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Geometry of multiparametrized Lagrangians
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Dedicated to Professor Lajos Tamássy on his 70th birthday

1. Introduction

There are many problems in theoretical physics and variational cal-
culus in which the Euler–Lagrange equations

(1.1)
d

dt

(
∂L
∂yi

)
− ∂L

∂xi
= 0 ,

where yi = dxi

dt , are fundamental.
The function L depending on (xi) and (yi), i = 1, 2, . . . , n, is called

a Lagrangian function or simply a Lagrangian. From a geometrical point
of view a Lagrangian (of M) is a function L : TM → R, where TM is the
total space of the tangent bundle (TM, τ, M) to a smooth (C∞) manifold
M . A point v ∈ TM has the local coordinates (xi, yi), where (xi) are the
local coordinates of x = τ(v), and vx = yi

(
∂

∂xi

)
x
. Thus

L : (xi, yi) → L(xi, yi), i = 1, 2, . . . , n = dim M .

Expanding the time derivative, eq. (1.1) becomes

(1.2)
∂2L

∂yi∂yj

d2xj

dt2
=

∂L
∂xi

− ∂2L
∂yi∂xj

dxj

dt

and in order to put it in a normal form we must assume

(1.3) det
(

∂2L
∂yi∂yj

)
6= 0 .
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If (1.3) holds, L is called a regular Lagrangian.
If we put θL = ∂L

∂xi dxi, then ωL = −dθL gives a symplectic two forms
on TM which is nondegenerate if L is a regular Lagrangian. Thus the
results of symplectic geometry may be applied.

A different point of view was proposed by R. Miron. Namely, using
gij = 1

2
∂2L

∂yi∂yj and a nonlinear connection on TM , a metrical structure on
TM is introduced so that the results of the so-called Lagrange geometry
may be applied.

The origin of Lagrange geometry is as follows. It is usual to call the
pair (M,L), where L is a regular Lagrangian, a Lagrange space. If (M, F )
is a Finsler space (cf. M. Matsumoto [5]) then taking L = F 2 we see that
any Finsler space is a Lagrange space. As is well-known Finsler geometry
has a long tradition and its body of results is very large.

On the other hand, as Professor Radu Miron showed in [6] and [7],
the main results of Finsler geometry regarding the nonlinear connection,
the Cartan connection and so on can be extended to Lagrange spaces. Thus
the geometry of the pair (M,L), called Lagrange geometry, was developed
in the last ten years.

In dynamics as well as in variational calculus (see R. Hermann [4]
p.117) time dependent Lagrangians are also considered.

A regular time dependent Lagrangian is a function L : TM × R →
R, (xi, yi, t) → L(xi, yi, t) such that det

(
∂2L

∂yi∂yj

)
6= 0. We developed a

geometrical theory of such Lagrangians in some recent papers ([1]–[3]).
Now we consider multiparametrized Lagrangians i.e. functions L : TM ×
Rm → R, (xi, yi, t1, . . . , tm) → L(xi, yi, t1, . . . , tm). Such Lagrangians
appear in variational problems for wich the constraints are considered (cf.
R. Hermann [4]).

We shall derive here the main facts from the geometry of the manifold
E = TM×Rm fibered over M , endowed with a regular multiparametrized
Lagrangian L, i.e. det

(
∂2L

∂yi∂yj

)
6= 0 be assumed.

2. On the manifold TM × Rm fibered over M

A transformation (xi, yi, tα) → (x̄i, ȳi, t̄α) of local coordinates on
TM ×Rm is of the form

(2.1)
x̄i =x̄i(x1, . . . , xn), rank

(
∂x̄i

∂xj

)
= n

ȳi =
∂x̄i

∂xj
yj , t̄α = tα .

Here and in the sequel the indices i, j, . . . , run from 1 to n = dim M and
α, β, γ, . . . , run from 1 to m.



