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On rings with involution equipped
with some new product

By MATEJ BREŠAR (Maribor) and MAJA FOŠNER (Maribor)

Abstract. Let R be a ring with involution ∗. We consider R as a ring equipped
with a new product r ¦ s = rs − sr∗. The relationship between (ordinary) ideals of R
and left and right ideals of R with respect to the product ¦ is studied.

1. Introduction

Let R be an associative ∗-ring, that is, a ring with involution ∗. We
introduce a new product, ¦, in R by

r ¦ s = rs− sr∗.

Clearly, this product is nonassociative in general. We shall say that an
additive subgroup L of R is a left ¦-ideal of R if r ¦ x ∈ L for all r ∈ R,
x ∈ L. Right ¦-ideals are defined analogously. Of course, every ideal of R

is also a left ¦-ideal, and every ∗-ideal of R (i.e., an ideal I such that
I∗ = I) is also a right ¦-ideal. The converse of each of both statements is
not always true. The question “how far” are left ¦-ideals (right ¦-ideals)
from ideals (∗-ideals, respectively) is the main issue of the paper.

It seems that the product ¦ first appeared in the work of Šemrl [9].
He observed that maps of the form x 7→ x¦a naturally arise in the problem
of representing quadratic functionals with sesquilinear functionals. Moti-
vated by Šemrl’s work and by the theory of rings (and algebras) equipped
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with a Lie ([r, s] = rs−sr) and Jordan (r ◦s = rs+sr) product, Molnár

recently [7] initiated the systematic treatment of the product ¦. In his main
result he showed that a subspace of B(H), the algebra of all bounded linear
operators on a Hilbert space H, is an ideal of B(H) if and only if it is a
left ¦-ideal of B(H). We shall generalize this result in different ways. Our
approach is entirely algebraic and is completely different from Molnár’s
one. It is based on discovering certain identities that connect the prod-
uct ¦ with the initial, associative product. The methods that we use are
similar to those employed by Herstein in his classical work on Lie and
Jordan structure in associative rings (see, e.g., [2]).

In Section 2 we provide several examples of left and right ¦-ideals
different from ideals. These examples suggest what kind of results one
can(not) expect. In Section 3 we treat left ¦-ideals, and in Section 4 right
¦-ideals.

2. Examples

First we consider left ¦-ideals. We begin with a trivial, but crucial
observation.

Example 2.1. Let R be a commutative ring with trivial involution
(i.e., ∗ is just the identity map). Then any additive subgroup of R is triv-
ially a left ¦-ideal of R. Moreover, considering a ring which is the direct
sum of a commutative ring (with the trivial involution) and a noncommu-
tative ring (with some involution) we are forced to conclude that there are
also noncommutative rings containing left ¦-ideals different from ideals.
Moreover, such left ¦-ideals are not necessarily contained in the center of
the ring.

The next example shows that there are noncommutative rings that
can not be decomposed into the direct sum of two ideals, but still contain
nontrivial left ¦-ideals. On the other hand, there is some similarity with
Example 2.1 – both examples suggest that centers of rings play a special
role in the study of left ¦-ideals.

Example 2.2. Let F be a field and let R = F 〈x, y〉 be a free algebra
with unit in two noncommuting indeterminates x and y. Equip R with the
standard involution (given by x∗ = x, y∗ = y and λ∗ = λ, λ ∈ F ). Note
that for any p, q ∈ R, the element (= polynomial) p ¦ q has the constant
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term zero. Let G be any subgroup of the additive group F different from F

and {0}, and let L be the set of all elements in R whose constant term lies
in G. Then L is a left ¦-ideal of R, but not an ideal. Let us also point
out that the element 1 ∈ R cannot be written as a sum of elements of the
form p ¦ q.

Recall that a ring R is said to be 2-torsionfree if 2r 6= 0 for any
nonzero r ∈ R. For simple (and even prime) rings, this is equivalent to
the condition that the characteristic of R is not 2. The significance of the
next two examples will become clear later.

