Geometry of multiparametrized Lagrangians

By MIHAI ANASTASIEI (Iaşi) and HIROAKI KAWAGUCHI* (Fujisawa)

Dedicated to Professor Lajos Tamássy on his 70th birthday

1. Introduction

There are many problems in theoretical physics and variational calculus in which the Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial y^{i}}\right)-\frac{\partial \mathcal{L}}{\partial x^{i}}=0 \tag{1.1}
\end{equation*}
$$

where $y^{i}=\frac{d x^{i}}{d t}$, are fundamental.
The function \mathcal{L} depending on $\left(x^{i}\right)$ and $\left(y^{i}\right), i=1,2, \ldots, n$, is called a Lagrangian function or simply a Lagrangian. From a geometrical point of view a Lagrangian (of M) is a function $\mathcal{L}: T M \rightarrow R$, where $T M$ is the total space of the tangent bundle $(T M, \tau, M)$ to a smooth $\left(C^{\infty}\right)$ manifold M. A point $v \in T M$ has the local coordinates $\left(x^{i}, y^{i}\right)$, where $\left(x^{i}\right)$ are the local coordinates of $x=\tau(v)$, and $v_{x}=y^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{x}$. Thus

$$
\mathcal{L}:\left(x^{i}, y^{i}\right) \rightarrow \mathcal{L}\left(x^{i}, y^{i}\right), \quad i=1,2, \ldots, n=\operatorname{dim} M .
$$

Expanding the time derivative, eq. (1.1) becomes

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{L}}{\partial y^{i} \partial y^{j}} \frac{d^{2} x^{j}}{d t^{2}}=\frac{\partial \mathcal{L}}{\partial x^{i}}-\frac{\partial^{2} \mathcal{L}}{\partial y^{i} \partial x^{j}} \frac{d x^{j}}{d t} \tag{1.2}
\end{equation*}
$$

and in order to put it in a normal form we must assume

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} \mathcal{L}}{\partial y^{i} \partial y^{j}}\right) \neq 0 \tag{1.3}
\end{equation*}
$$

*This paper was presented at the Conference on Finsler Geometry and its Applications to Physics and Control Theory, August 26-31, 1991, Debrecen, Hungary.

If (1.3) holds, \mathcal{L} is called a regular Lagrangian.
If we put $\theta_{\mathcal{L}}=\frac{\partial \mathcal{L}}{\partial x^{i}} d x^{i}$, then $\omega_{\mathcal{L}}=-d \theta_{\mathcal{L}}$ gives a symplectic two forms on $T M$ which is nondegenerate if \mathcal{L} is a regular Lagrangian. Thus the results of symplectic geometry may be applied.

A different point of view was proposed by R. Miron. Namely, using $g_{i j}=\frac{1}{2} \frac{\partial^{2} \mathcal{L}}{\partial y^{i} \partial y^{j}}$ and a nonlinear connection on $T M$, a metrical structure on $T M$ is introduced so that the results of the so-called Lagrange geometry may be applied.

The origin of Lagrange geometry is as follows. It is usual to call the pair (M, \mathcal{L}), where \mathcal{L} is a regular Lagrangian, a Lagrange space. If (M, F) is a Finsler space (cf. M. Matsumoto [5]) then taking $\mathcal{L}=F^{2}$ we see that any Finsler space is a Lagrange space. As is well-known Finsler geometry has a long tradition and its body of results is very large.

On the other hand, as Professor Radu Miron showed in [6] and [7], the main results of Finsler geometry regarding the nonlinear connection, the Cartan connection and so on can be extended to Lagrange spaces. Thus the geometry of the pair (M, \mathcal{L}), called Lagrange geometry, was developed in the last ten years.

In dynamics as well as in variational calculus (see R. Hermann [4] p.117) time dependent Lagrangians are also considered.