Geometry of multiparametrized Lagrangians 31

Sometimes we shall set (yi, tα) = za, a, b, c, . . . = 1, . . . , n + m and
then (2.1) becomes

(2.2.)
x̄i = x̄i(x1, . . . , xn), rank

(
∂x̄i

∂xj

)
= n

z̄a = Ma
b (x)zb, rank(Ma

b ) = n + m.

Computing the Jacobian matrix of the mapping (2.2) we obtain

Theorem 2.1. The manifold TM ×Rm is orientable.

The triad (TM × Rm, π, M), π(v, tα) = τ(v) is a vector bundle of
rank n + m (the local fibre is TxM ×Rm, at x = τ(v)).

By a general result on vector bundles (R. Miron and M. Anastasiei
[7]) we have

Theorem 2.2. If M is paracompact then TM ×Rm is paracompact.

Thus if M is paracompact then TM × Rm admits smooth partitions
of unity.

Let us set E = TM × Rm and let πT : TE → TM be the tangent
mapping of π. Then V E = ker πT is a vector subbundle of the tangent
bundle (TE, τE , E) to E. We call it the vertical bundle over E. The
natural basis in TuE, u ∈ E, is

(
∂

∂xi ,
∂

∂yi ,
∂

∂tα

)
and

(
∂

∂yi ,
∂

∂tα

)
gives a

basis of VuE.
These bases transform under (2.1) as follows:

(2.3)

∂

∂xi
=

∂2x̄h

∂xi∂xj
yj ∂

∂ȳh
+

∂x̄h

∂xi

∂

∂x̄h

∂

∂yi
=

∂x̄k

∂xi

∂

∂ȳk
,

∂

∂tα
=

∂

∂t̄α
.

By (2.3) it comes out that J : TuE → TuE given by

(2.4) J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂za

)
= 0 is well-defined.

By a direct calculation one gets
Theorem 2.3.

(i) J2 = 0, (i) KerJ = V E, Im J ⊂ V E,

(iii) NJ = 0, (iv) LCJ = −J.

Here NJ denotes the Nijenhuis tensor field associated to J and LCJ de-
notes the Lie derivative of J with respect to the Liouville vector field
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C = za ∂
∂za :

(LCJ)(X) = [C, JX]− J [C,X], X ∈ X(E) .

Thus, the manifold TM × Rm is endowed with an almost tangent
structure (cf. (i)) which is integrable (cf. (iii)) and homogeneous of degree
0 (cf. (iv)).

3. Nonlinear connections on E = TM × Rm

Now we shall regard the vertical bundle over E as a distribution
u → VuE, u ∈ E, on E.

Definition 3.1. A nonlinear connection on E is a distribution u →
HuE which is supplementary to the vertical distribution on E, that is,

(3.1) TuE = HuE ⊕ VuE, u ∈ E

holds good.
Locally, the distribution u → HuE, called horizontal distribution, is

completely determined by n local vector fields

(3.2)
δ

δxi
=

∂

∂xi
−Na

i

∂

∂za
=

∂

∂xi
−N j

i

∂

∂yj
−Nα

i

∂

∂tα
.

The form of these vector fields is a consequence of the fact that πT |HE

is an isomorphism which carries δ
δxi to ∂

∂xi . Since u → HuE is a global
distribution, the adapted frame

(
δ

δxi ,
∂

∂za

)
belonging to the decomposition

(3.1) must transform under (2.1) as follows:

(3.3)
δ

δxi
=

∂x̄h

∂xi

δ

δx̄h
,

∂

∂za
= M b

a(x)
∂

∂z̄b
.

By (3.3), the local coefficients (Na
i (x, y, t)) have the following trans-

formation law under (2.1):

(3.4) Na
i

∂x̄i

∂xj
= Ma

b N b
j −

∂Ma
b

∂xj
zb .

Taking in (3.4) a = h and then a = α we see that (3.4) is equivalent
to:

(3.5)
N̄h

i

∂x̄i

∂xj
=

∂x̄h

∂xk
Nk

j −
∂2x̄h

∂xj∂xk
yk ,

N̄α
i

∂x̄i

∂xj
= Nα

j .
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Thus (N j
i (x, y, t)) transform as the coefficients of a nonlinear connec-

tion on TM and (Nα
i ) as the components of a covector on M . We shall

say that (Nα
i ) defines an M–covector on E for every α.

