d
p prime

(
1− τ(χp∗ , ζp)p−1Ψ(p)Θ−1(p)χp∗(a)

) )
,

where p∗ = (−1)(p−1)/2p and ζ|d| =
∏
p|d

p prime

ζp.
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Now Theorem 1 follows from Lemma 9 when K = {−1, 0, 1, 2} or from
Lemma 10 when K is a set of consecutive integers. ¤

The Main Theorem in [8] and Theorem in [10] are special cases of
Theorem 1 when Θ(s) = 1 for s | m.

We now extend Theorem 2 [6] (a supplement of Theorem 1 [6]). Let
m (> 1) be a square-free odd natural number. Denote by I(m) the set
of k ∈ Z such that lk(ζa

c ) are 2-adic integers for any c and a with c | m,
c 6= 1, 1 ≤ a ≤ c and gcd(a, c) = 1. By definition, we have 1 ∈ I(m) and
r ∈ I(m) for any integer r ≤ 0. The question whether I(m) = Z remains
to be open.

Theorem 2 (cf. [6, Theorem 2]). Let m > 1 be a square-free odd natu-
ral number having ν prime factors and let Ψ, Θ : N→ C2 be multiplicative
functions satisfying Ψ(s) ≡ Θ(s) ≡ 1 (mod 2) if s | m. Set

Λ0,∗(m,Θ) =
1
2

( ∏

p|m
p prime

(
1−Θ(p)p

)−
∏

p|m
p prime

(
1−Θ(p)

))

and

Λ1,∗(m,Θ) =
∑

p|m
p prime

Θ(p) log2 p
∏

q|(m/p)
q prime

(1−Θ(q)).

For k ∈ I(m) the number

Λ∗(k, m, Ψ, Θ) :=
∑

d∈Tm

Ψ(|d|)L[m,Θ]
2,∗

(
k, χdω

1−k
)

+ δk,0Λ0,∗(m,Θ) + δk,1Λ1,∗(m,Θ)

is a 2-adic integer divisible by 2ν .

Proof. Write

Λ′(k, m, Θ) =

{ (
1− 2−k

)−1
L

[m,Θ]
2

(
k, ω1−k

)
, if k 6= 0, 1,

Λk,∗(m,Θ), otherwise

and

Λ′′(k,m, Ψ, Θ) =
∑

d∈Tm

Ψ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)χd(p)p1−k

)
L′′2

(
k, χdω

1−k
)
,
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where

L′′2
(
k, χdω

1−k
)
=





h(d), if k = 0 and d < 0,

0, if k = 0 and d > 0,

or k 6= 0 and d = 1,(
1−χd(2)2−k

)−1
L2

(
k, χdω

1−k
)
, otherwise.

We first observe that

Λ∗(k,m, Ψ, Θ) = Λ′(k, m, Θ) + Λ′′(k, m, Ψ, Θ).

On the other hand, by virtue of (7.4) we have

Λ′(k, m, Θ) =
(
1− 2−k

)−1 ∑

d∈Tm
d 6=1

Θ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

)

×
∏

p|d
p prime

(
1− p1−k

)
L2

(
k, ω1−k

)
,

if k 6= 0, 1 and

Λ′(0,m, Θ) =
1
2

∑

d∈Tm
d6=1

(−1)ν(d)Θ(|d|)φ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

)
.

Moreover by virtue of (7.5) we have

Λ′′(k, m, Ψ,Θ) =
∑

d∈Tm

Ψ(|d|)L′′2
(
k, χdω

1−k
)
Θ−1(|d|)

∑

d|c|m
Θ(|c|)

×
∏

p|(m/c)
p prime

(
1−Θ(p)

) ∏

p|(c/d)
p prime

(
1− χd(p)p1−k

)
,

and so in view of (7.6) we obtain

Λ′′(k, m, Ψ,Θ) =
∑

d∈Tm

Θ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

)

×
∑

c∈Td

Ψ(|c|)Θ−1(|c|)
∏

p|(d/c)
p prime

(
1− χc(p)p1−k

)
L′′2

(
k, χcω

1−k
)
.
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Therefore appealing to Lemmas 3 and 4 we deduce that

Λ′(k, m, Θ) = (−1)k+1
∑

d∈Tm
d6=1

(−1)ν(d)Θ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

) |d|∑

b=1

′lk
(
ζb
|d|

)

and

Λ′′(k, m, Ψ,Θ) = (−1)k+1
∑

d∈Tm
d6=1

Θ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

)

×
∑

c∈Td

Ψ(|c|)Θ−1(|c|)τ
(
χc, ζ|c|

)

|c|
∏

p|(d/c)
p prime

(
1− χc(p)p1−k

) |c|∑

b=1

′χc(b)lk
(
ζb
|c|

)
.

