Publ. Math. Debrecen 57 / 1-2 (2000), 11–23

The quasiasymptotic expansion at zero and generalized Watson lemma for Colombeau generalized functions

By S. PILIPOVIĆ (Novi Sad), M. STOJANOVIĆ (Novi Sad) and D. NIKOLIĆ-DESPOTOVIĆ (Novi Sad)

Abstract. Quasiasymptotic expansion at zero in the Colombeau algebra of generalized functions and its coherence with this notion for Schwartz distributions is given. A version of the Watson lemma related to the expansion of the Laplace transformation of an appropriate generalized Colombeau function is proved. In particular, the asymptotic expansion of δ^2 and the expansion of its Laplace transformation is given.

1. Introduction

Asymptotic analysis is an old subject (cf. [1]) which has a lot of applications in applied mathematics, physics and engineering. It approximates integral expressions or solutions of differential equations.

Since a generalized function g is represented by an ε -net of smooth functions g_{ε} with the power order growth with respect to ε , ($\varepsilon \to 0$), the order growth of ε reflects in some sense its singularity. We found that the singularity at zero is characterized through the analysis of the behaviour of $g_{\varepsilon}(\varepsilon x)$ as $\varepsilon \to 0$. This was already done for Schwartz distributions, using the quasiasymptotics and quasiasymptotic expansion at zero [9], but since the Colombeau space \mathcal{G} contains elements which are no distributions (δ^2 , for example) we reconsider the concept of quasiasymptotic expansion

Mathematics Subject Classification: 41A60, 46F10, 44A10, 44A60, 45M05.

Key words and phrases: the quasiasymptotic expansion at zero, Laplace transformation in Colombeau spaces, Abelian type results for Laplace transformation.

in \mathcal{G} . Note that the quasiasymptotic behaviour in \mathcal{G} is used in [8] for the analysis of a non-linear Cauchy problem.

Generalized asymptotic expansion in the space of Schwartz distributions is studied in [1–3], [5], [9], (see also references in [9]), and the asymptotic expansion related to geometric optics in \mathcal{G} is analyzed in [6].

The results of this paper are the following.

First, by using the definition of quasiasymptotic behaviour at zero of Colombeau generalized functions [8], we derive the definition and the properties of quasiasymptotic expansions at zero for Colombeau generalized functions. We compare this notion with the corresponding one for Schwartz distributions. An $f \in \mathcal{D}'$ has a quasiasymptotic expansion if and only if the embedded Colombeau generalized function has a quasiasymptotic expansion in \mathcal{G} .

Second, we give an Abelian-type result for the Laplace transformation of an $f \in \mathcal{G}$ which has appropriate quasiasymptotic expansion. This is a generalized version of the classical Watson lemma [1].

Third, we find the quasisasymptotic expansion of the generalized function $\delta^2 \in \mathcal{G} \setminus \mathcal{D}'$ and the asymptotic expansion of its Laplace transformation.

2. Preliminaries

Notation

Schwartz spaces of test functions and distributions on the real line \mathbb{R} are denoted by \mathcal{D} and \mathcal{D}' , respectively; \mathcal{S} is the space of rapidly decreasing functions and its dual \mathcal{S}' is the space of tempered distributions. Also, we use the notions $\mathcal{D}(\Omega)$ and $\mathcal{D}'(\Omega)$ where Ω is an open subset of \mathbb{R}^n .

Let $\alpha \in \mathbb{R}$. Denote

$$f_{\alpha+1}(x) = \begin{cases} \frac{x^{\alpha}H(x)}{\Gamma(\alpha+1)}, & \alpha > -1\\ f_{\alpha+n+1}^{(n)}(x), & \alpha \le -1, \end{cases}$$

where n is the smallest integer for which $\alpha + n > -1$, and H is the Heaviside function.

Recall that $C^{\infty}(\Omega)$ is a topological vector space whose topology is given by a countable set of seminorms

$$\mu_k(\varphi) = \sup\left\{ \left| \varphi^{(i)}(x) \right|; \ |i| \le k, \ x \in \Omega_k, \ k \in \mathbb{N} \right\}.$$

Colombeau algebra of generalized functions

We define \mathcal{E}_M as the space of locally bounded functions $R(\varepsilon) = R_{\varepsilon}$: $(0,1) \to C^{\infty}(\Omega)$ such that for every $k \in \mathbb{N}$ there exists $a \in \mathbb{R}$ such that

$$\sup\left\{\left|R_{\varepsilon}^{(i)}(x)\right|; |i| \leq k, \ x \in \Omega_k\right\} = O(\varepsilon^a), \quad \left(\Omega_k \subset \subset \Omega_{k+1}, \ \bigcup_{k=1}^{\infty} \Omega_k = \Omega\right).$$

By \mathcal{N} is denoted the space of all elements $H_{\epsilon} \subset \mathcal{E}_M$ with the property that for every $k \in \mathcal{N}$ and $a \in \mathbb{R}$

$$\sup\left\{ \left| R_{\varepsilon}^{(i)}(x) \right|; \ |i| \le k, \ x \in \Omega_k \right\} = O(\varepsilon^a).$$

The quotient space $\mathcal{G} = \mathcal{E}_M / \mathcal{N}$ is a Colombeau space.