A regular time dependent Lagrangian is a function $\mathcal{L}: T M \times R \rightarrow$ $R,\left(x^{i}, y^{i}, t\right) \rightarrow L\left(x^{i}, y^{i}, t\right)$ such that $\operatorname{det}\left(\frac{\partial^{2} \mathcal{L}}{\partial y^{i} \partial y^{j}}\right) \neq 0$. We developed a geometrical theory of such Lagrangians in some recent papers ([1]-[3]). Now we consider multiparametrized Lagrangians i.e. functions $\mathcal{L}: T M \times$ $R^{m} \rightarrow R,\left(x^{i}, y^{i}, t^{1}, \ldots, t^{m}\right) \rightarrow \mathcal{L}\left(x^{i}, y^{i}, t^{1}, \ldots, t^{m}\right)$. Such Lagrangians appear in variational problems for wich the constraints are considered (cf. R. Hermann [4]).

We shall derive here the main facts from the geometry of the manifold $E=T M \times R^{m}$ fibered over M, endowed with a regular multiparametrized Lagrangian \mathcal{L}, i.e. $\operatorname{det}\left(\frac{\partial^{2} \mathcal{L}}{\partial y^{i} \partial y^{j}}\right) \neq 0$ be assumed.

2. On the manifold $T M \times R^{m}$ fibered over M

A transformation $\left(x^{i}, y^{i}, t^{\alpha}\right) \rightarrow\left(\bar{x}^{i}, \bar{y}^{i}, \bar{t}^{\alpha}\right)$ of local coordinates on $T M \times R^{m}$ is of the form

$$
\begin{align*}
& \bar{x}^{i}=\bar{x}^{i}\left(x^{1}, \ldots, x^{n}\right), \quad \operatorname{rank}\left(\frac{\partial \bar{x}^{i}}{\partial x^{j}}\right)=n \tag{2.1}\\
& \bar{y}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}} y^{j}, \quad \bar{t}^{\alpha}=t^{\alpha} .
\end{align*}
$$

Here and in the sequel the indices i, j, \ldots, run from 1 to $n=\operatorname{dim} M$ and $\alpha, \beta, \gamma, \ldots$, run from 1 to m.

Sometimes we shall set $\left(y^{i}, t^{\alpha}\right)=z^{a}, a, b, c, \ldots=1, \ldots, n+m$ and then (2.1) becomes

$$
\begin{align*}
& \bar{x}^{i}=\bar{x}^{i}\left(x^{1}, \ldots, x^{n}\right), \operatorname{rank}\left(\frac{\partial \bar{x}^{i}}{\partial x^{j}}\right)=n \tag{2.2.}\\
& \bar{z}^{a}=M_{b}^{a}(x) z^{b}, \quad \operatorname{rank}\left(M_{b}^{a}\right)=n+m
\end{align*}
$$

Computing the Jacobian matrix of the mapping (2.2) we obtain
Theorem 2.1. The manifold $T M \times R^{m}$ is orientable.
The triad $\left(T M \times R^{m}, \pi, M\right), \pi\left(v, t^{\alpha}\right)=\tau(v)$ is a vector bundle of rank $n+m$ (the local fibre is $T_{x} M \times R^{m}$, at $x=\tau(v)$).

By a general result on vector bundles (R. Miron and M. Anastasiei [7]) we have

Theorem 2.2. If M is paracompact then $T M \times R^{m}$ is paracompact.
Thus if M is paracompact then $T M \times R^{m}$ admits smooth partitions of unity.

Let us set $E=T M \times R^{m}$ and let $\pi^{T}: T E \rightarrow T M$ be the tangent mapping of π. Then $V E=\operatorname{ker} \pi^{T}$ is a vector subbundle of the tangent bundle $\left(T E, \tau_{E}, E\right)$ to E. We call it the vertical bundle over E. The natural basis in $T_{u} E, u \in E$, is $\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial t^{\alpha}}\right)$ and $\left(\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial t^{\alpha}}\right)$ gives a basis of $V_{u} E$.