Example 2.3. Let A be a 2-torsionfree commutative ring such that
A3 = 0 and A2 6= 0 (a concrete example is a 2-dimensional algebra A over
a field of characteristic not 2, with basis {a, b} and multiplication given by
a2 = b and bA = Ab = {0}). Let R = M2(A) be the ring of 2× 2 matrices
over A with transpose involution, and let

L =
{[

a α

β −a

] ∣∣∣∣ a ∈ A, α, β ∈ A2

}
.

Then L is a left ¦-ideal of R, which is neither an ideal nor is contained
in Z, the center of R. However, L2 ⊆ Z. Note that x ¦ y = y∗ ¦ x for all
x, y ∈ L.

Example 2.4. Let R be any ∗-ring and let L be the set of all x ∈ R

such that r ¦ x = 0, i.e., rx = xr∗ for all r ∈ R. Then L is a left ¦-
ideal of R, and so is any its additive subgroup. Given x, y ∈ L, we have
rxy = xr∗y = xyr for every r ∈ R, so that, as in the previous example,
L2 is contained in the center of R.

Now, let us examine this example in a concrete situation. Let R be
the ring of upper triangular 2× 2 matrices over a field F , with involution
given by

[
a b

0 c

]∗
=

[
c b

0 a

]
. In this case the set L consists of all strictly upper

triangular matrices, and is therefore an ideal of R. However, it is easy to
see that any proper additive subgroup of L is a left ¦-ideal of R which is
neither contained in the center nor contains a nonzero ideal of R.

We now turn our attention to right ¦-ideals. Again we begin with a
trivial but important observation.
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Example 2.5. Every additive subgroup of the center of a ∗-ring con-
sisting of symmetric elements is a right ¦-ideal. Moreover, the sum of right
¦-ideals is again a right ¦-ideal, so that one can find noncentral right ¦-
ideals which are not ∗-ideals in almost any ∗-ring containing proper ∗-ideals
(this includes B(H) when H is infinite dimensional).

Example 2.5 indicates that the best possible result one can hope for
is that, in certain rings, every noncentral right ¦-ideal contains a nonzero
∗-ideal. However, the next three examples show that this may not be true
even in the most fundamental rings.

Example 2.6. Let H be the ring of real quaternions equipped with a
standard involution. Then the set of all quaternions of the form a + bi is
a right ¦-ideal of H. The same is true for, say, the set of all quaternions
of the form a + bi + cj.

Regarding quaternions as 2×2 complex matrices, one can easily mod-
ify Example 2.6 to obtain

Example 2.7. Let F be a field and let R = M2(F ) with transpose
involution. The set of all matrices

[
a b

−b a

]
, a, b ∈ F , is then a right ¦-ideal.

Example 2.8. Again let F be a field and R = M2(F ), but now equip R

with the symplectic involution, that is, the one given by
[

a b

c d

]∗
=

[
d −b

−c a

]
.

Then the set of all matrices
[

a 0

0 d

]
, a, d ∈ F , is a right ¦-ideal.

Obviously, each of right ¦-ideals in Examples 2.6, 2.7 and 2.8 is neither
contained in the center of the ring nor contains a nonzero ideal (after all,
all the rings under consideration are simple). These examples suggest that
the rings of 2×2 matrices, as well as their subrings, should be excluded in
a general result on right ¦-ideals. In Section 4 we shall see that, roughly
speaking, these are also the only rings that must be excluded.

We conclude with an example concerning characteristic 2. In most of
Herstein’s theorems on Lie and Jordan ideals of associative rings, there is
the requirement that rings must have characteristic different from 2. The
characteristic 2 case is indeed different. The basic Herstein’s example [2,
p. 6] also works in the present setting:
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Example 2.9. Let F be a field of characteristic 2 and let R = M2(F )
with transpose involution. The set of all matrices of the form

[
a b

b a

]
,

a, b ∈ F , is simultaneously a left ¦-ideal, a right ¦-ideal, and a subring
of R. However, it is neither an ideal nor is contained in the center of R.
We also mention that the set of matrices

[
0 b

b 0

]
, b ∈ F , is a noncentral left

¦-ideal.