Thus in view of Lemma 1 we have

Λ∗(k, m, Ψ, Θ) = (−1)k+1
∑

d∈Tm
d 6=1

(−1)ν(d)Θ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

)

×
∑

c∈Td

Ψ(|c|)Θ−1(|c|)µ(|c|)τ
(
χc, ζ|c|

)

|c|
|d|∑

b=1

′χc(b)lk
(
ζb
|d|

)

= (−1)k+1
∑

d∈Tm
d 6=1

(−1)ν(d)Θ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

) |d|∑

b=1

′lk
(
ζb
|d|

)

×
∑

c∈Td

µ(|c|)Ψ(|c|)Θ−1(|c|)τ
(
χc, ζ|c|

)

|c| χc(b)

= (−1)k+1
∑

d∈Tm
d 6=1

Θ(|d|)
∏

p|(m/d)
p prime

(
1−Θ(p)

) |d|∑

b=1

′lk
(
ζb
|d|

)

×
∏

p|d
p prime

(
τ
(
χp∗ , ζp

)
p−1ΨΘ−1(p)χp∗(b)− 1

)
,

which proves Theorem 2. ¤
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8. Optimal linear congruences

The congruences in the hypothesis of Theorem 1

∑

(k,e)∈K×T8

xk,e

∑

d∈Tm

Ψ(|d|)L[m,Θ]
2

(
k, χedω

1−k
)

+ x1,1Λ1(m,Θ) ≡ 0 (mod 2ν+λ)

are said to be optimal if λ = c(L) (resp. λ = c(un)). The 2-adic integers
xk,e (k ∈ K, e ∈ T8) determining an optimal linear congruence are called
optimal for K. For example, the congruences proved in [4], [7] or resp.
[5] are optimal for K = {0}, K = {−1, 0} or resp. K = {−m, . . . ,−1, 0}
(m ≥ 0).

Optimal linear congruences exist for any non-empty subset L of K =
{−1, 0, 1, 2} and when K is a finite subset of consecutive integers. Such
a congruence was given explicitly in the proof of Lemma 5 in [8] in the
former case and inductively in the proof of Lemma 6 in [10] in the latter
case.

9. Applications of Theorem 1

When L = {0, 1} Theorem 1 gives the congruences of Gras [3] and
Uehara [6] for class numbers of quadratic fields which are modulo 2ν+λ,
where λ ≤ 5. When L = {−1, 0} (resp. L = {0}) we obtain congruences
for the same objects as those in [7] (resp. [4]). The obtained congruences
are modulo 2ν+λ, where λ ≤ 6 (resp. λ ≤ 2). When 2 ∈ L the congruences
implied by Theorem 1 are quite new and especially interesting. They
produce, via a 2-adic version of the Lichtenbaum conjecture, some new
congruences for the conjectured orders of K2-groups of the integers of
imaginary quadratic fields. We present these congruences in a general
form in Theorem 3.

For the discriminant D of a quadratic field, we write

H(D) = L2

(
k, χDω1−k

) (
resp. K2(D) = 2L2

(
k, χDω1−k

))
,

if k = 0, D < 0 or k = 1, D > 1 (resp. k = −1, D > 1 or k = 2, D < 0).
We have

H(D) =
{ 2w−1(D)

(
1− χD(2)

)
h(D), if D < 0,(

2− χD(2)
)D−1/2h(D) log2 εD, if D > 1,
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and

K2(D) =
{ −24w−1

2 (D)
(
1− χD(2)2

)
k2(D), if D > 1,(

4− χD(2)
)|D|−3/2R2,2(D)k2(D), if D < 0.