These bases transform under (2.1) as follows:

$$
\begin{align*}
\frac{\partial}{\partial x^{i}} & =\frac{\partial^{2} \bar{x}^{h}}{\partial x^{i} \partial x^{j}} y^{j} \frac{\partial}{\partial \bar{y}^{h}}+\frac{\partial \bar{x}^{h}}{\partial x^{i}} \frac{\partial}{\partial \bar{x}^{h}} \tag{2.3}\\
\frac{\partial}{\partial y^{i}} & =\frac{\partial \bar{x}^{k}}{\partial x^{i}} \frac{\partial}{\partial \bar{y}^{k}}, \quad \frac{\partial}{\partial t^{\alpha}}=\frac{\partial}{\partial \bar{t}^{\alpha}} .
\end{align*}
$$

By (2.3) it comes out that $J: T_{u} E \rightarrow T_{u} E$ given by

$$
\begin{equation*}
J\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial y^{i}}, \quad J\left(\frac{\partial}{\partial z^{a}}\right)=0 \text { is well-defined. } \tag{2.4}
\end{equation*}
$$

By a direct calculation one gets
Theorem 2.3.

$$
\begin{array}{ll}
\text { (i) } J^{2}=0, & \text { (i) Ker } J=V E, \operatorname{Im} J \subset V E, \\
\text { (iii) } N_{J}=0, & \text { (iv) } L_{C} J=-J
\end{array}
$$

Here N_{J} denotes the Nijenhuis tensor field associated to J and $L_{C} J$ denotes the Lie derivative of J with respect to the Liouville vector field

$$
\begin{aligned}
& C=z^{a} \frac{\partial}{\partial z^{a}}: \\
& \\
& \quad\left(L_{C} J\right)(X)=[C, J X]-J[C, X], \quad X \in \mathfrak{X}(E) .
\end{aligned}
$$

Thus, the manifold $T M \times R^{m}$ is endowed with an almost tangent structure (cf. (i)) which is integrable (cf. (iii)) and homogeneous of degree 0 (cf. (iv)).

3. Nonlinear connections on $E=T M \times R^{m}$

Now we shall regard the vertical bundle over E as a distribution $u \rightarrow V_{u} E, u \in E$, on E.

Definition 3.1. A nonlinear connection on E is a distribution $u \rightarrow$ $H_{u} E$ which is supplementary to the vertical distribution on E, that is,

$$
\begin{equation*}
T_{u} E=H_{u} E \oplus V_{u} E, u \in E \tag{3.1}
\end{equation*}
$$

holds good.
Locally, the distribution $u \rightarrow H_{u} E$, called horizontal distribution, is completely determined by n local vector fields

$$
\begin{equation*}
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{a} \frac{\partial}{\partial z^{a}}=\frac{\partial}{\partial x^{i}}-N_{i}^{j} \frac{\partial}{\partial y^{j}}-N_{i}^{\alpha} \frac{\partial}{\partial t^{\alpha}} . \tag{3.2}
\end{equation*}
$$

The form of these vector fields is a consequence of the fact that $\left.\pi^{T}\right|_{H E}$ is an isomorphism which carries $\frac{\delta}{\delta x^{i}}$ to $\frac{\partial}{\partial x^{i}}$. Since $u \rightarrow H_{u} E$ is a global distribution, the adapted frame $\left(\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial z^{a}}\right)$ belonging to the decomposition (3.1) must transform under (2.1) as follows:

$$
\begin{equation*}
\frac{\delta}{\delta x^{i}}=\frac{\partial \bar{x}^{h}}{\partial x^{i}} \frac{\delta}{\delta \bar{x}^{h}}, \quad \frac{\partial}{\partial z^{a}}=M_{a}^{b}(x) \frac{\partial}{\partial \bar{z}^{b}} . \tag{3.3}
\end{equation*}
$$