3. Left ¦-ideals

We first fix the notation. Throughout this section, R will be a ring
with involution ∗. By Z we denote its center and by [R, R] the additive
subgroup of R generated by all commutators [r, s] = rs − sr, r, s ∈ R.
Further, we set R̂ = R[R, [R, R]]R, that is, R̂ is an ideal of R consisting of
all finite sums of elements of the form r[s, [t, u]]v with r, s, t, u, v ∈ R.

Theorem 3.1. Let R be an arbitrary ∗-ring and let L be a left ¦-ideal

of R. Then 4R̂L ⊆ L and 4LR̂ ⊆ L.

Proof. Noting that r ¦ (s ¦ x) + (rs) ¦ x = 2rsx − rxs∗ − sxr∗ we

see that, by the very definition of a left ¦-ideal, 2rsx − rxs∗ − sxr∗ ∈ L

for all r, s ∈ R, x ∈ L. Replacing the roles of r and s in this relation we

get 2srx− sxr∗− rxs∗ ∈ L. Comparing the last two relations we arrive at

2[R, R]L ⊆ L. Now, the identity 4r[s, [t, u]] = 4[s, r[t, u]]−(2[s, r])(2[t, u]) ∈
2[R, R] + (2[R, R])2 implies that 4R[R, [R, R]]L ⊆ L. Consequently, from

r[s, [t, u]]v = r[sv, [t, u]]−rs[v, [t, u]] ∈ R[R, [R, R]] we finally conclude that

4R̂L ⊆ L. Clearly, if a ∈ R is such that aL ⊆ L, then La∗ ⊆ aL + a ¦L ⊆
L + L = L. Since R̂ is invariant under ∗, it follows that 4LR̂ ⊆ L.

Corollary 3.2. Let R be any ∗-ring such that R = 4R̂. Then a set

L ⊆ R is an ideal of R if and only if L is a left ¦-ideal of R.

In particular, Corollary 3.2 applies to noncommutative simple rings
of characteristic not 2. Indeed, if R is such a ring, then it is well-known
and easy to see (cf. the argument at the end of the proof of Corollary 3.6
below) that [R, [R, R]] 6= {0}. Therefore, 4R̂ = 4R = R. So we have
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Corollary 3.3. Let R be a noncommutative simple ∗-ring of charac-

teristic not 2. Then 0 and R are the only left ¦-ideals of R. That is, R is

left ¦-simple.

As Examples 2.1 and 2.9 show, the conditions that R is noncommu-
tative and of characteristic not 2 cannot be removed. Thus, Corollary 3.3
is somehow the best possible result for simple rings. On the other hand,
Example 2.2 indicates that one cannot expect definitive results for some
more general classes of rings, such as primitive (or even prime) rings. But
there is another interesting class of rings in which ideals and left ¦-ideals
coincide. Recall that a subset {e11, e12, e21, e22} of a ring R with unit 1
is said to be a set of matrix units if e11 + e22 = 1 and eijekl = δjkeil,
i, j, k, l = 1, 2.

Corollary 3.4. Let R be a ∗-ring containing 1 and the element 1
2

(i.e., the element 1 + 1 is invertible in R). Suppose that R contains a set

of matrix units {e11, e12, e21, e22}. Then a set L ⊆ R is an ideal of R if

and only if L is a left ¦-ideal of R.

Proof. Set r = 1
2 (e12+e21), s = e11−e22, and note that [r, [r, s]] = s

is invertible in R (indeed, s2 = 1). Hence R̂ = R and so the result follows
from Corollary 3.2.

The last two corollaries yield the result of Molnár [7, Theorem]:

Corollary 3.5. Let H be a real or complex Hilbert space of dimension

at least 2, and let B(H) be the algebra of all bounded linear operators on H.

Then a set L ⊆ B(H) is an ideal of B(H) if and only if L is a left ¦-ideal

of R.

Proof. If H is finite dimensional, then the result follows from Corol-
lary 3.3. If H is infinite dimensional, then H is isomorphic to H ⊕H, and
so B(H) is isomorphic to M2(B(H)). Therefore, the conditions of Corol-
lary 3.4 are fulfilled in this case.