In an appropriate way (R_{ε} and H_{ε} above do not depend on x) are defined spaces of moderate complex numbers \mathcal{E}_0 , null spaces \mathcal{N}_0 , and the space of generalized complex numbers $\mathcal{C} = \mathcal{E}_0/\mathcal{N}_0$.

It is easy to verify that $\mathcal{G}(\Omega)$ is a differential algebra, where derivations are defined by $R^{(\alpha)} = [R_{\varepsilon}^{(\alpha)}]$ ([·] denotes equivalence class).

The support of a generalized function H, supp H, is defined as the complement of the largest open subset Ω' such that $H_{|\Omega'} = 0$.

It is said that f belongs to $\mathcal{E}_{t,M}(\mathbb{R}^n)$ if for any $k \in \mathbb{N}$ there exist $a \in \mathbb{R}$ and $m \in \mathbb{N}_0$ such that

(1)
$$\sup_{|\alpha| \le k} \sup_{\mathbb{R}^n} (\langle x \rangle^{-m} |\partial^{\alpha} f_{\epsilon}(x)|) = O(\epsilon^a).$$

(note $\langle x \rangle \stackrel{\text{def}}{=} (1 + |x|^2)^{1/2}).$

The space of elements g of $\mathcal{E}_{t,M}(\mathbb{R}^n)$ with the property that for every k there exists $m \in \mathbb{N}$ such that (1) holds for every $a \in \mathbb{R}$, is denoted by $\mathcal{N}_t(\mathbb{R}^n)$. It is an ideal of $\mathcal{E}_{t,M}(\mathbb{R}^n)$. The quotient space $\mathcal{G}_t(\mathbb{R}^n) = \mathcal{E}_{t,M}(\mathbb{R}^n)/\mathcal{N}_t(\mathbb{R}^n)$ is called Colombeau space of tempered generalized functions. Note that \mathcal{G}_t is not a subspace of G because

$$\mathcal{N}(\mathbb{R}^n) \cap \mathcal{E}_{t,M}(\mathbb{R}^n) \neq \mathcal{N}_t(\mathbb{R}^n)$$

but there is a canonical mapping: $\mathcal{G}_t(\mathbb{R}^n) \to \mathcal{G}(\mathbb{R}^n)$, and $[G_{\varepsilon}] = [G_{\varepsilon} + \mathcal{N}(\mathbb{R}^n)]$.

Let $\psi \in \mathcal{D}(\mathbb{R}^n)$ and $\phi \in \mathcal{S}(\mathbb{R}^n)$ such that $\mathcal{F}(\hat{\phi}) = \hat{\phi} \in \mathcal{D}(\mathbb{R}^n)$ and $\hat{\phi} \equiv 1$ on be neighbourhood of zero. Put $\phi_{\epsilon}(x) = \frac{1}{\epsilon^{2n}}\phi(\frac{x}{\epsilon^2}), x \in \mathbb{R}^n$, $\epsilon \in (0, 1)$. We call ϕ the "vision" function.

If $g \in \mathcal{D}'$, then by

$$\left\langle g(\xi), \ \epsilon^{-2n}\phi\left(\frac{x-\xi}{\epsilon^2}\right) \right\rangle, \quad x \in \mathbb{R}^n$$

is denoted the representative of the corresponding element in \mathcal{G} . Its class is called Colombeau regularization of g and it is denoted by Cd g.

Quasiasymptotic behaviour

Let \mathcal{K} be a set of positive measurable functions c defined on (0, 1) with the following property:

$$A^{-1}\epsilon^r < c(\epsilon) < A\epsilon^{-r}, \quad \epsilon \in (0,1)$$

for some A > 0 and r > 0.

The notion of quasiasymptotic behaviour at zero in $\mathcal{G}(\Omega)$ is introduced in [8].

Let $F \in \mathcal{G}(\Omega)$. If for every $\psi \in \mathcal{D}(\Omega)$ there is $C_{\psi} \in \mathbb{C}, C_{\psi} \neq 0$, such that

$$\lim_{\epsilon \to 0^+} \left\langle \frac{F_{\epsilon}(\epsilon x)}{c(\epsilon)}, \ \psi(x) \right\rangle = C_{\psi},$$

then it is said that F has quasiasymptotics at zero with respect to $c(\epsilon) \in \mathcal{K}$.