In the formula for K2(D) when D < 0 we assume that the 2-adic Licht-
enbaum conjecture for imaginary quadratic fields holds. Now we are
ready to extend results of [8, Applications]. We rewrite Theorem 1 with
K = {−1, 0, 1, 2} in the form:

Theorem 3 (cf. [8, Applications]). Let m > 1 be a square-free odd

natural number having ν prime factors and let Θ, Ψ : N → C2 be mul-

tiplicative functions such that Θ(s) ≡ Ψ(s) ≡ 1 (mod 2) if s | m. Set

K = {−1, 0, 1, 2} and let L be a non-empty subset of K. Given a set

x = {xk,e}(k,e)∈K×T8 of 2-adic integers not all even defined on L, set

Λ = Λ−1 + Λ0 + Λ1 + Λ2 + Λ′−1 + Λ′1,

where

Λ−1 =
1
2

∑

e∈T8

x−1,e

∑

d∈Tm
ed>1

Ψ(|d|)

×
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p2

)− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed),

Λ0 =
∑

e∈T8

x0,e

∑

d∈Tm
ed<0

Ψ(|d|)

×
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p

)− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed),

Λ1 =
∑

e∈T8

x1,e

∑

d∈Tm
ed>1

Ψ(|d|)

×
( ∏

p|m
p prime

(
1− χed(p)Θ(p)

)− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed),

Λ2 =
1
2

∑

e∈T8

x2,e

∑

d∈Tm
ed<0

Ψ(|d|)
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×
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p−1

)− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed),

Λ′−1 =
1
12

x−1,1

( ∏

p|m
p prime

(
1−Θ(p)p2

)−
∏

p|m
p prime

(
1−Θ(p)

))
,

Λ′1 = −1
2
x1,1

∑

p|m
p prime

Θ(p) log2 p
∏

q|(m/p)
q prime

(
1−Θ(q)

)
.

Then the number Λ is a 2-adic integer divisible by 2ν+λ, where λ has the
same meaning as in Theorem 1.

10. The case L = {0, 1}

Hardy and Williams [4] discovered a new type of linear congru-
ence relating class numbers of imaginary quadratic fields. A general linear
congruence relating class numbers and units both of real and imaginary
quadratic fields was discovered by Gras [3]. Gras derived his congruence
using 2-adic measure theory. Uehara [6] reproved Gras’ congruence us-
ing elementary 2-adic arguments. Both Gras and Uehara used the 2-adic
analogue of Dirichlet’s class number formulas. Urbanowicz and Wójcik
[8] and Wójcik [10] indicated how Uehara’s techniques may be used to
obtain more general congruences among the values of 2-adic L-functions.
Gras and Uehara’s congruences are special cases of Theorems 1 and 2.

Theorem 4 (see [6, Theorem 1]). Let m > 1 be an odd square-free
integer having ν prime factors, and let Θ, Ψ : N → C2 be multiplicative
functions such that Ψ(s) ≡ Θ(s) ≡ 1 (mod 2) for any divisor s | m. In the
notation of Theorem 3, for any 2-adic integers x0,e, x1,e (e ∈ T8) not all
even we have

∑

e∈T8

x0,e

∑

d∈Tm
ed<0

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p

)− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed)

+
∑

e∈T8

x1,e

∑

d∈Tm
ed>1

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)

)− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed)

−1
2
x1,1

∑

p|m
p prime

Θ(p) log2 p
∏

q|(m/p)
q prime

(
1−Θ(q)

) ≡ 0 (mod 2ν+λ),
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where 2λ is the greatest common divisor of the eight integers si (0 ≤ i ≤ 7)
defined by

s0 = x0,−8 + x0,−4 + x0,1 + x0,8 + x1,−8 + x1,−4 + x1,1 + x1,8,

s1 = 2
(
x0,1 + x0,8 + x1,−8 + x1,−4

)
,

s2 = 2
(
3x0,−8 + 3x0,8 + x1,−8 + 2x1,−4 + 2x1,1 + x1,8

)
,

s3 = 4
(
3x0,8 + x1,−8 + 2x1,−4

)
,

s4 = 4
(
5x0,−8 + 5x0,8 + x1,−8 + 4x1,−4 + 4x1,1 + x1,8

)
,

s5 = 8
(
x0,8 + x1,−8

)
,

s6 = 8
(
x0,−8 + x0,8 − x1,−8 − x1,8

)
,

s7 = 32.