By (3.3), the local coefficients $\left(N_{i}^{a}(x, y, t)\right)$ have the following transformation law under (2.1):

$$
\begin{equation*}
N_{i}^{a} \frac{\partial \bar{x}^{i}}{\partial x^{j}}=M_{b}^{a} N_{j}^{b}-\frac{\partial M_{b}^{a}}{\partial x^{j}} z^{b} . \tag{3.4}
\end{equation*}
$$

Taking in (3.4) $a=h$ and then $a=\alpha$ we see that (3.4) is equivalent to:

$$
\begin{align*}
& \bar{N}_{i}^{h} \frac{\partial \bar{x}^{i}}{\partial x^{j}}=\frac{\partial \bar{x}^{h}}{\partial x^{k}} N_{j}^{k}-\frac{\partial^{2} \bar{x}^{h}}{\partial x^{j} \partial x^{k}} y^{k}, \tag{3.5}\\
& \bar{N}_{i}^{\alpha} \frac{\partial \bar{x}^{i}}{\partial x^{j}}=N_{j}^{\alpha} .
\end{align*}
$$

Thus $\left(N_{i}^{j}(x, y, t)\right)$ transform as the coefficients of a nonlinear connection on $T M$ and $\left(N_{i}^{\alpha}\right)$ as the components of a covector on M. We shall say that $\left(N_{i}^{\alpha}\right)$ defines an M-covector on E for every α.

Conversely, a set of functions $\left(N_{i}^{j}(x, y, t), N_{i}^{\alpha}(x, y, t)\right)$ which satisfy (3.5) defines a nonlinear connection on E.

The following theorem says us that a regular multiparametrized Lagrangian \mathcal{L} determines a nonlinear connection on E.

Let us put:

$$
\begin{align*}
g_{i j}\left(x, y, t^{\alpha}\right) & =\frac{1}{2} \frac{\partial^{2} \mathcal{L}\left(x, y, t^{\alpha}\right)}{\partial y^{i} \partial y^{j}} \tag{3.6}\\
G^{i}\left(x, y, t^{\alpha}\right) & =\frac{1}{4} g^{i k}\left(\frac{\partial^{2} \mathcal{L}}{\partial y^{k} \partial x^{j}} y^{j}-\frac{\partial \mathcal{L}}{\partial x^{k}}\right) . \tag{3.7}
\end{align*}
$$

Theorem 3.1. The set of functions

$$
N_{j}^{i}\left(x, y, t^{\alpha}\right)=\frac{\partial G^{i}\left(x, y, t^{\alpha}\right)}{\partial y^{j}} ; \quad N_{i}^{\alpha}=\frac{1}{2} \frac{\partial^{2} \mathcal{L}}{\partial t^{\alpha} \partial y^{i}}
$$

defines a nonlinear connection on $T M \times R^{m}$.
Proof. One checks by a tedious computation that these functions transform under (2.1) as in (3.5).

Remark 3.1. The form of G^{i} in (3.7) was suggested by the form (1.2) of the Euler-Lagrange equations.

Remark 3.2. The nonlinear connection determined by \mathcal{L} is symmetric in the sense that its torsion

$$
t_{i j}^{k}=\frac{\partial N_{i}^{k}}{\partial y^{j}}-\frac{\partial N_{j}^{k}}{\partial y^{i}}
$$

vanishes.

4. Other geometrical structures on $T M \times R^{m}$

Let $N_{\mathcal{L}}$ be the nonlinear connection on E defined by \mathcal{L} and $\left(\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial z^{a}}\right)$ the corresponding adapted frame.

If we set:

$$
\begin{equation*}
P\left(\frac{\delta}{\delta x^{i}}\right)=\frac{\delta}{\delta x^{i}}, \quad P\left(\frac{\partial}{\partial z^{a}}\right)=-\frac{\partial}{\partial z^{a}} \tag{4.1}
\end{equation*}
$$

we obtain an almost product structure on E, that is, $P^{2}=I$, where I denotes the Kronecker tensor field.