We remark that Corollary 3.5 holds for any involution in B(H), but
one usually has in mind the one arising from the Hilbert space adjoint.

As a matter of fact, there is a slight difference between Corollary 3.5
and [7, Theorem]: we do not assume that a left ¦-ideal is a subspace of
B(H) (as in [7]), but only an additive subgroup. That is why we had to
exclude the one-dimensional case.
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Is it possible to say anything about left ¦-ideals in arbitrary (or almost
arbitrary) ∗-rings? While it is clear from the examples above that it is very
easy to find noncentral left ¦-ideals different from ideals, at least one could
conjecture that, under appropriate assumptions, noncentral left ¦-ideals
must necessarily contain nonzero ideals. Herstein obtained results of that
kind for Lie and Jordan ideals in 2-torsionfree semiprime rings [2, pp. 3–4].
Their analogue for left ¦-ideals can now be easily obtained.

Corollary 3.6. Let R be a 2-torsionfree semiprime ∗-ring. If L is a

left ¦-ideal of R, then either L ⊆ Z or L contains a nonzero ideal of R.

Proof. Theorem 3.1 implies that L contains the ideal (4R̂)L(4R̂).
Thus, all we have to show is that (4R̂)L(4R̂) = {0} implies L ⊆ Z. Sup-
pose, therefore, that (4R̂)L(4R̂) = {0}. Since R is 2-torsionfree, this
gives R̂LR̂ = {0}. That is, R̂L is a left ideal whose square is zero. The
semiprimeness of R yields R̂L = 0, i.e., R[R, [R,R]]RL = 0. In par-
ticular, (R[R, [R, L]])2 = 0, and so [R, [R, L]] = 0. Given r, s ∈ R and
x ∈ L, we thus have [r, x][s, x] = [r, [xs, x]] − x[r, [s, x]] = 0. But then
[r, x]s[r, x] = [r, x][sr, x] − [r, x][s, x]r = 0 for all r, s ∈ R, x ∈ L. Since R

is semiprime it follows [r, x] = 0, that is, x ∈ Z for any x ∈ L.

A different approach gives some result for arbitrary rings.

Theorem 3.7. Let R be an arbitrary ∗-ring and let L be a left ¦-ideal

of R. Then L contains the ideal of R generated by all elements of the form

x ¦ y − y∗ ¦ x, x, y ∈ L. Moreover, if R is 2-torsionfree, then this ideal is

nonzero, unless L2 ⊆ Z.

Proof. The key identity

(x ¦ y − y∗ ¦ x)r∗ = r ¦ (y∗ ¦ x) + rx ¦ y − ry∗ ¦ x

shows that (x ¦ y − y∗ ¦ x)R ⊆ L for all x, y ∈ L. Consequently, R(x ¦ y −
y∗ ¦ x) ⊆ L since

r(x ¦ y − y∗ ¦ x) = r ¦ (x ¦ y − y∗ ¦ x) + (x ¦ y − y∗ ¦ x)r∗ ∈ L.

Finally,

s(x ¦ y − y∗ ¦ x)r = s ¦ (x ¦ y − y∗ ¦ x)r + (x ¦ y − y∗ ¦ x)rs∗ ∈ L

gives R(x ¦ y − y∗ ¦ x)R ⊆ L.
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Now assume that R is 2-torsionfree and that x ¦ y − y∗ ¦ x = 0 for
all x, y ∈ L. That is, 2xy = y∗x + yx∗ for all x, y ∈ L. Hence it follows
2y∗x∗ = (2xy)∗ = (y∗x + yx∗)∗ = x∗y + xy∗ = 2yx, and so y∗x∗ = yx for
all x, y ∈ L. Replacing x by r ¦ x = rx − xr∗ with x ∈ L, r ∈ R, in this
relation we get y∗x∗r∗ − y∗rx∗ = yrx − yxr∗. Using y∗x∗ = yx we can
rewrite the last relation as 2yxr∗ = y∗rx∗ + yrx, x, y ∈ L, r ∈ R. This
further implies

2yxr∗ = y∗rx∗ + yrx = (x∗r∗y∗ + xr∗y)∗ = (2xyr)∗ = 2r∗y∗x∗ = 2r∗yx.