Remark. The proof of Theorem 4 is straightforward. We see at once
that gcd(zi, 32) = gcd(si, 32), 0 ≤ i ≤ 6, which is clear from (1.1) and
(1.2) (with p = 2).

Theorem 4 is the main result of [6]. This theorem and its supplement
stated in [6, Theorem 2] include the congruences proved in [3, Théorèmes
(1.3), (1.4)] and [4]. For details and other applications see [6].

In fact Uehara has provided a general method of producing such con-
gruences. It is a simple matter to determine linear congruence relations
with given λ. We will look more closely at the case when λ = 5.

Corollary 1. The congruence in the hypothesis of Theorem 4 is opti-

mal if and only if

x0,−8 = a,

x0,−4 = a + 32b− 16c− 24d + 4e + 4f + 2g,
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x0,1 = −a + 16c + 16d− 4e− 4f − 2g + 2h,

x0,8 = −a + 16d− 4f + 2h,

x1,−8 = a− 16d + 4f + 4g − 2h,

x1,−4 = a− 16d + 4e + 4f − 2g − 2h,

x1,1 = −a− 8d− 4e + 4f + 2g,

x1,8 = −a + 32d− 8f − 4g,

where a, b, c, d, e, f, g, h ∈ C2 are integers with a odd.

Proof. The congruence in the hypothesis of Theorem 4 is valid mod-
ulo 2ν+5 if and only if

(10.7)
s0 = 32b, s1 = 32c, s2 = 32d, s3 = 32e,

s4 = 32f, s5 = 32g, s6 = 32h

for some integers b, c, d, e, f, g, h ∈ C2. Taking x0,−8 = a we obtain a
system of seven linear equations with seven unknowns x0,−4, x0,1, x0,8,
x1,−8, x1,−4, x1,1, x1,8 and determinant −8. An easy computation gives
the formulas of Corollary 1 at once. ¤

Corollary 2. If the congruence in the hypothesis of Theorem 4 is

optimal then all the x0,e, x1,e (e ∈ T8) are odd. None of these coefficients

can vanish in particular.

11. The case L = {−1, 0}

In this case the obtained congruences extend those of [7] for the orders
of K2-groups of the integers of real quadratic fields and class numbers
of imaginary quadratic fields. We leave it to the reader to show that
Theorem 5 implies the Theorem in [7]. In the case when L = {−1, 0} we
have c(L) = 5 and the congruences are valid modulo 2ν+λ+1, where λ ≤ 5.

Theorem 5. Let m > 1 be an odd square-free integer having ν prime

factors, and let Θ,Ψ : N→ C2 be multiplicative functions such that Ψ(s) ≡
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Θ(s) ≡ 1 (mod 2) for any divisor s | m. In the notation of Theorem 3, for

any 2-adic integers x−1,e, x0,e (e ∈ T8) not all even we have

∑

e∈T8

x−1,e

∑

d∈Tm
ed>1

Ψ(|d|)
( ∏

p|m
p prime

(
1−χed(p)Θ(p)p2

)−δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed)

+2
∑

e∈T8

x0,e

∑

d∈Tm
ed<0

Ψ(|d|)
( ∏

p|m
p prime

(
1−χed(p)Θ(p)p

)−δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed)

+
1
6
x−1,1

( ∏

p|m
p prime

(
1−Θ(p)p2

)−
∏

p|m
p prime

(
1−Θ(p)

)) ≡ 0 (mod 2ν+λ+1),

where 2λ is the greatest common divisor of the eight integers si (0 ≤ i ≤ 7)
defined by

s0 = x−1,−8 + x−1,−4 + x−1,1 + x−1,8 + x0,−8 + x0,−4 + x0,1 + x0,8,

s1 = 2
(
x−1,−8 + x−1,−4 + x0,1 + x0,8

)
,

s2 = 2
(− x−1,−8 + 2x−1,−4 + 2x−1,1 − x−1,8 + x0,−8 + x0,8

)
,

s3 = 4
(− x−1,−8 + 2x−1,−4 + x0,8

)
,

s4 = 4
(− 3x−1,−8 + 4x−1,−4 + 4x−1,1 − 3x−1,8 + x0,−8 + x0,8

)
,

s5 = 8
(
x−1,−8 + x0,8

)
,

s6 = 8
(− x−1,−8 − x−1,8 + x0,−8 + x0,8

)
,

s7 = 32.