The consequences of this definition are contained in Proposition 2 and Proposition 3 of [8].

3. The quasiasymptotic expansion at zero of Colombeau generalized functions

We denote by Λ the set \mathcal{N} or a finite set of the form $\{1, 2, \dots, N\}$, $N \in \mathbb{N}$.

Let $c_k \in K$, $k \in \Lambda$, such that

(1)
$$\lim_{\varepsilon \to 0} \frac{c_{k+1}(\varepsilon)}{c_k(\varepsilon)} \to 0, \quad k = 1, \dots, N-1 \text{ (or } k \in \mathbb{N}, \text{ if } \Lambda = \mathbb{N})$$

and

$$P_k = [P_{\varepsilon}] \in \mathcal{G}(\Omega), \quad k \in \Lambda.$$

14

Then $G = [G_{\varepsilon}] \in \mathcal{G}(\Omega)$ has quasiasymptotic expansion (strong asymptotic expansion) at zero and this equals $\sum_{k \in \Lambda} P_k$ with respect to $\{c_k(\varepsilon); k \in \Lambda\}$ if

$$\frac{\left(G_{\varepsilon} - \sum_{k=1}^{m} P_{k\varepsilon}\right)(\varepsilon x)}{c_m(\varepsilon)} \to 0, \ \varepsilon \to 0^+, \text{ in } \mathcal{D}'(\Omega) \text{ for every } m \in \Lambda$$

$$\left(\frac{\left(G_{\varepsilon}-\sum_{k=1}^{m}P_{k\varepsilon}\right)\left(\varepsilon x\right)}{c_{m}(\varepsilon)}\to 0, \ \varepsilon\to 0^{+} \text{ for every } x\in\Omega, \text{ and every } m\in\Lambda\right).$$

In this case we write

(2)
$$G(\varepsilon x) \stackrel{\text{q.e.c.}}{\sim} \sum_{k \in \Lambda} P_k(\varepsilon x) \text{ with respect to } \{c_k(\varepsilon); \ k \in \Lambda\}$$

 $\left(G(\varepsilon x) \stackrel{s.e.c.}{\sim} \sum_{k \in \Lambda} P_k(\varepsilon x) \text{ with respect to } \{c_k(\varepsilon); \ k \in \Lambda\}\right)$

and say that G has quasiasymptotic (strong asymptotic) expansion in the Colombeau sense.

If $G \in \mathcal{G}_t(\mathbb{R})$ and $P_k \in \mathcal{G}_t(\mathbb{R})$, $k \in \Lambda$, then with the same definitions we obtain the quasiasymptotic expansion in $\mathcal{G}_t(\mathbb{R})$.

One can simply prove that this definition does not depend on representatives.

In the sequel (if no additional condition is given), we will allways assume that $\{c_k(\varepsilon); k \in \Lambda\}$ is a subset of \mathcal{K} satisfying (1).

Remark 1. Let $G \in \mathcal{G}(\mathbb{R})$ $(G \in \mathcal{G}_t(\mathbb{R}))$ and $P_k \in \mathcal{G}(\mathbb{R})$ $(P_k \in \mathcal{G}_t(\mathbb{R}))$, $k \in \Lambda$. We define the strong asymptotic expansion at ∞ as follows:

G has strong asymptotic expansion at ∞ with respect to $\{c_k(\varepsilon); k \in \Lambda\}$ if

$$\frac{\left(G_{\varepsilon}-\sum_{k=1}^{m}P_{k\varepsilon}\right)\left(\frac{x}{\varepsilon}\right)}{c_{m}\left(\frac{1}{\varepsilon}\right)}\to 0, \quad \varepsilon\to 0^{+},$$

for every x > 0 and every $m \in \Lambda$.

In this case we write

$$G\left(\frac{x}{\varepsilon}\right) \stackrel{\text{s.e.c.}}{\sim} \sum_{k \in \Lambda} P_k\left(\frac{x}{\varepsilon}\right) \quad \text{at } \infty \text{ with respect to } \{c_k; \ k \in \Lambda\}.$$

We will use this definition in Proposition 3 below.

Remark 2. We give a definition related to a special choice of P_k , $k \in \Lambda$. Let α_k , $k \in \Lambda$ be an increasing sequence of real numbers, and $G = [G_{\varepsilon}] \in \mathcal{G}_t(\Omega)$.