Thus, 2[yx, R] = 0, and so yx ∈ Z for all x, y ∈ R.

Examples 2.3 and 2.4 prove that the condition x¦y = y∗ ¦x, x, y ∈ L,
is not sufficient for concluding L ⊆ Z. Moreover, Example 2.4 shows
that there exist left ¦-ideals which are neither contained in the center nor
contain nonzero ideals. Therefore, the conclusion L2 ⊆ Z is somehow the
best possible.

There is another useful identity connecting the product ¦ with the
associative product, namely

(y ¦ x)r∗ = (ry) ¦ x− r ¦ (yx)

Arguing as at the beginning of Theorem 3.7, one shows easily, using this
identity, that a left ¦-ideal L of R, which is at the same time a subring
of R, contains the ideal of R generated by all x ¦ y, x, y ∈ L. It is possible
that L 6⊆ Z, but this ideal is still zero. An example is the first set in
Example 2.9.

This identity has another application, as we shall see. Given an ideal
I of a ∗-ring R, we let R ¦ I to be the additive subgroup of R generated by
all r ¦ x, r ∈ R, x ∈ I. Of course, R ¦ I ⊆ I. The question arises when the
equality holds, that is, when is every element in I equal to a finite sum of
elements of the form r ¦ x, r ∈ R, x ∈ I? Molnár showed that this holds
true for any ideal I of B(H) [7, Proposition]. We now turn to algebraic
aspects of this problem. Clearly, R ¦ I is a left ¦-ideal of R. But actually
we have

Proposition 3.8. Let I be an ideal of a ∗-ring R. Then R ¦ I is also
an ideal of R.

Proof. Let r, s ∈ R and x ∈ I. Using the identity observed above,
(s ¦ x)r∗ = (rs) ¦ x− r ¦ (sx), we see that R ¦ I is a right ideal of R. But
then r(s ¦ x) = r ¦ (s ¦ x) + (s ¦ x)r∗ shows that it is also a left ideal.
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Thus, R¦I is always an ideal contained in I. In order to conlude that
R ¦ I = I, we have to impose some conditions. Recall that matrix units
e11, e12, e21, e22 in a ∗-ring are called ∗-matrix units if e∗ij = eji, i, j = 1, 2.

Corollary 3.9. Suppose that a ∗-ring R contains a set of ∗-matrix

units {e11, e12, e21, e22}. Then R ¦ I = I for any ideal I of R.

Proof. Let I be an ideal of R and let x ∈ I. Then

x = −(e11(e21 ¦ x)e21 + e22(e12 ¦ x)e12 + e11(e22 ¦ x) + e22(e11 ¦ x))

lies in R ¦ I since R ¦ I is an ideal of R. Hence R ¦ I = I.

We remark that the algebra B(H) has such a set of ∗-matrix units
whenever H is infinite (or even) dimensional. In the finite dimensional
case, however, the algebra is simple and so in that case Molnár’s result
follows from the next corollary.

Corollary 3.10. Let R be a simple ∗-ring. Then R ¦R = R, unless R

is a field with trivial involution.

Proof. Proposition 3.8 implies that either R¦R = R or R¦R = {0}.
If the latter occurs, then we have rs = sr∗ for all s, r ∈ R. Consequently,
[r, st] = (rs)t − s(tr) = sr∗t − sr∗t = 0 for all r, s, t ∈ R. That is,
[R, R2] = 0. Since R2 = R, this means that R is commutative, and
therefore a field. Now rs = sr∗ for all r, s ∈ R clearly implies r = r∗ for
all r ∈ R.

Examples 2.1 and 2.2 show that R ¦ R = R is not fulfilled in any
∗-ring R. Moreover, these examples somehow indicate that R ¦R = R can
hold only if the set of skew-symmetric elements is “big enough”. To clarify
this, we state

Corollary 3.11. Let R be a ∗-ring with 1 such that 2R = R. Further,

assume that the ideal of R generated by all skew-symmetric elements is

equal to R. Then R ¦R = R.