Proof. The proof is immediate. We apply (1.1) and (1.2) again.
¤

Corollary 1. The congruence in the hypothesis of Theorem 5 is opti-

mal if and only if

x−1,−8 = a,

x−1,−4 = a + 4e− 2g,
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x−1,1 = −a + 8d− 4e + 2g − 2h,

x−1,8 = −a + 16d− 4f − 2h,

x1,−8 = a + 16d− 4f − 4g + 2h,

x1,−4 = a + 32b− 16c− 40d + 4e + 8f + 2g + 2h,

x1,1 = −a + 16c− 4e− 2g,

x1,8 = −a + 4g,

where a, b, c, d, e, f, g, h ∈ C2 are integers with odd a.

Proof. The congruence in the hypothesis of Theorem 5 is valid mod-
ulo 2ν+5 if and only if s0, s1, s2, s3, s4, s5, s6 satisfy (10.7) for some
integers b, c, d, e, f, g, h ∈ C2. Taking x−1,−8 = a we obtain a system of
seven linear equations with seven unknowns x−1,−4, x−1,1, x−1,8, x0,−8,
x0,−4, x0,1, x0,8 and determinant −8. A standard computation gives the
formulas of Corollary 1 at once. ¤

Corollary 2. If the congruence in the hypothesis of Theorem 5 is

optimal then all the x−1,e, x0,e (e ∈ T8) are odd. None of these coefficients

can vanish in particular.

12. The case L = {−1, 2}

In the case when L = {−1, 2} we derive linear congruences among
the conjectured orders of K2-groups of the integers of quadratic fields. In
this case the obtained congruence provides an analogue of the Gras and
Uehara congruence in K2-theory. Here c(L) = 5 and the congruences are
valid modulo 2ν+λ+1, where λ ≤ 5.

Theorem 6. Let m > 1 be an odd square-free integer having ν prime

factors, and let Θ,Ψ : N→ C2 be multiplicative functions such that Ψ(s) ≡
Θ(s) ≡ 1 (mod 2) for any divisor s | m. In the notation of Theorem 3, for
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any 2-adic integers x−1,e, x2,e (e ∈ T8) not all even we have

∑

e∈T8

x−1,e

∑

d∈Tm
ed>1

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p2

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed)

+
∑

e∈T8

x2,e

∑

d∈Tm
ed<0

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p−1

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed),

+
1
6
x−1,1

( ∏

p|m
p prime

(
1−Θ(p)p2

)−
∏

p|m
p prime

(
1−Θ(p)

)) ≡ 0 (mod 2ν+λ+1),

where 2λ is the greatest common divisor of the eight integers si (0 ≤ i ≤ 7)
defined by

s0 = x−1,−8 + x−1,−4 + x−1,1 + x−1,8 + x2,−8 + x2,−4 + x2,1 + x2,8,

s1 = 2
(
x−1,−8 + x−1,−4 + x2,1 + x2,8

)
,

s2 = 2
(
7x−1,−8 + 2x−1,−4 + 2x−1,1 + 7x−1,8 + 5x2,−8

+ 4x2,−4 + 4x2,1 + 5x2,8

)
,

s3 = 4
(− x−1,−8 + 2x−1,−4 + 4x2,1 + 5x2,8

)
,

s4 = 4
(
5x−1,−8 + 4x−1,−4 + 4x−1,1 + 5x−1,8 + x2,−8 + x2,8

)
,

s5 = 8
(
x−1,−8 + x2,8

)
,

s6 = 8
(
3x−1,−8 + 3x−1,8 + x2,−8 + x2,8

)
,

s7 = 32.

Proof. In order to obtain the above formulas for si, 0 ≤ i ≤ 6 we
make use of (1.1) and (1.2). ¤
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Corollary 1. The congruence in the hypothesis of Theorem 6 is opti-

mal if and only if

x−1,−8 = a,

x−1,−4 = −3a + 32c− 4e + 2g,

x−1,1 = 3a + 64b− 32c− 8d + 4e− 2g + 2h,

x−1,8 = −a− 128b + 16d + 4f − 6h,

x2,−8 = a + 384b− 48d− 12f − 4g + 22h,

x2,−4 = −3a− 288b + 16c + 40d− 4e + 8f + 6g − 18h,

x2,1 = 3a− 16c + 4e− 6g,

x2,8 = −a + 4g,

where a, b, c, d, e, f, g, h ∈ C2 are integers with a odd.