Now let $\left(d x^{i}, \delta z^{a}\right)$ be the frame dual to $\left(\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial z^{a}}\right)$. It follows that $\delta z^{a}=d z^{a}+N_{i}^{a} d x^{i}$, or equivalently,

$$
\begin{align*}
& \delta y^{i}=d y^{i}+N_{k}^{i} d x^{k} \\
& \delta t^{\alpha}=d t^{\alpha}+N_{i}^{\alpha} d x^{i} \tag{4.2}
\end{align*}
$$

Let us define a linear mapping $F: T_{u} E \rightarrow T_{u} E$ by

$$
\begin{equation*}
F\left(\frac{\delta}{\delta x^{i}}\right)=-\frac{\partial}{\partial y^{i}}, \quad F\left(\frac{\partial}{\partial y^{i}}\right)=\frac{\delta}{\delta x^{i}}, \quad F\left(\frac{\partial}{\partial t^{\alpha}}\right)=0 . \tag{4.3}
\end{equation*}
$$

We immediately get
Theorem 4.1. The following equalities hold good:
(i) $\operatorname{rank} F=2 n$,
(ii) $F^{3}+F=0$,
(iii) $F^{2}=-I+\frac{\partial}{\partial t^{\alpha}} \otimes \delta t^{\alpha}$

Thus $T M \times R^{m}$ is framed manifold. The frame structure $\left(F, \frac{\partial}{\partial t^{\alpha}}, \delta t^{\alpha}\right)$ is said to be normal if the tensor field

$$
\begin{equation*}
S(X, Y)=N_{F}(X, Y)+d\left(\delta t^{\alpha}\right)(X, Y) \frac{\partial}{\partial t^{\alpha}}, \quad X, Y \in \mathscr{X}(E) \tag{4.5}
\end{equation*}
$$

vanishes identically.
A computation in local coordinates leads to
Theorem 4.2. The frame structure $\left(F, \frac{\partial}{\partial t^{\alpha}}, \delta t^{\alpha}\right)$ is normal if and only if

1) The curvature of $N_{\mathcal{L}}$ vanishes i.e.

$$
\Omega_{i j}^{q}:=\frac{\delta N_{j}^{a}}{\delta x^{i}}-\frac{\delta N_{i}^{a}}{\delta x^{j}}=0
$$

2) $\frac{\partial N_{i}^{a}}{\partial t^{\alpha}}=0$.

It is obvious that the following tensor field

$$
\begin{equation*}
G=g_{i j} d x^{i} \otimes d x^{j}+g_{i j} \delta y^{i} \otimes \delta y^{j}+\sum_{\alpha=1}^{m} \delta t^{\alpha} \otimes \delta t^{\alpha} \tag{4.6}
\end{equation*}
$$

defines a metric structure on $T M \times R^{m}$.
It is Riemannian if the quadratic form $g_{i j} \xi^{i} \xi^{j},\left(\xi^{i}\right) \in R^{n}$, is positive definite.

By (4.6) we have

Theorem 4.3. The horizontal and vertical distributions are orthogonal with respect to G.

Some computations in local coordinates give
Theorem 4.4. The following equations hold good:

$$
\begin{align*}
G(F X, F Y) & =G(X, Y)-\sum_{\alpha=1}^{m} \delta t^{\alpha}(X) \delta t^{\alpha}(Y) \tag{i}\\
\delta t^{\alpha}(X) & =G\left(\frac{\partial}{\partial t^{\alpha}}, X\right) \tag{ii}\\
G(P X, Y) & =G(X, P Y), \quad X, Y \in \mathfrak{X}(E) \tag{iii}
\end{align*}
$$

Thus, the manifold $T M \times R^{m}$ possesses an almost product structure, a frame structure and a metric structure related by (i)-(iii) in Theorem 4.4.

5. M-connections on $E=T M \times R^{m}$

We identify, as is usual, a linear connection on E with the operator of covariant derivative D associated to it.