Conversely, a set of functions (N j
i (x, y, t), Nα

i (x, y, t)) which satisfy
(3.5) defines a nonlinear connection on E.

The following theorem says us that a regular multiparametrized La-
grangian L determines a nonlinear connection on E.

Let us put:

gij(x, y, tα) =
1
2

∂2L(x, y, tα)
∂yi∂yj

(3.6)

Gi(x, y, tα) =
1
4
gik

(
∂2L

∂yk∂xj
yj − ∂L

∂xk

)
.(3.7)

Theorem 3.1. The set of functions

N i
j(x, y, tα) =

∂Gi(x, y, tα)
∂yj

; Nα
i =

1
2

∂2L
∂tα∂yi

defines a nonlinear connection on TM ×Rm.

Proof. One checks by a tedious computation that these functions
transform under (2.1) as in (3.5).

Remark 3.1. The form of Gi in (3.7) was suggested by the form (1.2)
of the Euler-Lagrange equations.

Remark 3.2. The nonlinear connection determined by L is symmetric
in the sense that its torsion

tkij =
∂Nk

i

∂yj
− ∂Nk

j

∂yi

vanishes.

4. Other geometrical structures on TM × Rm

Let NL be the nonlinear connection on E defined by L and
(

δ
δxi , ∂

∂za

)
the corresponding adapted frame.

If we set:

(4.1) P

(
δ

δxi

)
=

δ

δxi
, P

(
∂

∂za

)
= − ∂

∂za
,

we obtain an almost product structure on E, that is, P 2 = I, where I
denotes the Kronecker tensor field.
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Now let (dxi, δza) be the frame dual to
(

δ
δxi , ∂

∂za

)
. It follows that

δza = dza + Na
i dxi, or equivalently,

(4.2)
δyi =dyi + N i

kdxk

δtα =dtα + Nα
i dxi .

Let us define a linear mapping F : TuE → TuE by

(4.3) F

(
δ

δxi

)
= − ∂

∂yi
, F

(
∂

∂yi

)
=

δ

δxi
, F

(
∂

∂tα

)
= 0 .

We immediately get

Theorem 4.1. The following equalities hold good:

(i) rankF = 2n,
(ii) F 3 + F = 0,
(iii) F 2 = −I + ∂

∂tα ⊗ δtα

Thus TM×Rm is framed manifold. The frame structure
(
F, ∂

∂tα , δtα
)

is said to be normal if the tensor field

(4.5) S(X, Y ) = NF (X, Y ) + d(δtα)(X, Y )
∂

∂tα
, X, Y ∈ X(E)

vanishes identically.
A computation in local coordinates leads to

Theorem 4.2. The frame structure
(
F, ∂

∂tα , δtα
)

is normal if and only
if

1) The curvature of NL vanishes i.e.

Ωq
ij :=

δNa
j

δxi
− δNa

i

δxj
= 0 ,

2) ∂Na
i

∂tα = 0 .

It is obvious that the following tensor field

(4.6) G = gijdxi ⊗ dxj + gijδy
i ⊗ δyj +

m∑
α=1

δtα ⊗ δtα

defines a metric structure on TM ×Rm.
It is Riemannian if the quadratic form gijξ

iξj , (ξi) ∈ Rn, is positive
definite.

By (4.6) we have
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Theorem 4.3. The horizontal and vertical distributions are orthogo-
nal with respect to G.

Some computations in local coordinates give

Theorem 4.4. The following equations hold good:

G(FX, FY ) = G(X,Y )−
m∑

α=1

δtα(X)δtα(Y ) ,(i)

δtα(X) = G

(
∂

∂tα
, X

)
,(ii)

G(PX, Y ) = G(X,PY ), X, Y ∈ X(E) .(iii)

Thus, the manifold TM×Rm possesses an almost product structure, a
frame structure and a metric structure related by (i)–(iii) in Theorem 4.4.

