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Scalar concomitants of a system of vectors
in pseudo-Euclidean geometry of index 1

By EUGENIUSZ STASIAK (Szczecin)

Abstract. In this paper we solve the functional equation
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, Au
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�
u
1
, u
2
, . . . , u

s

�
for an arbitrary pseudo-orthogonal matrix A ∈ O(n, 1, R) and an arbitrary system of
vectors u

1
, u
2
, . . . , u

s
, where 1 ≤ s ≤ n, and we determine all scalar concomitants of this

system in the pseudo-Euclidean geometry of index one En
1 .

1. Introduction

Referring to Klein’s famous Erlangen program, a Klein space was
defined by M. Kucharzewski in [5] as a triple (M, G, f), where M is a
non-empty set, G denotes a group and f is an effective action of G on the
set M , i.e. f is the mapping f : M ×G → M which satisfies the following
conditions:

∧

x∈M

∧

g1,g2∈G

f(f(x, g1), g2) = f(x, g2 ◦ g1)(1)

∧

x∈M

f(x, e) = x(2)

∧

x∈M

f(x, g) = x ⇒ g = e.(3)
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where ◦ denotes the group operation and e the unit element of G.
Every triple (Mi, G, fi), where fi : Mi × G → Mi is an action of G

on the set Mi (it satisfies conditions (1), (2)) not necessarily effective, is
said to be a geometrical object associated with the Klein space (M, G, f).
The class of geometrical objects {(Mi, G, fi) where i ∈ I} which are asso-
ciated with the Klein space (M,G, f) constitutes a category if we take as
morphisms equivariant mappings Fij : Mi → Mj , i.e. the mappings which
satisfy the condition

(4)
∧

i,j∈I

∧

x∈Mi

∧

g∈G

Fij (fi (x, g)) = fj (Fij (x) , g) .

Following M. Kucharzewski we call this category the Klein geometry
of the group G ([5]). If the equivariant mapping Fij is surjective then
the object (Mj , G, fj) is said to be a concomitant of the object (Mi, G, fi)
and we say that the mapping Fij determines this concomitant. If the Fij

are injective, then the respective objects are said to be equivalent. In the
study of Klein geometry the essential problem is to determine the objects
of this geometry and their classification with respect to equivalence, as well
as to determine those concomitants of a given object which are objects of
a given type.

2. Pseudo-Euclidean geometry of index one

Omitting details about n-dimensional (n ≥ 2) pseudo-Euclidean ge-
ometry of index one En

1 , which particular in the case n = 4 in connection
with the theory of relativity are included in a number of journal papers,
we give here indispensable notations only. For n ≥ 2 let be given a matrix
E1 = [eij ] ∈ GL (n,R), where

eij =





0 for i 6= j,

+1 for i = j 6= n,

−1 for i = j = n.

Definition 1. A pseudo-orthogonal group of index one we call a sub-
group of the group GL (n, R) if it satisfies

(5) G1 = O(n, 1, R) =
{
A : A ∈ GL (n,R) ∧AT · E1 ·A = E1

}
.
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The group G1 determines a subgroup of the affine group

(6) G = {(A, a) : A ∈ G1 ∧ a ∈ Rn} .

Definition 2. A pseudo-Euclidean geometry of index one En
1 we call a

category of geometrical objects associated with a pseudo-Euclidean space
of index one (Rn, G, f).

In particular, to a geometrical object in the geometry En
1 there belongs

a contravariant vector (or a vector simply)

(7) (Rn, G, f1) , where
∧

u∈Rn

∧

(A,a)∈G

f1 (u, (A, a)) = A · u

a covariant vector (or a covector simply)

(8) (Rn, G, f2) , where
∧
∗
v∈Rn

∧

(A,a)∈G

f2

(∗
v, (A, a)

)
=
∗
v ·A−1

and a scalar

(9) (R,G, f3) , where
∧

x∈R

∧

(A,a)∈G

f3 (x, (A, a)) = x.