Proof. For any skew-symmetric element k ∈ R we have 2k = k ¦1 ∈
R¦R. But then, since R¦R is an ideal by Proposition 3.8, our assumptions
imply that R ¦R = R.
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4. Right ¦-ideals

First we fix the notation for this section. Throughout, R will be a
prime ∗-ring with center Z and characteristic not 2. By S and K we denote
the set of all its symmetric and skew-symmetric elements, respectively.

Recall that R is said to satisfy S4, the standard polynomial identity
of degree 4, if

∑
π∈S4

(−1)πrπ(1)rπ(2)rπ(3)rπ(4) = 0 for all r1, r2, r3, r4 ∈ R,
where S4 is the permutation group. From the classical theory of rings with
polynomial identities (see, e.g., [8]) it is well-known that R satisfies S4 if
and only if it embeds in M2(F ) for some field F . As noted in Section 2,
this class of rings deserves a special attention when treating right ¦-ideals.

The present section still uses rather elementary methods, but it is not
as self-contained as Section 4. Let us now gather together a few results,
mostly easy and known to specialists, that shall be needed in the proof of
the main theorem. For some of them we shall provide a short proof, while
for the others we shall just give appropriate references.

Remark 4.1. Suppose that a, b, c ∈ R are such that a 6= 0 and arb +
cra = 0 for all r ∈ R. We claim that then b = −c. Indeed, our assumption
implies arbsa = −c(ras)a = ar(asb) = −arcsa, so that aR(b+c)Ra = {0},
which clearly yields b = −c. Actully, a well-known result of Martin-

dale [5] tells us that much more is true, namely, that b and a are linearly
dependent over the extended centroid of R, but this fact will not be needed.

Remark 4.2. If a ∈ R is such that [a, [a, r]] = 0 for all r ∈ R, then
a ∈ Z. This is well-known and easy to see. Indeed, first applying 2[a, r][a, s]
= [a, [a, rs]]− r[a, [a, s]]− [a, [a, r]]s we conclude that [a, r][a, s] = 0 for all
r, s ∈ R. Replacing s by sr in this identity and using [a, sr] = [a, s]r+s[a, r]
we then get [a, r]R[a, r] = {0} for all r ∈ R. But then [a, r] = 0 by the
primeness of R.

Remark 4.3. Suppose that there exists a nonzero element a ∈ R such
that ak + ka = 0 for all k ∈ K. (A concrete example when this occurs
is when R = M2(F ) with transpose involution and a is any matrix of the
form

[
b c

c −b

]
, b, c ∈ F .) We claim that in this case R satisfies S4. First

observe that our assumption implies that a commutes with each element
in K2. In particular, a[k, l] = [k, l]a for all k, l ∈ K. But on the other
hand, since [k, l] is also skew-symmetric, we must have a[k, l] + [k, l]a = 0.
Since R is assumed to have characteristic different from 2, it follows that
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[K, K]a = {0}. Consequently, [[K, K],K]a = {0} which together with
[K, K]a = {0} implies [K, K]Ka = {0}. But then [1, Lemma 2.2] tells us
that [K,K] = {0}. Now it follows easily from [6, Lemma 5.5] that R must
satisfy S4.

Remark 4.4. Suppose that k2 ∈ Z for any k ∈ K. Then it follows
from [4, Lemma 10] that R satisfies S4. We remark that this situation
occurs in M2(F ) with either transpose or symplectic involution, as well as
in the ring of quaternions.

The last auxiliary result, due to Lee and Lee [3], is deeper.

Remark 4.5. Suppose that a1, . . . , an ∈ S and b1, . . . , bn ∈ R are such
that

∑n
i=1 aisbi = 0 for all s ∈ S. Then

∑n
i=1 airbi = 0 for all r ∈ R [3,

Theorem 2]. It is clear from the proof (as well as from the statement of [3,
Theorem 1]) that this conclusion holds true if some of the summands in∑n

i=1 aisbi is equal to sbi, even when R does not contain 1.

We are now ready to consider right ¦-ideals.