Definition 5.1. A linear connection D on E is said to be an $M-$ connection if the following conditions hold good:
(i) $D P=0$,
(ii) $D F=0$,
(iii) $D\left(\frac{\partial}{\partial t^{\alpha}}\right)=0, \alpha=1,2, \ldots, m$.

Remark 5.1. An M-connection D on E satisfies also $D\left(\delta t^{\alpha}\right)=0$ by virtue (iii) in Theorem 4.1.

We have
Theorem 5.1. A linear connection D on E is an M-connection if and only if in the frame $\left(\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial t^{\alpha}}\right)$ we have

$$
\begin{array}{ll}
D_{\frac{\delta}{\delta x^{k}}} \frac{\delta}{\delta x^{j}}=L_{j k}^{i} \frac{\delta}{\delta x^{i}}, & D_{\frac{\delta}{\delta x^{k}}} \frac{\partial}{\partial y^{j}}=L_{j k}^{i} \frac{\partial}{\partial y^{i}}, \\
D_{\frac{\partial}{\partial y^{k}}} \frac{\delta}{\delta x^{j}}=C_{j k}^{i} \frac{\delta}{\delta x^{i}}, & D_{\frac{\partial}{\partial y^{k}}} \frac{\partial}{\partial y^{j}}=C_{j k}^{i} \frac{\partial}{\partial y^{i}}, \tag{5.1}\\
D_{\frac{\delta}{\delta t^{\alpha}}} \frac{\delta}{\delta x^{j}}=C_{j \alpha}^{i} \frac{\delta}{\delta x^{i}}, & D_{\frac{\delta}{\delta t^{\alpha}}} \frac{\partial}{\partial y^{j}}=C_{j \alpha}^{i} \frac{\partial}{\partial y^{i}}
\end{array}
$$

where, under (2.1), $L_{j k}^{i}$ change like the coefficients of a linear connection on $M, C_{j k}^{i}$ change like the components of a tensor field of type $(1,2)$ on M
and $C_{j \alpha}^{i}(\alpha=1,2, \ldots, m)$ change like the components of a tensor field of type $(1,1)$ on M.

Thus we can give an M-connection as a set of local coefficients $D \Gamma=$ $\left(L_{j k}^{i}, C_{j k}^{i}, C_{j \alpha}^{i}\right)$.

Using these coefficients, h - and v-covariant derivatives denoted by short and long horizontal bars, respectively, of any M-tensor can be considered. For instance,

$$
\begin{aligned}
\left.t_{i j}\right|_{k} & =\frac{\delta t_{i j}}{\delta x^{k}}-L_{i k}^{h} t_{h j}-L_{j k}^{h} t_{i h} \\
t_{i j \mid k} & =\frac{\partial t_{i j}}{\partial y^{k}}-C_{i k}^{h} t_{h j}-C_{j k}^{h} t_{i h} \\
t_{i j \mid \alpha} & =\frac{\partial t_{i j}}{\partial t^{\alpha}}-C_{i \alpha}^{h} t_{h j}-C_{j \alpha}^{h} t_{i h} .
\end{aligned}
$$

An M-connection on E is said to be metrical if $D G=0$. A direct computation gives

Theorem 5.2. An M-connection is metrical if and only if

$$
\begin{equation*}
\left.g_{i j}\right|_{k}=0, \quad g_{i j \mid k}=0, \quad g_{i j \mid \alpha}=0 \tag{5.2}
\end{equation*}
$$

holds.
Let us set $T_{j k}^{i}=L_{j k}^{i}-L_{k j}^{i}, \quad S_{j k}^{i}=C_{j k}^{i}-C_{k j}^{i}$. These tensor fields are the torsions of the M-connection ΓD.