Then G has quasiasymptotic expansion at zero as $\sum_{k \in \Lambda} A_k F_{\alpha_k+1}$ with respect to $\{c_k(\varepsilon); k \in \Lambda\}$ if there are complex numbers $A_k \neq 0, k \in \Lambda$, such that for any $m \in \Lambda$

$$\frac{\left(G_{\varepsilon}-\sum_{k=1}^{m}A_{k}F_{\alpha_{k}+1,\varepsilon}\right)\left(\varepsilon x\right)}{c_{m}(\varepsilon)}\to0,\quad\varepsilon\to0^{+}\text{ in }\mathcal{D}'(\Omega),$$

where $F_{\alpha+1,\varepsilon} = f_{\alpha+1} * \phi_{\varepsilon^2}$. We write

$$G(\varepsilon x) \stackrel{\text{q.e.c.}}{\sim} \sum_{k \in \Lambda} A_k F_{\alpha_k + 1}(\varepsilon x) \quad \text{with respect to } \{c_k(\varepsilon); \ k \in \Lambda\}.$$

In an adequate way one defines the strong asymptotic expansion at zero as $\sum_{k \in \Lambda} A_k F_{\alpha_k+1}$.

Proposition 1. If (2) holds, then

a)
$$G'(\varepsilon x) \stackrel{\text{q.e.c.}}{=} \sum_{k \in \Lambda} P'_k(\varepsilon x)$$
 with respect to $\{c_k(\varepsilon); k \in \Lambda\}$.
b) $\varphi G(\varepsilon x) \stackrel{\text{q.e.c.}}{\sim} \sum_{k \in \Lambda} \varphi(0) P_k(\varepsilon x)$ with respect to $\{c_k(\varepsilon); k \in \Lambda\}$

where $\varphi \in C^{\infty}(\mathbb{R})$.

c) The strong asymptotic expansion at zero with respect to $\{c_k(\varepsilon); k \in \Lambda\}$ implies the quasiasymptotic expansion at zero in the Colombeau sense if for every compact set $K \subset \Omega$ and $m \in \Lambda$ there exists $\varepsilon_m > 0$ such that

$$\sup\left\{\frac{|G_{\varepsilon}(\varepsilon x) - \sum_{k=1}^{m} P_{k\varepsilon}(\varepsilon x)|}{c_m(\varepsilon)}; \ x \in \Omega, \ \varepsilon \in (0, \varepsilon_m)\right\} < \infty.$$

PROOF. Assertion a) is obvious, c) follows by Lebesgue's theorem on dominated convergence and b) follows from the equivalence of weak and strong convergence in $\mathcal{D}'(\Omega)$ since for every $\psi \in \mathcal{D}(\mathbb{R})$, $\{\psi(x)\varphi(\varepsilon x); \varepsilon \in (0,1)\}$ is a bounded set in $\mathcal{D}(\mathbb{R})$. Recall [5] that if $f \in \mathcal{E}'$ and

$$\frac{\left(f - \sum_{k=1}^{N} A_k f_{\alpha_k + 1}\right)(\varepsilon x)}{c_N(\varepsilon)} \xrightarrow{\mathcal{D}'} 0, \ \varepsilon \to 0^+, \quad \text{for every } N \in \Lambda,$$

then we say that

$$f(\varepsilon x) \stackrel{\text{q.e.}}{\sim} \sum_{k \in \Lambda} A_k f_{\alpha_k + 1}(\varepsilon x) \quad \text{at zero in } \mathcal{D}'$$

with respect to the scale $\{c_k(\varepsilon); k \in \Lambda\}$.

The next assertion shows the coherence of quasiasymptotic expansions in Colombeau and Schwartz spaces.

A measurable and positive function L defined on (0, M), M > 0, is called slowly varying at 0 if

$$\lim_{\varepsilon \to 0} \frac{L(\varepsilon t)}{L(\varepsilon)} = 1$$

uniformly for $t \in [a, b] \subset (0, M)$. A function of the form $\rho(x) = x^{\alpha}L(x)$, $x \in (0, M)$ is called a regularly varying function.

Proposition 2. Let $f(x) \in \mathcal{E}'(\Omega)$. Then $f(\varepsilon x) \stackrel{\text{q.e.}}{\sim} \sum_{k \in \Lambda} A_k f_{\alpha_k+1}(\varepsilon x)$ with respect to $\{\varepsilon^{\alpha_k} L_k(\varepsilon); k \in \Lambda\}$ if and only if

$$Cd f(\varepsilon x) \stackrel{\text{q.e.c.}}{\sim} \sum_{k \in \Lambda} A_k F_{\alpha_k + 1}(\varepsilon x) \quad \text{with respect to } \{\varepsilon^{\alpha_k} L_k(\varepsilon); \ k \in \Lambda\}$$

PROOF. It is proved in [7] that an $f \in \mathcal{S}'(\mathbb{R})$ has quasiasymptotic behaviour at zero in the sense of convergence in \mathcal{S}' if and only if it has quasiasymptotic behaviour at zero in the sense of convergence in \mathcal{D}' .