A vector and a covector are equivalent. The mapping H which is
given by the formula

∗
u = H(u) = (E1 · u)T is equivariant and bijective. To

determine different types of concomitants of the system of s contravariant
vectors u

1
, u
2
, . . . , u

s
, which will be studied in a forthcoming paper, it is

necessary to know the scalar concomitants of this system. To describe
these concomitants one must solve the functional equation (4), which,
applying the transformation rules (7) and (9), may be rewritten in the
form

(10)
∧

A∈G1

F
(
Au

1
, Au

2
, . . . , Au

s

)
= F

(
u
1
, u
2
, . . . , u

s

)
.

In the special case s = 2 we have

Lemma 3. For two covariant vectors u and v the mapping

(11) p (u, v) = uT · E1 · v = u1v1 + u2v2 + · · ·+ un−1vn−1 − unvn
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describes a scalar concomitant.

Proof. For any matrix A ∈ G1 we have

p (Au,Av) = (Au)T · E1 · (Av) = uT
(
AT E1A

)
v = uT E1v = p (u, v) .

¤
Let us observe that for arbitrary vectors u, v, w and arbitrary reals

α, β we have

∗) p (u, v) = p (v, u)
∗∗) p (αu + βv, w) = α · p (u,w) + β · p (v, w) .

We want to give a general solution F of the functional equation
(10). For this we will construct a special pseudo-orthogonal matrix A =
A

(
u
1
, u
2
, . . . , u

s

)
.

3. Type of a subspace and signature of a sequence
of spanned subspaces

Let in En
1 be given a sequence of linearly independent contravariant

vectors u
1
, u
2
, . . . , u

s
, . . . , u

n
. Let us denote the scalars by

(12) pij = p

(
u
i
, u

j

)
for i, j = 1, 2, . . . , n

and let

εs = sign

∣∣∣∣∣∣∣∣

p11 p12 . . . p1s

p21 p22 . . . p2s

. . . . . . . . . . . .

ps1 ps2 . . . pss

∣∣∣∣∣∣∣∣
= sign det [pij ]

s
1(13)

for s = 1, 2, . . . , n.

Definition 4. We say that the linear subspace L
(
u
1
, u
2
, . . . , u

s

)
gener-

ated by the vectors u
1
, u
2
, . . . , u

s
, where s = 1, 2, . . . , n is:

∗) Euclidean or of type +1 if εs = 1,
∗∗) pseudo-Euclidean or of type −1 if εs = −1,

∗ ∗ ∗) isotropic or of type 0 if εs = 0.



Scalar concomitants of a system of vectors . . . 59

Corollary 5. A type of a subspace L
(
u
1
, u
2
, . . . , u

s

)
is invariant by an

arbitrary permutation of the vectors u
1
, u
2
, . . . , u

s
.

Taking in mind that the vectors u
1
, u
2
, . . . , u

n
are linearly independent,

from Cauchy’s Theorem it follows that

εn = sign det [pij ]
n
1 = sign

(
det

(
u
1
, u
2
, . . . , u

n

)
·
(
−det

(
u
1
, u
2
, . . . , u

n

)))
= −1.

Corollary 6. A type of the space which is spanned by linearly inde-

pendent vectors u
1
, u
2
, . . . , u

n
is equal −1.

Let us take ε0 = +1 and let formulate the

Definition 7. Let a sequence of subspaces L
(
u
1

)
, L

(
u
1
, u
2

)
, . . .

. . . , L
(
u
1
, u
2
, . . . , u

n

)
which are spanned by a sequence of linearly indepen-

dent vectors u
1
, u
2
, . . . , u

n
be given. The sequence (ε0, ε1, ε2, . . . , εn−1, εn) =

(+1, ε1, ε2, . . . , εn−1,−1) will be called the signature of the sequence
L

(
u
1

)
, L

(
u
1
, u
2

)
, . . . , L

(
u
1
, u
2
, . . . , u

n

)
, or the signature of the sequence

u
1
, u
2
, . . . , u

n
.