On the existence of the metrical M-connection we have the following
Theorem 5.3. There exists a set of metrical M-connections with $T_{j k}^{i}=S_{j k}^{i}=0$. Their local coefficients are as follows:

$$
\begin{align*}
L_{i j}^{k} & =\frac{1}{2} g^{k h}\left(\frac{\delta g_{h j}}{\delta x^{i}}+\frac{\delta g_{i h}}{\delta x^{j}}-\frac{\delta g_{i j}}{\delta x^{h}}\right) \\
C_{i j}^{k} & =\frac{1}{2} g^{k h}\left(\frac{\partial g_{h j}}{\partial y^{i}}+\frac{\partial g_{i h}}{\partial y^{j}}-\frac{\partial g_{i j}}{\partial y^{h}}\right) \tag{5.3}\\
C_{i \alpha}^{k} & =\frac{1}{2} g^{k h} \frac{\partial g_{i h}}{\partial t^{\alpha}}+O_{i h}^{j k} X_{j \alpha}^{h},
\end{align*}
$$

where $X_{j \alpha}^{h}$ is an arbitrary M-tensor field of type $(1,1)$ and $O_{i h}^{j k}=$ $\frac{1}{2}\left(\delta_{i}^{j} \delta_{h}^{k}-g_{i h} g^{k j}\right)$ is the Obata operator.

Proof. The condition $\left.g_{i j}\right|_{k}=0$ is equivalent to $\frac{\delta g_{i j}}{\delta x^{k}}=L_{i k}^{h} g_{h j}+$ $L_{j k}^{h} g_{i h}$. Subtracting this from the sum of the other two equations obtained by a cyclic permutation in it of the indices i, j, k and using $T_{j k}^{i}=0$ one gets
$L_{j k}^{i} . C_{j h}^{i}$ is derived in a similar way. Then it is easy to check that $\frac{1}{2} g^{k h} \frac{\partial g_{i h}}{\partial t^{\alpha}}$ verifies $g_{i j \mid \alpha}=0$. If $C_{i \alpha}^{k}$ is another solution of the equation $g_{i j \mid \alpha}=0$, then $B_{i \alpha}^{k}=C_{i \alpha}^{k}-\frac{1}{2} g^{k h} \frac{\partial g_{i h}}{\partial t^{\alpha}}$ satisfies the equation $g_{k i} B_{j}^{k}+g_{j k} B_{i}^{k}=0$.

Using the Obata operator we find that the general solution of the last equation is $B_{i \alpha}^{k}=O_{i h}^{j k} X_{j \alpha}^{h}$.

References

[1] M. Anastasiei and H. Kawaguchi, A geometrical theory of time dependent Lagrangians. I. Nonlinear connections, Tensor N. S. Vol. 48 (3) (1989), 273-282.
[2] M. Anastasiei and H. Kawaguchi, A geometrical theory of time dependent Lagrangians. II. M-connections, Tensor N. S. Vol. 48 (3) (1989), 283-293.
[3] M. Anastasiei and H. Kawaguchi, A geometrical theory of time dependent Lagrangians. III. Applications, Tensor N. S. Vol. 49 (3) (1990), 296-304.
[4] R. Hermann, Differential geometry and the calculus of variations, Academic Press (1968).
[5] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha (1986).
[6] R. Miron, A Lagrangian theory of relativity, An. St. Univ. "Al. I. Cuza" Iaşi, XXXII, s.I.a, Matematica 2 (1986), 37-62.
[7] R. Miron and M. Anastasiei, Vector bundles. Lagrange Spaces. Applications to Relativity. (Romanian), Editura Academiei Române (1987).

```
MIHAI ANASTASIEI
FACULTATEA DE MATHEMATICA
UNIVERSITATEA ,,AL. I. CUZA"
6600 IAŞI, ROMANIA
HIROAKI KAWAGUCHI
DEPARTMENT OF INFORMATION SCIENCE
SHÔNAN INSTITUTE OF TECHNOLOGY
TSUJIDO, FUJISAWA 251, JAPAN
```

(Received October 3, 1991)