Theorem 4.6. Let R be a prime ∗-ring of characteristic not 2. Sup-

pose that R contains a right ¦-ideal J which is neither contained in the

center of R nor contains a nonzero ∗-ideal of R. Then R satisfies the

standard polynomial identity S4.

Proof. A straightforward verification shows that the following iden-
tities

r([x∗, y] + [y∗, x]) = x ¦ ry + y ¦ rx + x ¦ yr∗ + y ¦ xr∗

− (x ¦ r) ¦ y − (y ¦ r) ¦ x,

([x∗, y] + [y∗, x])r = −x ¦ y∗r − y ¦ x∗r − x ¦ r∗y∗ − y ¦ r∗x∗

+ (x ¦ r∗) ¦ y∗ + (y ¦ r∗) ¦ x∗

hold true. This is our clue, as we shall see.
Pick x, y ∈ J and set α = [x∗, y]+[y∗, x]. Note that α ∈ S. The above

identities show that Rα ⊆ J and αR ⊆ J . Therefore, zαr = z ¦αr +αrz∗,
z ∈ J , r ∈ R, implies JαR ⊆ J . This, together with rαz = rα ¦ z + zαr∗,
yields RαJ ⊆ J , which in turn implies RαJαR ⊆ JαR ⊆ J . Thus, J

contains the ideal RαJαR. Our goal, however, is to find a ∗-ideal inside J .
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We claim that Rα(J+J∗)αR ⊆ J . Indeed, z∗αr = z∗α¦r+rαz shows that
J∗αR ⊆ J , which, together with RαJ ⊆ J , readily gives RαJ∗αR ⊆ J .

According to our assumption, the ∗-ideal Rα(J + J∗)αR contained
in J , must be zero. In particular, αJα = 0.

Pick k ∈ K and r ∈ R. Then kαr+rαk = kα¦r ⊆ Rα¦R ⊆ J¦R ⊆ J .
Therefore, α(kαr + rαk)α = 0, that is, (αkα)rα + αr(αkα) = 0 for all
r ∈ R, k ∈ K. But then Remark 4.1 implies that αkα = −αkα and so
αKα = {0}.

Further, αJα = 0 implies α(z ¦ r)α = 0 for all z ∈ J , r ∈ R. That is,
αzrα−αrz∗α = 0. Again applying Remark 4.1 we infer that αz = z∗α for
all z ∈ J . Letting z to be kαs + sαk with k ∈ K, s ∈ S (namely, as noted
above, every such element belongs to J) and using αkα = 0, we arrive at
(αsα)k + k(αsα) = 0. We are now in a position to use Remark 4.3. Thus,
either R satisfies S4, which is the desired conclusion, or αsα = 0 for all
s ∈ S. Note that the latter together with αKα = {0} implies α = 0.

Therefore, without loss of generality we may assume that α = 0,
that is, [x∗, y] + [y∗, x] = 0 for any x, y ∈ J (incidentally, this is clearly
equivalent to the condition that every element x in J is normal, i.e., it
commutes with x∗). Pick any a ∈ S ∩ J . Then a ¦ r ∈ J for any r ∈ R,
and so [(a ¦ r)∗, a] + [a, a ¦ r] = 0. That is, [a, [a, r + r∗]] = 0 for all r ∈ R,
meaning that [a, [a, S]] = {0}. Now, Remark 4.5 yields [a, [a,R]] = {0},
which in turn implies (Remark 4.2) that a ∈ Z. Thus, we proved that
S ∩ J ⊆ Z.

Suppose that K ∩ J = {0}. If there exists a nonzero a ∈ S ∩ J ⊆ Z,
then x ¦ a lies in K ∩ J for any x ∈ J and so it must be 0. That is,
a(x − x∗) = 0. Since nonzero central elements in a prime ring cannot be
zero divisors, it follows that x = x∗ for every x ∈ J , that is, J = S∩J ⊆ Z,
contrary to the assumption. On the other hand, if S∩J is {0} too, then for
any x ∈ J we have K ∩J 3 x¦ s = 0 for every s ∈ S, and S ∩J 3 x¦k = 0
for any k ∈ K. Hence x ¦ r = 0 for all r ∈ R, that is, xr = rx∗. But
then [x, r]s = x(rs) − r(xs) = rsx∗ − rsx∗ = 0 for all r, s ∈ R, which,
since R is prime, yields x ∈ Z. Moreover, xr = rx∗ now implies x = x∗

and so x ∈ S ∩J = {0}. Thus, in this case, J = {0}, which, of course, also
contradicts the assumption. Therefore, K ∩ J 6= {0}.