Proof. We proceed in the same way as in the proof of Corollary 1
to Theorem 5. Taking x−1,−8 = a we obtain a system of seven linear
equations with seven unknowns x−1,−4, x−1,1, x−1,8, x2,−8, x2,−4, x2,1,
x2,8 and determinant 8. An easy verification gives the above formulas
immediately. ¤

Corollary 2. If the congruence in the hypothesis of Theorem 6 is

optimal then all the x−1,e, x2,e (e ∈ T8) are odd. None of these coefficients

can vanish in particular.

13. The case L = {1, 2}

In the case when L = {1, 2} we obtain linear congruences for class
numbers of real quadratic fields and the orders of K2-groups of the integers
of imaginary quadratic fields. In this case c(L) = 5 and the obtained
congruences are valid modulo 2ν+λ+1, where λ ≤ 5.

Theorem 7. Let m > 1 be an odd square-free integer having ν prime

factors, and let Θ,Ψ : N→ C2 be multiplicative functions such that Ψ(s) ≡
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Θ(s) ≡ 1 (mod 2) for any divisor s | m. In the notation of Theorem 3, for

any 2-adic integers x1,e, x2,e (e ∈ T8) not all even we have

2
∑

e∈T8

x1,e

∑

d∈Tm
ed>1

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed)

+
∑

e∈T8

x2,e

∑

d∈Tm
ed<0

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p−1

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed),

− x1,1

∑

p|m
p prime

Θ(p) log2 p
∏

q|(m/p)
q prime

(
1−Θ(q)

) ≡ 0 (mod 2ν+λ+1),

where 2λ is the greatest common divisor of the eight integers si (0 ≤ i ≤ 7)
defined by

s0 = x1,−8 + x1,−4 + x1,1 + x1,8 + x2,−8 + x2,−4 + x2,1 + x2,8,

s1 = 2
(
x1,−8 + x1,−4 + x2,1 + x2,8

)
,

s2 = 2
(
3x1,−8 +6x1,−4 + 6x1,1 + 3x1,8 + 5x2,−8 + 4x2,−4 +4x2,1 +5x2,8

)
,

s3 = 4
(
x1,−8 + 2x1,−4 + 4x2,1 − x2,8

)
,

s4 = 4
(− 3x1,−8 + 4x1,−4 + 4x1,1 − 3x1,8 + x2,−8 + x2,8

)
,

s5 = 8
(
x1,−8 + x2,8

)
,

s6 = 8
(
3x1,−8 + 3x1,8 + x2,−8 + x2,8

)
,

s7 = 32.

Proof. It follows from (1.1) and (1.2) that

gcd(z3, 32) = gcd
(
4(3x1,−8 + 6x1,−4 + 4x2,1 + 5x2,8), 32

)
= gcd(s3, 32)
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and the corollary follows easily from Theorem 7. ¤

Corollary 1. The congruence in the hypothesis of Theorem 7 is opti-

mal if and only if

x1,−8 = a,

x1,−4 = a + 32c− 4e− 10g,

x1,1 = −a + 192b− 32c− 24d + 4e + 8f + 10g + 2h,

x1,8 = −a + 128b− 16d + 4f + 2h,

x2,−8 = a− 384b + 48d− 12f − 4g − 2h,

x2,−4 = a + 96b + 16c− 8d− 4e− 6g − 2h,

x2,1 = −a− 16c + 4e + 6g,

x2,8 = −a + 4g,

where a, b, c, d, e, f, g, h ∈ C2 are integers with a odd.

Proof. The proof is standard. We proceed in the same way as in the
proof of Corollary 1 to Theorem 5. Taking x1,−8 = a we obtain a system
of seven linear equations with seven unknowns x−1,−4, x1,1, x1,8, x2,−8,
x2,−4, x2,1, x2,8 and determinant −8. The details are left to the reader.

¤

Corollary 2. If the congruence in the hypothesis of Theorem 7 is

optimal then all the x1,e, x2,e (e ∈ T8) are odd. None of these coefficients

can vanish in particular.