Corollary 8. For an arbitrary permutation σ of (1, 2, . . . , n), the sig-

nature of a sequence of vectors u
1
, u
2
, . . . , u

n
is in general different from the

signature of the sequence u
σ(1)

, u
σ(2)

, . . . , u
σ(n)

.

We will determine all possible signatures of sequences of linearly inde-
pendent vectors. Let be given two sequences u

1
, u
2
, . . . , u

s
and u

1
, u
2
, . . . , u

s
, u
s+1

(s = 1, 2, . . . , n − 1) of linearly independent vectors. In connection with
the first sequence we consider the symmetric matrices

∗) P (s) = P
(
u
1
, u
2
, . . . , u

s

)
=

[
p

(
u
i
, u

j

)]s

1

= [pij ]
s
1

∗∗) M (s) =
[
pij + u

i

n · u
j

n

]s

1

= [mij ]
s
1

∗ ∗ ∗) D (s) =
[
pij + 2u

i

n · u
j

n

]s

1

= [dij ]
s
1.

The determinants of the matrices introduced above we denote by P (s),
M(s), D(s), respectively, and the cofactors of these matrices we denote
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by
s

P ij ,
s

M ij ,
s

Dij , respectively. Analogous notations we will use for the
second sequence u

1
, u
2
, . . . , u

s
, u
s+1

. We have to remark that in the geometry

En
1 only P(s), P (s),

s

P ij are invariant, however, it is well known, that
the inequalities M (s) ≥ 0 and D (s) > 0 hold true and are invariant in
Euclidean geometry as well as in the geometry En

1 . In the following we
will apply

Lemma 9. For an arbitrary square matrix A = [aij ]
s
1 and arbitrary

reals a1, a2, . . . , as, c, b1, b2, . . . , bs we have

(14) det B =det




a11 a12 . . . a1s a1

a21 a22 . . . a2s a2

. . . . . . . . . . . . . . .

as1 as2 . . . ass as

b1 b2 . . . bs c




= c detA−
s∑

i=1

s∑

j=1

aibj

s

Aij ,

where
s

Aij denote cofactors of the matrix A if s > 1, and by definition
1

A11 = 1 in the case s = 1.

Proof. Using Laplace’s formula two times for the determinant det B
we get (14) immediately. ¤

Lemma 10. For arbitrary reals a1, a2, . . . , as we have

(15)
s∑

i=1

s∑

j=1

aiu
j

n
s

P ij =
s∑

i=1

s∑

j=1

aiu
j

n
s

M ij =
s∑

i=1

s∑

j=1

aiu
j

n
s

Dij .

Proof. Applying Lemma 9 and properties of matrices P (s), M(s),
D(s) we get

−
s∑

i=1

s∑

j=1

aiu
j

n
s

P ij =

∣∣∣∣∣∣∣∣∣

a1

P(s)
...

as

u
1

n, u
2

n, . . . , u
s

n 0

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

a1

M(s)
...

as

u
1

n, u
2

n, . . . , u
s

n 0

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

a1

D(s)
...

as

u
1

n, u
2

n, . . . , u
s

n 0

∣∣∣∣∣∣∣∣∣
. ¤
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Theorem 11. We have

P (s) + D(s) = 2M(s),(16)

P (s + 1) + D(s + 1) = 2M(s + 1).(17)

Proof. Using Lemma 9 we calculate

P (s) =

∣∣∣∣∣∣∣∣∣

0

P(s)
...
0

u
1

n, u
2

n, . . . , u
s

n 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

u
1

n

M(s)
...

u
s

n

u
1

n, u
2

n, . . . , u
s

n 1

∣∣∣∣∣∣∣∣∣∣

= M(s)−
s∑

i=1

s∑

j=1

u
i

nu
j

n
s

M ij .

On the other hand we have

D(s) =

∣∣∣∣∣∣∣∣∣

0

D(s)
...
0

u
1

n, u
2

n, . . . , u
s

n 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

−u
1

n

M(s)
...

−u
s

n

u
1

n, u
2

n, . . . , u
s

n 1

∣∣∣∣∣∣∣∣∣∣

= M(s) +
s∑

i=1

s∑

j=1

u
i

nu
j

n
s

M ij .