The same result is true for the quasiasymptotic expansion at zero. If $f \in \mathcal{S}'(\mathbb{R})$ then $f(\varepsilon x) \overset{\text{q.e.}}{\sim} \sum_{k \in \Lambda} A_k f_{\alpha_k+1}(\varepsilon x)$ with respect to $\{c_k(\varepsilon); k \in \Lambda\}$ in the sense of convergence in \mathcal{S}' iff $f(\varepsilon x) \overset{\text{q.e.}}{\sim} \sum_{k \in \Lambda} A_k f_{\alpha_k+1}(\varepsilon x)$ with respect to $\{c_k(\varepsilon); k \in \Lambda\}$ in the sense of convergence in \mathcal{D}' .

Let $\alpha \in \mathcal{S}, \, \eta > 0, \, \varepsilon > 0$. We have

$$\left\langle \frac{(f * \phi_{\eta})(\varepsilon x) - \sum_{k=1}^{m} A_m(f_{\alpha_k+1} * \phi_{\eta})(\varepsilon x)}{c_m(\varepsilon)}, \alpha(x) \right\rangle$$
$$= \left\langle \frac{f(x) - \sum_{k=1}^{m} A_k f_{\alpha_k+1}(x)}{\varepsilon c_m(\varepsilon)}, (\check{\phi}_{\eta}(t) * \alpha(t/\varepsilon))(x) \right\rangle$$

and for $\eta = \varepsilon^2$

$$\begin{split} &= \left\langle \frac{(f * \phi_{\varepsilon^2})(\varepsilon x) - \sum_{k=1}^m A_k(f_{\alpha_k+1} * \phi_{\varepsilon^2})(\varepsilon x)}{c_m(\varepsilon)}, \ \alpha(x) \right\rangle \\ &= \left\langle \frac{f(\varepsilon x) - \sum_{k=1}^m A_k f_{\alpha_k+1}(\varepsilon x)}{c_m(\varepsilon)}, \ \int_{-\infty}^{\infty} \check{\phi}_{\varepsilon^2}(t) \alpha(x - t/\varepsilon) dt \right\rangle \\ &= \left\langle \frac{f(\varepsilon x) - \sum_{k=1}^m A_k f_{\alpha_k+1}(\varepsilon x)}{c_m(\varepsilon)}, \ \psi_{\varepsilon}(x) \right\rangle, \end{split}$$

where

$$\psi_{\varepsilon}(x) = \int_{-\infty}^{\infty} \check{\phi}_{\varepsilon^2}(t) \alpha(x - t/\varepsilon) dt = \int_{-\infty}^{\infty} \check{\phi}(t) \alpha(x - \varepsilon t) dt.$$

Since $\{\psi_{\varepsilon}; \varepsilon \in (0,1)\}$ is a bounded set in S and $\psi_{\varepsilon} \to \alpha$ in S, it follows

$$\lim_{\varepsilon \to 0^+} \left\langle \frac{(f * \phi_{\varepsilon^2})(\varepsilon x) - \sum_{k=0}^m A_k(f_{\alpha_k+1} * \phi_{\varepsilon^2})(\varepsilon x)}{c_m(\varepsilon)}, \ \alpha(x) \right\rangle$$
$$= \left\langle g(x) - \sum_{k=0}^m A_k f_{\alpha_k+1}(x), \ \alpha(x) \right\rangle.$$

This implies the assertion in both directions.

4. Generalized Watson lemma

The Laplace transformation \mathcal{L}_g for an element $G \in \mathcal{G}_t(\mathbb{R})$ supported

by $[0,\infty)$ is defined in [4] by

$$\mathcal{L}_g(G)(p) = \left[\int_{\mathbb{R}} e^{-px} G_{\varepsilon}(x) \eta(x) dx \right], \quad \operatorname{Re} p > 0,$$

where G_{ε} is a representative of G, and $\eta \in C_0^{\infty}(\mathbb{R})$ has the properties $|\eta| \leq 1$; $\eta = 1$ on $[-a/2, \infty)$ and $\eta = 0$ on $(-\infty, -a)$ for some a > 0.

We will use the notation \mathcal{L} for the usual distributional or classical Laplace transformation (if it exists).