14. The cases L = {−1, 1} and L = {0, 2}

In the case when L = {−1, 1} (resp. L = {0, 2}) we obtain linear
congruences between class numbers and the orders of K2-groups of the
integers of real (resp. imaginary) quadratic fields. In both the cases c(L) =
6 and the obtained congruences are valid modulo 2ν+λ+1, where λ ≤ 6.
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Theorem 8. Let m > 1 be an odd square-free integer having ν prime
factors, and let Θ,Ψ : N→ C2 be multiplicative functions such that Ψ(s) ≡
Θ(s) ≡ 1 (mod 2) for any divisor s | m. In the notation of Theorem 3, for
any 2-adic integers x−1,e, x1,e (e ∈ T8) not all even we have

∑

e∈T8

x−1,e

∑

d∈Tm
ed>1

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p2

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed)

+ 2
∑

e∈T8

x1,e

∑

d∈Tm
ed>1

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed)

+
1
6
x−1,1

( ∏

p|m
p prime

(
1−Θ(p)p2

)−
∏

p|m
p prime

(
1−Θ(p)

))

− x1,1

∑

p|m
p prime

Θ(p) log2 p
∏

q|(m/p)
q prime

(
1−Θ(q)

) ≡ 0 (mod 2ν+λ+1),

where 2λ is the greatest common divisor of the eight integers si (0 ≤ i ≤ 7)
defined by

s0 = x−1,−8 + x−1,−4 + x−1,1 + x−1,8 + x1,−8 + x1,−4 + x1,1 + x1,8,

s1 = 2
(
x−1,−8 + x−1,−4 + x1,−8 + x1,−4

)
,

s2 = 2
(− 3x−1,−8 + 6x−1,−4 + 6x−1,1 − 3x−1,8

+ x1,−8 + 2x1,−4 + 2x1,1 + x1,8

)
,

s3 = 4
(− 3x−1,−8 + 6x−1,−4 + x1,−8 + 2x1,−4

)
,

s4 = 4
(
5x−1,−8 + 4x−1,−4 + 4x−1,1 + 5x−1,8 + 5x1,−8

+ 4x1,−4 + 4x1,1 + 5x1,8

)
,

s5 = 8
(
5x−1,−8 + 4x−1,−4 + 5x1,−8 + 4x1,−4

)
,
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s6 = 8
(
3x−1,−8 + 3x−1,8 − x1,−8 − x1,8

)
,

s7 = 64.

Proof. Note that in the case when L = {−1, 1} we have

z8 ≡ −2z6 (mod 64), z7 ≡ −2z5 (mod 64),

and in consequence we may ignore z8 and z7 (the zn with n = 2c(L)− 4,
2c(L)− 5). In order to obtain formulas for si, 0 ≤ i ≤ 6 we use (1.1) and
(1.2). For example, we have

gcd(z3, 64) = gcd
(
4(−9x−1,−8 + 2x−1,−4 + 3x1,−8 + 6x1,−4), 64

)

= gcd(s3, 64).

The corollary follows easily from Theorem 8. ¤

Corollary 1. The congruence in the hypothesis of Theorem 8 is opti-

mal if and only if

x−1,−8 = a,

x−1,−4 = a− 48c + 4e + 2g,

x−1,1 = −a− 160b + 48c + 8d− 4e + 8f − 2g + 2h,

x−1,8 = −a− 64b + 4f + 2h,

x1,−8 = −a− 128c + 8g,

x1,−4 = −a + 208c− 4e− 10g,

x1,1 = a + 480b− 208c− 8d + 4e− 24f + 10g − 2h,

x1,8 = a− 192b + 128c + 12f − 8g − 2h,

where a, b, c, d, e, f, g, h ∈ C2 are integers with a odd.

Proof. The congruence in the hypothesis of Theorem 8 is valid mod-
ulo 2ν+6 if and only if

(14.8)
s0 = 64b, s1 = 64c, s2 = 64d, s3 = 64e,

s4 = 64f, s5 = 64g, s6 = 64h
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for some integers b, c, d, e, f, g, h ∈ C2. Taking x0,−8 = a we obtain a
system of seven linear equations with seven unknowns x−1,−4, x−1,1, x−1,8,
x1,−8, x1,−4, x1,1, x1,8 and determinant −64. A standard computation
gives the formulas of Corollary 1 at once. ¤

Corollary 2. If the congruence in the hypothesis of Theorem 8 is

optimal then all the xk,e are odd. None of these coefficients can vanish in

particular.