If we combine the above equalities, we get equality (16). Analogously we
can obtain (17). ¤

Using Lemma 9 and Lemma 10 we can adjust the determinant P (s+1)
with respect to the last component of the last vector u

s+1

n. Namely, we

have

P (s + 1) = −
(

u
s+1

n

)2

M(s) + 2 u
s+1

n
s∑

i=1

s∑

j=1

ms+1,iu
j

n
s

P ij(18)

+ ms+1,s+1P (s)−
s∑

i=1

s∑

j=1

ms+1,ims+1,j

s

P ij
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and if M(s) 6= 0 (which implies M(s) > 0) then the discriminant of the
polynomial (18) is

(19) ∆ = 4P (s)M(s + 1).

Theorem 12. If P (s) = 0 then P (s + 1) ≤ 0.

Proof. If P (s) = 0, then using (16) we get M(s) > 0 and taking into
account (19) we obtain ∆ = 0. Finally P (s + 1) ≤ 0 follows immediately
from (18). ¤

Theorem 13. If P (s) < 0 then P (s + 1) < 0.

Proof. We consider two cases. First, let M(s + 1) = 0. Then (17)
yields P (s + 1) = −D(s + 1) < 0.

Now, let us assume M(s + 1) 6= 0. Then, of course, M(s + 1) > 0 and
M(s) > 0. In consequence of (19) and the assumption P (s) < 0 we have
∆ < 0 and finally P (s + 1) ≤ 0 follows from (18). ¤

In consequence of the last two theorems we have

Corollary 14. There are two kinds of signatures of an arbitrary se-

quence of n linearly independent vectors, namely

∗) (+1, . . . , +1,−1, . . . ,−1) if in the sequence of spanned subspaces

there does not appear an isotropic subspace.

∗∗) (+1, . . . , +1, 0, . . . , 0,−1, . . . ,−1) if in the sequence of spanned

subspaces there appear isotropic subspaces.

Theorem 15. If the signature of a sequence of vectors u
1
, u
2
, . . . , u

n
is of

the second kind, then there exists such a permutation σ that among the

subspaces generated successively by the vectors u
σ(1)

, u
σ(2)

, . . . , u
σ(n)

there is

exactly one isotropic subspace.

Proof. Let for any s∈{2, 3, . . . , n−1} be ε0 = ε1 = . . . = εs−2 = +1;
εs−1 = εs = 0. Since P (s) = detP(s) = 0, for i, j = 1, 2, . . . , s the

following s2 identities are fulfilled:
s∑

k=1

pik

s

P jk = 0. From this and the

symmetry property of the matrix P(s) we obtain the implication

( ∧
r=1,...,s

s

P rr = 0

)
⇒


 ∧

i,j=1,...,s

s

P ij = 0


 .
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Let us assume that
s

P rr = 0 for every r = 1, 2, . . . , s. Then

D(s) =

∣∣∣∣∣∣∣∣∣

0

D(s)
...
0

u
1

n, u
2

n, . . . , u
s

n 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

−2u
1

n

P(s)
...

−2u
s

n

u
1

n, u
2

n, . . . , u
s

n 1

∣∣∣∣∣∣∣∣∣∣

= P (s) + 2
s∑

i=1

s∑

j=1

u
i

nu
j

n
s

P ij = 0

which gives a contradiction, because the vectors u
1
, u
2
, . . . , u

s
are linearly

independent. In what follows, there exists a principal minor of order s− 1

which differs from zero, for instance
s

P kk 6= 0 for any k ∈ {1, 2, . . . , s− 1}.
For the new sequence u

1
, . . . , u

k−1
, u

s
, u
k+1

, . . . , u
s−1

, u
k

numbered by successive

natural numbers we have ε0 = ε1 = · · · = εs−1 = 1 and εs = 0. ¤
Corollary 16. Every n linearly independent vectors can be arranged

in such a sequence u
1
, u
2
, . . . , u

n
that its signature is either (+1, . . . , +1,−1, . . .