It is well known that

(3)
$$\mathcal{L}_g(F_{\alpha+1,\varepsilon})(\lambda) = \mathcal{L}(f_{\alpha+1} * \phi_{\varepsilon^2})(\lambda) = \mathcal{L}(f_{\alpha+1})\mathcal{L}(\phi_{\varepsilon^2})(\lambda)$$
$$= (-i\lambda)^{-\alpha-1}\mathcal{L}(\phi)(\varepsilon^2\lambda), \quad \operatorname{Re}\lambda > 0.$$

We will give an Abelian-type result for the Laplace transformation in \mathcal{G}_t by using the quasiasymptotic expansion given in Remark 2.

Proposition 3. Let α_k , $k \in \mathbb{N}$, be an increasing sequence of complex numbers, A_k , $k \in \mathbb{N}$, be a sequence of real numbers and let $c_k(\varepsilon)$, $k \in \mathbb{N}$, be a sequence in K which satisfies (1).

Assume that $G \in \mathcal{G}_t(\mathbb{R})$, supp $G \subset [0, \infty)$ and G has a representative G_{ε} with the property supp $G_{\varepsilon} \subset [-b\varepsilon, \infty)$, $\varepsilon \leq \varepsilon_0$, for some b > 0. Let

$$G(\varepsilon x) \stackrel{\text{q.e.c.}}{\sim} \sum_{k=1}^{\infty} A_k F_{\alpha_k+1}(\varepsilon x) \quad \text{with respect to } \{c_k(\varepsilon), \ k \in \mathbb{N}\}.$$

Then

$$\mathcal{L}_g(G)\left(\frac{x}{\varepsilon}\right) \stackrel{\text{s.e.c.}}{\sim} \sum_{k=1}^{\infty} A_k i^{\alpha_k+1} \left[t^{-\alpha_k-1} \mathcal{L}(\phi)(\varepsilon^3 t)\right]\left(\frac{x}{\varepsilon}\right) \quad at \ \infty,$$

with respect to $\{c_k(\varepsilon); k \in \mathbb{N}\}.$

PROOF. We again use the fact that

$$f(\varepsilon x) \stackrel{\text{q.e.}}{\sim} \sum_{k=1}^{m} A_k f_{\alpha_k+1}(\varepsilon x) \quad \text{with respect to } \{c_k(\varepsilon); k \in \Lambda\}$$

in the sense of convergence in \mathcal{S}' if and only if this holds in the sense of convergence in \mathcal{D}' .

Let a = 2b and η be defined as above. We have

$$G_{\varepsilon}(x) = \eta\left(\frac{x}{\varepsilon}\right)G_{\varepsilon}(x), \quad x \in \mathbb{R}, \ \varepsilon \leq \varepsilon_0.$$

This implies

$$\frac{1}{\varepsilon c(\varepsilon)} \mathcal{L}_g(G_{\varepsilon}) \left(\frac{p}{\varepsilon}\right) = \frac{1}{\varepsilon c(\varepsilon)} \int_{\mathbb{R}} e^{-pu} G_{\varepsilon}(u) \eta\left(\frac{u}{\varepsilon}\right) \eta(u) du$$
$$= \frac{1}{c(\varepsilon)} \int_{\mathbb{R}} e^{-pu} G_{\varepsilon}(u\varepsilon) \eta(u) \eta(u\varepsilon) du, \quad p > 0.$$

Thus, if $\frac{G_{\varepsilon}(u\varepsilon)}{c(\varepsilon)}$ converges in \mathcal{S}' as $\varepsilon \to 0^+$, then by using the fact that $\{e^{-pu}\eta(u\varepsilon)\eta(u); \varepsilon \in (0,1)\}$ is bounded in \mathcal{S} it follows that $\frac{\mathcal{L}_g(G_{\varepsilon})\left(\frac{p}{\varepsilon}\right)}{\varepsilon c(\varepsilon)}$ converges as $\varepsilon \to 0^+$ for every p > 0, $\operatorname{Re} p > 0$.

By applying (3) and previous arguments to

$$\frac{1}{c_N(\varepsilon)} \left[\mathcal{L}_g(G_{\varepsilon})\left(\frac{x}{\varepsilon}\right) - \sum_{k=1}^N A_k \mathcal{L}_g(F_{\alpha_k+1})\left(\frac{x}{\varepsilon}\right) \right], \quad \forall N \in \mathbb{N},$$

we obtain

$$\mathcal{L}_g(G)\left(\frac{x}{\varepsilon}\right) \stackrel{\text{s.e.c.}}{\sim} \sum_{k=1}^{\infty} A_k \left(-i\frac{x}{\varepsilon}\right)^{-\alpha_k - 1} \left[(\mathcal{L}\phi)(\varepsilon^3 x) \right] \left(\frac{x}{\varepsilon}\right) \quad \text{at } \infty,$$

with respect to $\{c_k; k \in \mathbb{N}\}.$

In the next proposition we define an element of
$$\mathcal{G} \setminus \mathcal{D}'$$
 which we call δ^2 .
Note that "various squares of δ " can be defined in this way.