Theorem 9. Let m > 1 be an odd square-free integer having ν prime

factors, and let Θ,Ψ : N→ C2 be multiplicative functions such that Ψ(s) ≡
Θ(s) ≡ 1 (mod 2) for any divisor s | m. In the notation of Theorem 3, for

any 2-adic integers x0,e, x2,e (e ∈ T8) not all even we have

2
∑

e∈T8

x0,e

∑

d∈Tm
ed<0

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
H(ed)

+
∑

e∈T8

x2,e

∑

d∈Tm
ed<0

Ψ(|d|)
( ∏

p|m
p prime

(
1− χed(p)Θ(p)p−1

)

− δd,1

∏

p|m
p prime

(
1−Θ(p)

))
K2(ed),

≡ 0 (mod 2ν+λ+1),

where 2λ is the greatest common divisor of the eight integers si (0 ≤ i ≤ 7)
defined by

s0 = x0,−8 + x0,−4 + x0,1 + x0,8 + x2,−8 + x2,−4 + x2,1 + x2,8,

s1 = 2
(
x0,1 + x0,8 + x2,1 + x2,8

)
,

s2 = 2
(
9x0,−8 + 9x0,8 + 5x2,−8 + 4x2,−4 + 4x2,1 + 5x2,8

)
,

s3 = 4
(
9x0,8 + 4x2,1 + 5x2,8

)
,

s4 = 4
(
x0,−8 + x0,8 + x2,−8 + x2,8

)
,
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s5 = 8
(
x0,8 + x2,8

)
,

s6 = 8
(
5x0,−8 + 5x0,8 + x2,−8 + x2,8

)
,

s7 = 64.

Proof. Note that in the case when L = {0, 2} we have

z8 ≡ 2z6 (mod 64), z7 ≡ 2z5 (mod 64),

and in consequence we may ignore the z8 and z7 (the zn with n = 2c(L)−4,
2c(L)− 5). We apply (1.1) and (1.2) again. ¤

Corollary 1. The congruence in the hypothesis of Theorem 9 is opti-

mal if and only if

x0,−8 = a,

x0,−4 = a + 64b− 32c− 8d + 4e + 4f − 2g,

x0,1 = −a + 32c− 4e− 4f + 2g + 2h,

x0,8 = −a− 4f + 2h,

x2,−8 = −a + 16f − 8g,

x2,−4 = −a + 8d− 4e− 20f + 10g,

x2,1 = a + 4e + 4f − 10g − 2h,

x2,8 = a + 4f + 8g − 2h,

where a, b, c, d, e, f, g, h ∈ C2 are integers with a odd.

Proof. The congruence in the hypothesis of Theorem 9 is valid mod-
ulo 2ν+6 if and only if s0, s1, s2, s3, s4, s5, s6 satisfy (14.8) for some integers
b, c, d, e, f, g, h ∈ C2. Taking x0,−8 = a we obtain a system of seven linear
equations with seven unknowns x0,−4, x0,1, x0,8, x2,−8, x2,−4, x2,1, x2,8

and determinant 64. An easy verification gives the formulas of Corollary 1
at once. ¤

Corollary 2. If the congruence in the hypothesis of Theorem 9 is

optimal then all the x0,e, x2,e (e ∈ T8) are odd. None of these coefficients

can vanish in particular.



710 Jerzy Urbanowicz

15. Concluding remarks

Uehara’s approach used in [8] and [10] gives a method of producing
linear congruences. It would be interesting to use this method to find for
given λ explicit formulas for the xk,e such that the linear congruences are
valid modulo 2ν+λ. This approach should yield many new congruences
between class numbers and the orders of K2-groups of the rings of integers
of quadratic fields. In the case of the orders of K2-groups for imaginary
quadratic fields such congruences would be completely new. The detailed
results will appear in forthcoming publications.

Another direction for further investigation would be to extend Wój-

cik’s congruence [10] by giving a congruence for a linear combination of
the values L2(k, χω1−k), where the numbers k are taken from any finite
subset of the integers. Wójcik’s congruence involved the case when this
subset consisted of consecutive integers. Urbanowicz and Wójcik [8]
found such a congruence for any subset of the set {−1, 0, 1, 2}.
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