. . . ,−1) or (+1, . . . , +1, 0,−1, . . . ,−1).

For both cases mentioned in Corollary 16 we will give a construction
the so-called Schmidt process of pseudo-orthonormality.

4. The Schmidt process of pseudo-orthonormality

Definition 17. We say that the vector u is
∗) the unit vector, if p(u, u) = +1;
∗∗) the pseudo-unit vector, if p (u, u) = −1.

Definition 18. Two vectors u and v satisfying the condition p (u, v)=0
we call orthogonal and write u ⊥ v.

Definition 19. We say that the system of vectors e
1
, e
2
, . . . , e

n
constitutes

a pseudo-orthogonal basis if P
(
e
1
, e
2
, . . . , e

n

)
=

[
p

(
e
i
, e

j

)]n

1

= E1.

Let us have n pairwise orthogonal vectors, exactly one of which is the
pseudo-unit vector and all others are unit vectors. These vectors we can
arrange so that they form a pseudo-orthonormal basis.
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In what follows let P (0) = 1. We prove the following

Lemma 20. If the signature of the sequence of linearly independent

vectors u
1
, u
2
, . . . , u

n
is ε0 = ε1 = · · · = εs−1 =1 and εs = εs+1 = · · · = εn =−1

for s ∈ {1, 2, . . . , n}, then the vectors

(20) e
k

=

k∑
i=1

k

P kiu
i√

|P (k − 1)| · |P (k)| for k = 1, 2, . . . , n

constitute a pseudoorthonormal basis.

Proof. It is easy to see that

(21) p

(
e
k
, u

j

)
=

k∑
i=1

k

P kipij

√
|P (k − 1)| · |P (k)| =

{
0 for j < k

H1 (plt) for j ≥ k.

Since e
k
⊥ u

j
for j < k, from (20) it follows e

k
⊥ e

l
for k 6= l. Now we have

p

(
e
k
, e
k

)
=

k∑
i=1

k

P ki

k∑
j=1

k

P kjpij

|P (k − 1)| · |P (k)| =

k∑
i=1

k

P kiδ
k
i P (k)

|P (k − 1)| · |P (k)|

=
P (k − 1) · P (k)

|P (k − 1)| · |Pt(k)| = εk−1εk =
{

+1 for k 6= s

−1 for k = s.
¤

Lemma 21. If for any s ∈ {1, 2, . . . , n− 1} we have P (s− 1) 6= 0 and

P (s) = 0 and P (s + 1) 6= 0 then P (s− 1) · P (s + 1) = −
(

s+1

P s,s+1

)2

.

Proof. Let us consider the Cramer system (P (s + 1) < 0) of linear
equalities with the unknowns α1, α2, . . . , αs, αs+1 and the parameter a:

(22)

8>>>>>>>>><>>>>>>>>>:

8>>>><>>>>:
α1p11 + α2p12 + · · ·+ αs−1p1,s−1 + αsp1s + αs+1p1,s+1 = 0

α1p21 + α2p22 + · · ·+ αs−1p2,s−1 + αsp2s + αs+1p2,s+1 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1ps−1,1+α2ps−1,2+ . . . +αs−1ps−1,s−1+αsps−1,s+αs+1ps−1,s+1 = 0

α1ps,1 + α2ps,2 + · · ·+ αs−1ps,s−1 + αsps,s + αs+1ps,s+1 = 1

α1ps+1,1 + α2ps+1,2 + · · ·+ αs−1ps+1,s−1 + αsps+1,s + αs+1ps+1,s+1 = a
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From this system we easily obtain αs+1 =
s+1
P s,s+1
P (s+1) . Omitting the last two

equalities the above system reduces to another Cramer system (P (s−1)>0)
with the unknowns α1, α2, . . . , αs−1. Putting the solution of this new
system into the last but one equality of the system (22) we get P (s− 1) =