Proposition 4. Let $\delta^2 = [\frac{1}{\varepsilon^4}\phi^2(\frac{t}{\varepsilon^2})]$, where $\phi \in C_0^{\infty}$, $\int \phi = 1$, $\int x^m \phi(x) dx = 0$, $m = 1, \dots, N$, $N \in \mathbb{N}$. Then

a)
$$\delta^2(\varepsilon x) \stackrel{\text{q.e.c.}}{\sim} \sum_{k=0}^m (-1)^k \frac{\mu_k}{k!} \left[\frac{1}{\varepsilon^4} \phi^{(k)} \left(\frac{t}{\varepsilon^2} \right) \right] (\varepsilon x)$$

with respect to the scale $\{\varepsilon^{-3+m}, m = 0, 1, \dots, N\}.$

b)
$$\left(\mathcal{L}_g(\delta^2)\right)\left(\frac{x}{\varepsilon}\right) \stackrel{\text{s.e.c.}}{\sim} \sum_{k=0}^m (-1)^k \frac{\mu_k}{k!} \left[\varepsilon^{2k} t^k \mathcal{L}\left(\phi\left(\frac{u}{\varepsilon^2}\right)\right)(t)\right]\left(\frac{x}{\varepsilon}\right), \text{ at } \infty,$$

20

The quasiasymptotic expansion at zero ...

with respect to the scale $\{\varepsilon^{-3+m}; m = 0, 1, \dots, N\}.$

PROOF. a) Let

$$\mu_k = \int x^k \phi^2(x) dx, \quad k \le N.$$

We have (as $\varepsilon \to 0^+$)

$$\begin{split} \frac{1}{\varepsilon^{-3}} \int \left(\frac{1}{\varepsilon^4} \phi^2 \left(\frac{\varepsilon x}{\varepsilon^2} \right) - \frac{\mu_0}{\varepsilon^4} \phi \left(\frac{\varepsilon x}{\varepsilon^2} \right) \right) \psi(x) dx \to 0, \\ \frac{1}{\varepsilon^{-2}} \int \left(\frac{1}{\varepsilon^4} \phi^2 \left(\frac{\varepsilon x}{\varepsilon^2} \right) - \frac{\mu_0}{\varepsilon^4} \phi \left(\frac{\varepsilon x}{\varepsilon^2} \right) + \frac{\mu_1}{\varepsilon^4} \phi' \left(\frac{\varepsilon x}{\varepsilon^2} \right) \right) \psi(x) dx \to 0, \\ \dots \\ \frac{1}{\varepsilon^s} \int \left(\frac{1}{\varepsilon^4} \phi^2 \left(\frac{\varepsilon x}{\varepsilon^2} \right) - \frac{\mu_0}{\varepsilon^4} \phi \left(\frac{\varepsilon x}{\varepsilon^2} \right) + \dots + \frac{(-1)^{s+2}}{\varepsilon^4 (s+3)!} \phi^{(s+3)} \left(\frac{\varepsilon x}{\varepsilon^2} \right) \right) \\ \times \psi(x) dx \to 0, \quad s \in \mathbb{N}. \end{split}$$

Thus,

$$\left[\frac{1}{\varepsilon^4}\phi^2\left(\frac{t}{\varepsilon^2}\right)\right](\varepsilon x) \stackrel{\text{q.e.c.}}{\sim} \sum_{k=0}^m (-1)^k \frac{\mu_k}{k!} \left[\frac{1}{\varepsilon^4}\phi^{(k)}\left(\frac{t}{\varepsilon^2}\right)\right](\varepsilon x)$$

with respect to the scale $\{\varepsilon^{-3+m}; m = 0, 1, \dots, N\}.$

b) Let $m \leq N$. We have

$$\begin{split} \left(\mathcal{L}_{g}(\delta^{2})\right)\left(\frac{x}{\varepsilon}\right) &= \left[\mathcal{L}\left(\frac{1}{\varepsilon^{4}}\phi^{2}\left(\frac{t}{\varepsilon^{2}}\right)\right)\left(\frac{x}{\varepsilon}\right)\right] \\ &= \left[\frac{1}{\varepsilon^{2}}\left(\mathcal{L}(\phi^{2})\right)(\varepsilon x)\right], \qquad x > 0, \\ \mathcal{L}\left(\phi^{(k)}\left(\frac{t}{\varepsilon^{2}}\right)\right)(x) &= \int \exp(-xt)\phi^{(k)}\left(\frac{t}{\varepsilon^{2}}\right)dt \\ &= \varepsilon^{2k}x^{k}\left(\mathcal{L}\phi\left(\frac{t}{\varepsilon^{2}}\right)\right)(x), \qquad x > 0, \end{split}$$