5. M–connections on E = TM × Rm

We identify, as is usual, a linear connection on E with the operator
of covariant derivative D associated to it.

Definition 5.1. A linear connection D on E is said to be an M–
connection if the following conditions hold good:

(i) DP = 0,
(ii) DF = 0,
(iii) D

(
∂

∂tα

)
= 0, α = 1, 2, . . . ,m .

Remark 5.1. An M–connection D on E satisfies also D(δtα) = 0 by
virtue (iii) in Theorem 4.1.

We have

Theorem 5.1. A linear connection D on E is an M–connection if and

only if in the frame
(

δ
δxi ,

∂
∂yi ,

∂
∂tα

)
we have

(5.1)

D δ

δxk

δ

δxj
= Li

jk

δ

δxi
, D δ

δxk

∂

∂yj
= Li

jk

∂

∂yi
,

D ∂

∂yk

δ

δxj
= Ci

jk

δ

δxi
, D ∂

∂yk

∂

∂yj
= Ci

jk

∂

∂yi
,

D δ
δtα

δ

δxj
= Ci

jα

δ

δxi
, D δ

δtα

∂

∂yj
= Ci

jα

∂

∂yi

where, under (2.1), Li
jk change like the coefficients of a linear connection

on M,Ci
jk change like the components of a tensor field of type (1,2) on M
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and Ci
jα (α = 1, 2, . . . , m) change like the components of a tensor field of

type (1,1) on M .

Thus we can give an M–connection as a set of local coefficients DΓ =(
Li

jk, Ci
jk, Ci

jα

)
.

Using these coefficients, h– and v–covariant derivatives denoted by
short and long horizontal bars, respectively, of any M–tensor can be con-
sidered. For instance,

tij |k =
δtij
δxk

− Lh
ikthj − Lh

jktih ,

tij|k =
∂tij
∂yk

− Ch
ikthj − Ch

jktih ,

tij|α =
∂tij
∂tα

− Ch
iαthj − Ch

jαtih .

An M–connection on E is said to be metrical if DG = 0. A direct com-
putation gives

Theorem 5.2. An M–connection is metrical if and only if

(5.2) gij |k = 0, gij|k = 0, gij|α = 0 ,

holds.

Let us set T i
jk = Li

jk − Li
kj , Si

jk = Ci
jk −Ci

kj . These tensor fields are
the torsions of the M–connection ΓD.

On the existence of the metrical M–connection we have the following

Theorem 5.3. There exists a set of metrical M–connections with
T i

jk = Si
jk = 0. Their local coefficients are as follows:

(5.3)

Lk
ij =

1
2
gkh

(
δghj

δxi
+

δgih

δxj
− δgij

δxh

)

Ck
ij =

1
2
gkh

(
∂ghj

∂yi
+

∂gih

∂yj
− ∂gij

∂yh

)

Ck
iα =

1
2
gkh ∂gih

∂tα
+ Ojk

ihXh
jα ,

where Xh
jα is an arbitrary M–tensor field of type (1,1) and Ojk

ih =
1
2

(
δj
i δ

k
h − gihgkj

)
is the Obata operator.

Proof. The condition gij |k = 0 is equivalent to δgij

δxk = Lh
ikghj +

Lh
jkgih. Subtracting this from the sum of the other two equations obtained

by a cyclic permutation in it of the indices i, j, k and using T i
jk = 0 one gets
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Li
jk. Ci

jh is derived in a similar way. Then it is easy to check that 1
2gkh ∂gih

∂tα

verifies gij|α = 0. If Ck
iα is another solution of the equation gij|α = 0, then

Bk
iα = Ck

iα − 1
2gkh ∂gih

∂tα satisfies the equation gkiB
k
j + gjkBk

i = 0.
Using the Obata operator we find that the general solution of the last

equation is Bk
iα = Ojk

ihXh
jα.
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