−αs+1

s+1

P s,s+1. ¤

Lemma 22. If the signature of the sequence of linearly independent

vectors u
1
, u
2
, . . . , u

n
is ε0 = · · · = εs−1 = 1; εs = 0; εs+1 = · · · = εn = −1

for s ∈ {1, 2, . . . , n− 1}, then the vectors

(23)

e
k

=

k∑
i=1

k

P kiu
i√

|P (k − 1)| · |P (k)| for k = 1, 2, . . . , s− 1, s + 2, . . . , n

e
s

=
s+1∑

i=1

αiu
i
; e

s+1
=

s+1∑

i=1

βiu
i

form a pseudo-orthonormal basis, where αi, βi are the solutions of the

system (22) in the cases

a = aα =
−P (s + 1)−

s+1

Pss

2
s+1

P s,s+1

and a = aβ =
P (s + 1)−

s+1

P ss

2
s+1

P s,s+1

,

respectively.

Proof. Beside the assertions given in Lemma 20, from (22) it also
follows that

(24)

p

(
e
s
, u

j

)
=

s+1∑

i=1

αipij =





0 for j < s

1 for j = s

H2(plt) for j > s

p

(
e

s+1
, u

j

)
=

s+1∑

i=1

βipij =





0 for j < s

1 for j = s

H3 (plt) for j > s

as well as p

(
e
s
, e
s+1

)
= 0; p

(
e
s
, e

s

)
= −1; p

(
e

s+1
, e
s+1

)
= 1. ¤
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The pseudo-orthonormal basis e
1
, e

2
, . . . , e

s−1
, e

n
, e

s+1
, . . . , e

n−1
, e

s
con-

structed in accordance with the signature of u
1
, u

2
, . . . , u

n
in Lemma 20

or Lemma 22 will be used to construct the pseudo-orthogonal matrix
A = A

(
u
1
, u
2
, . . . , u

n

)
. The matrix A will enable us to give a general so-

lution of the functional equation (10).

5. Scalar concomitants of a system of vectors

Theorem 23. Every scalar concomitant of a system of m linearly

independent vectors in the geometry En
1 is determined by the mapping:

F
(
u
1
, u
2
, . . . , u

m

)
= Θ

(
p

(
u
i
, u

j

))

where i ≤ j = 1, 2, . . . , m ≤ n and Θ is an arbitrary function of m(m+1)
2

variables.

Proof. First we prove the assertion of the theorem in the case m = n.
A given linearly independent set of n vectors we arrange into a sequence
u
1
, u
2
, . . . , u

n
so that its signature is

(∗) ε0 = · · · = εs−1 = 1; εs = · · · = εn = −1, for s ∈ {1, 2, . . . , n}
or

(∗∗) ε0 = · · · = εs−1 = 1; εs = 0; εs+1 = · · · = εn = −1, for
s ∈ {1, 2, . . . , n− 1}.

Thus by Lemma 20 or Lemma 22 we get a pseudo-orthonormal basis
e
1
, . . . , e

s−1
, e
n
, e
s+1

, . . . , e
n−1

, e
s
. The covectors corresponding to this basis we

number continuously:
∗
e
1
,
∗
e
2
, . . . ,

∗
e
n
. The matrix A = A

(
u
1
, u
2
, . . . , u

n

)
whose

entries in the i-th row are the successive coefficients of the covector
∗
e
i
, is

a pseudo-orthogonal matrix of index one. Formulae (21), or (21) and (24)
enable us to find the i-th coefficient of the image of the vector u

j
.

(
Au

j

)i

=
∗
e
i

(
u
j

)
= p

(
e
k
, u

j

)
= H

(
p

(
u
l
, u

t

))
where





k = i if s 6= i 6=n

k = n if i = s

k = s if i = n.
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Now, in accordance with the equality (10) we have for
A = A

(
u
1
, u
2
, . . . , u

n

)
∈ G1

F
(
u
1
, u
2
, . . . , u

n

)
= F

(
Au

1
, Au

2
, . . . , Au

n

)
= Θ

(
p

(
u
i
, u

j

))
.