and

$$\frac{1}{\varepsilon^{-3+m}} \mathcal{L}\left(\frac{1}{\varepsilon^4} \phi^2\left(\frac{\varepsilon t}{\varepsilon^2}\right) - \frac{1}{\varepsilon^4} \sum_{k=0}^m (-1)^k \frac{\mu_k}{k!} \phi^{(k)}\left(\frac{\varepsilon t}{\varepsilon^2}\right)\right)(x) \to 0,$$
$$x > 0, \text{ as } \varepsilon \to 0^+.$$

This implies

$$\frac{1}{\varepsilon^{-2+m}} \mathcal{L}\left(\frac{1}{\varepsilon^4} \phi^2\left(\frac{t}{\varepsilon^2}\right)\right) \left(\frac{x}{\varepsilon}\right) - \frac{1}{\varepsilon^{-2+m}} \sum_{k=0}^m \frac{(-1)^k \mu_k}{k!} \mathcal{L}\left(\phi^{(k)}\left(\frac{t}{\varepsilon^2}\right)\right) \left(\frac{x}{\varepsilon}\right) \to 0,$$

 $x > 0, \varepsilon \to 0^+$, and

$$\mathcal{L}_{g}(\delta^{2})\left(\frac{x}{\varepsilon}\right) \stackrel{\text{s.e.c.}}{\sim} \sum_{k=0}^{m} (-1)^{k} \frac{\mu_{k}}{k!} \left[\varepsilon^{2k} t^{k} \mathcal{L}\left(\phi\left(\frac{t}{\varepsilon^{2}}\right)\right)(t) \right] \left(\frac{x}{\varepsilon}\right) \quad \text{at } \infty,$$

with respect to the scale $\{\varepsilon^{-3+m}; m = 0, 1, \dots, N\}.$

References

- [1] A. ERDELYI, Asymptotics expansions, Dover Publ., New York, 1956.
- [2] R. ESTRADA and R. P. KANWAL, Asymptotic analysis, A distributional Approach, Birkhäuser, Boston, Basel, Berlin, 1994.
- [3] R. ESTRADA and R. P. KANWAL, A distributional theory for asymptotic expansion, Proc. Roy. Soc. London Ser. A 428 (1990), 399–430.
- [4] M. NEDELJKOV and S. PILIPOVIĆ, Paley-Wiener type theorems for Colombeau generalized functions, J. Math. Anal. Appl. 195 (1995), 108–122.
- [5] D. NIKOLIĆ-DESPOTOVIĆ and S. PILIPOVIĆ, The quasiasymptotic expansion at the origin. Abelian-type results for Laplace and Stieltjes transforms, *Math. Nachr.* 174 (1995), 231–238.
- [6] M. OBERGUGGENBERGER and Y. M. WANG, Semilinear geometric optics for generalized solutions, (*preprint*).
- [7] S. PILIPOVIĆ, Quasiasymptotics and S-asymptotics in S' and D', Publ. de l'Inst. Math. Nouvelle serie, Tome 58 (72) (1995), 13–20.
- [8] S. PILIPOVIĆ and M. STOJANOVIĆ, On the behaviour of Colombeau generalized functions at a point-application to semilinear hyperbolic system, *Publ. Math. Deb*recen 51/1-2 (1997), 111–126.

22

The quasiasymptotic expansion at zero \ldots

[9] S. PILIPOVIĆ, B. STANKOVIĆ and A. TAKAČI, Asymptotic behaviour and Stieltjes transformation of distributions, Vol. Band 116, *Teubner, Leipzig*, 1990.

S. PILIPOVIĆ INSTITUTE OF MATHEMATICS UNIVERSITY OF NOVI SAD TRG D. OBRADOVIĆA 4 21000 NOVI SAD YUGOSLAVIA

E-mail: pilipovic@unsim.im.ns.ac.yu

M. STOJANOVIĆ INSTITUTE OF MATHEMATICS UNIVERSITY OF NOVI SAD TRG D. OBRADOVIĆA 4 21000 NOVI SAD YUGOSLAVIA *E-mail*: stojanovic@unsim.im.ns.ac.yu

D. NIKOLIĆ-DESPOTOVIĆ INSTITUTE OF MATHEMATICS UNIVERSITY OF NOVI SAD TRG D. OBRADOVIĆA 4 21000 NOVI SAD YUGOSLAVIA

E-mail: danicand@unsim.im.ns.ac.yu

(Received May 20, 1998; file received September 8, 1999)