Now pick a nonzero b ∈ K ∩ J . Then bk + kb = b ¦ k ∈ S ∩ J ⊆ Z for
any k ∈ K. But then

(bk + kb)k2 = (bk + kb)k2 − k(bk + kb)k + k2(bk + kb) = bk3 + k3b ∈ Z
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since k3 also lies in K. Consequently, (bk + kb)[k2, R] = {0} for all k ∈ K.
Again using the fact that nonzero central elements in a prime ring are not
zero divisors it follows that for each k ∈ K, either k2 ∈ Z or bk + kb = 0.
We claim that one of these two conditions is fulfilled for all k ∈ K. If this
were not true, there would be k, l ∈ K such that k2 /∈ Z and bl + lb 6= 0.
Hence bk + kb = 0 and l2 ∈ Z. Now consider k + l, k − l ∈ K. Clearly,
b(k + l) + (k + l)b 6= 0 and b(k − l) + (k − l)b 6= 0, so that both (k + l)2 =
k2 + (kl + lk) + l2 and (k − l)2 = k2 − (kl + lk) + l2 belong to Z. But
then, since l2 ∈ Z, it follows that 2k2 ∈ Z, which in turn implies k2 ∈ Z,
contrary to the assumption. Thus we proved that either bk+kb = 0 for all
k ∈ K or k2 ∈ K for all k ∈ K. In view of Remarks 4.3 and 4.4, each of
the two conditions implies that R satisfies S4, proving the theorem (as a
matter of fact, since b ∈ K, it is easy to see that the first condition cannot
really occur, but this does not effect the proof).

Assuming that a prime ring R is noncommutative, it is possible to
slightly sharpen the conclusion of Theorem 4.6. Namely, in that case any
right ¦-ideal J of R which is contained in Z must consist of symmetric
elements only. Indeed, given x ∈ J , we have r(x − x∗) = x ¦ r ∈ J ⊆ Z

from which we easily infer that x = x∗. Hence we have

Corollary 4.7. Let R be a noncommutative simple ∗-ring of charac-

terististic not 2. Suppose that R does not satisfy S4. If J is a right ¦-ideal

of R, then either J = R or J ⊆ Z ∩ S.

In view of our discussion in Section 3, it is now natural to pose the
following question: Under which condition a ∗-ideal I of a ∗-ring R satisfies
I ¦ R = I? Molnár showed that this holds true when R = B(H) [7,
Proposition]. Of course, this is not true in every ring, since even a simpler
question whether R¦R is equal to R does not always have a positive answer.
But actually, at least in unital rings, these two questions are equivalent.

Proposition 4.8. Let R be a ∗-ring with 1. Suppose that R ¦R = R.

Then I ¦R = I for any ∗-ideal I of R.

Proof. According to our assumption, we have 1 =
∑n

i=1 ri ¦ si for
some ri, si ∈ R. Let I be any ideal of R and pick x ∈ I. Then

x = x1 =
n∑

i=1

x(ri ¦ si) =
n∑

i=1

(xri ¦ si − x ¦ sir
∗
i ) ∈ I ¦R.
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Thus, I ⊆ I ¦R holds for any ideal I. If I is a ∗-ideal, then the converse,
I ¦R ⊆ I, is trivial.

We recall that some sufficient conditions for R ¦ R to be equal to R

are given in Corollaries 3.10 and 3.11. In particular, these results show
that B(H) (with H at least 2-dimensional) has this property.

Finally we remark that the “left analogue” of Proposition 4.8 does
not hold. Consider a concrete example given in Example 2.4. It is easy to
check that R ¦R = R, but the ∗-ideal L is such that R ¦ L = {0} 6= L.
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