Now, let m < n and P (m) = P
(
u
1
, u
2
, . . . , u

m

)
6= 0. We construct the

vectors e
1
, e
2
, . . . , e

m
of a pseudo-orthonormal basis in accordance with (20)

or (23) and the remaining vectors e
m+1

, . . . , e
n

can be constructed in the

pseudo-orthogonal complement L⊥
(
u
1
, u
2
, . . . , u

m

)
and the assertion of the

theorem is true.
Finally, let m < n and P (m) = 0. In this case we can arrange

the vectors in a sequence with signature ε0 = · · · = εm−1 = 1 and
εm = 0. This implies that the subspace L

(
u
1
, u
2
, . . . , u

m

)
is isotropic and

the subspace L⊥
(
u
1
, u
2
, . . . , u

m

)
is not a pseudo-orthogonal complement of

L
(
u
1
, u
2
, . . . , u

m

)
. The subspace L

(
u
1
, u
2
, . . . , u

m−1

)
is Euclidean and we con-

struct the vectors e
1
, e
2
, . . . , e

m−1
of a pseudo-orthonormal basis in accor-

dance with Lemma 20. In the isotropic subspace L

(
u
1
, u
2
, . . . , u

m−1
, u
m

)

is contained exactly one one-dimensional isotropic subspace which is de-

termined by the isotropic vector v
1

= 1
2P (m−1)

m∑
i=1

m

Pmiu
i
. Of course, v

1
⊥

u
1
, u
2
, . . . , u

m−1
, u
m

. By virtue of
m

Pmm = P (m − 1) > 0 we get the equal-

ity L

(
u
1
, u
2
, . . . , u

m−1
, u
m

)
= L

(
u
1
, u
2
, . . . , u

m−1
, v
1

)
. It should be remarked

that there exist other isotropic subspaces of dimension m, which contain

the Euclidean subspace L

(
u
1
, u
2
, . . . , u

m−1

)
. There is a one-to-one rela-

tion between the set of all isotropic subspaces of dimension m inclusive

the Euclidean subspace L

(
u
1
, u
2
, . . . , u

m−1

)
and the set of all points of a

sphere of dimension n − m − 1 (see [8]). Moreover, in the extreme case
m = n−1 both sets contain two elements. To isotropic subspaces of dimen-

sion m inclusive L

(
u
1
, u
2
, . . . , u

m−1

)
there belongs L

(
u
1
, u
2
, . . . , u

m−1
, v
2

)
6=
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L

(
u
1
, u
2
, . . . , u

m−1
, v
1

)
where v

2
is an isotropic vector (this is a consequence

of the condition p
(
u
m

, v
2

)
= 1 unlike p

(
u
m

, v
1

)
= 0). Of course, we have

v
2
⊥ u

1
, u
2
, . . . , u

m−1
. The vectors e

m
= v

1
− v

2
and e

m+1
= v

1
+ v

2
satisfy the

conditions:

p

(
e
m

, e
m+1

)
= 0, p

(
e
m

, e
m

)
= −1, p

(
e

m+1
, e
m+1

)
= 1,

p
(

e
m

, u
i

)
=

{
0 for i < m

−1 for i = m
and p

(
e

m+1
, u

i

)
=

{
0 for i < m

1 for i = m.

The vectors e
1
, e
2
, . . . , e

m−1
, e
m

, e
m+1

constitute a pseudo-orthonormal basis of

the subspace L

(
u
1
, u
2
, . . . , u

m−1
, u
m

, v
2

)
which is pseudo-Euclidean by virtue

of P (m + 1) = P

(
u
1
, u
2
, . . . , u

m−1
, u
m

, v
2

)
= −P (m− 1) < 0. This completes

the proof. ¤

Theorem 23 may be rewritten as follows:

Theorem 24. The sequence of linearly independent vectors u
1
, u
2
, . . . , u

m

and the sequence of linearly independent vectors v
1
, v
2
, . . . , v

m
belong to the

same transitive fiber, i.e. they satisfy the condition

∨

A∈G1

∧

i=1,...,m

v
i

= Au
i

if and only if the equality of Gram’s matrices

P
(
u
1
, u
2
, . . . , u

m

)
= P

(
v
1
, v
2
, . . . , v

m

)

holds.
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