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On a theorem of H. Daboussi

By K.-H. INDLEKOFER (Paderborn) and I. KÁTAI (Budapest)

Abstract. The main result is a generalization of Daboussi’s theorem: If f is a
uniformly summable multiplicative function with a void Bohr–Fourier spectrum, and if
g is a q-multiplicative function with |g(n)| = 1 for all n, then we haveX

n≤x

f(n)g(n) = o(x) (x →∞).

1. Introduction

Let e(α) = exp(2πiα).
Let N, Z, R, C be the set of natural numbers, integers, real and

complex numbers, respectively.
Furthermore, let N0 = N ∪ {0}.
Let q ≥ 2 and let n =

∑
εj(n)qj be the q-ary expansion of n ∈ N0

with digits εj(n) ∈ A = {0, 1, . . . , q − 1}. A function g : N0 → C is called
q-multiplicative if g(0) = 1, and

g(n) =
∞∏

j=0

g(εj(n)qj).

Let M̄q be the class of q-multiplicative functions with modulus 1: i.e.
g ∈ M̄q, if g is q-multiplicative and |g(n)| = 1 (n ∈ N0).
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Similarly, f : N0 → R is called q-additive if f(0) = 0, and

f(n) =
∞∑

j=0

f(εj(n)qj).

A sequence xn (n = 1, 2, . . . ) of real numbers is said uniformly dis-
tributed mod 1, if

lim
M→∞

1
M

# {n ≤ M | {xn} ⊆ (α, β]} = β − α,

for all 0 ≤ α < β ≤ 1, where {y} denotes the fractional part of y.
A classical theorem of H. Weyl asserts that xn is uniformly distributed

mod 1 if and only if for every k ∈ Z,

1
M

M∑
n=1

e(kxn) → 0 as M →∞.

A function f : N→ C is called uniformly summable, if

C(K) := sup
x≥1

1
x

∑

n≤x
|f(n)|≥K

|f(n)| → 0 as K →∞.

The notion of uniformly summable arithmetical functions was intro-
duced and studied by K.-H. Indlekofer in [11]. The space of uniformly
summable arithmetical functions can be considered as the closure of the
l1 space.

Let f be a uniformly summable function. We say that α ∈ R belongs
to its Bohr–Fourier spectrum, if

lim sup
x→∞

1
x

∣∣∣∣
∑

n≤x

f(n)e(−nα)
∣∣∣∣ > 0.

This notion originally was introduced for the space of almost periodic
(arithmetical) functions and later extended to wider spaces.

According to a nice theorem of H. Daboussi [1], if f is a multiplicative
function, |f(n)| ≤ 1, then

(1.1) x−1
∑

n≤x

f(n)e(nα) → 0 (x →∞)
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for each irrational α.
There are several generalizations of this theorem. (See e.g. [2–9].)

Let T be that class of arithmetical functions t, for which for each
K > 0 there exist suitable prime numbers p1 < p2 < · · · < pR such that
R∑

j=1

1/pj > K, and

(1.2)
1
x

∑
m<x

e(t(pim)− t(pjm)) → 0 (x →∞)

for every i 6= j.
In our paper [7] we proved

Theorem A. Let f be an arbitrary uniformly summable multiplica-

tive function, t ∈ T . Then

lim
1
x

∑

n≤x

f(n)e(t(n)) = 0.

In a recent paper [10] we proved the following theorem which we quote
now as

Lemma 1. Let 1 ≤ a < b (a, b) = 1 (ab, q) = 1, g ∈ M̄q.

If

lim
x→∞

∣∣∣∣
1
x

∑
n<x

g(an)ḡ(bn)
∣∣∣∣ > 0,

then there exists such an r ∈ N for which

∞∑

j=0

∑

c∈A
Re

(
1− e

(−rcqj

b− a

)
g(cqj)

)
< ∞.

Hence, and from Theorem A we deduce

Theorem 1. Assume that f is a uniformly summable multiplicative

function, g ∈ M̄q, and that

lim sup
x

1
x

∣∣∣∣
∑

n≤x

f(n)g(n)
∣∣∣∣ > 0.
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Then g(n) can be written as g(n) = e
(

r
D

)
h(n) with a suitable rational

number r
D and with a function h ∈ M̄q for which

(1.4)
∞∑

j=0

∑

c∈A
Re(1− h(cqj)) < ∞

holds.
If the Bohr–Fourier spectrum of f is empty, then

1
x

∑

n≤x

f(n)g(n) → 0

for each g ∈ M̄q.

Remark. Since e(αn) ∈ M̄q for each α ∈ R, Theorem 1 contains the
theorem of Daboussi.

2. Proof of Theorem 1

Let us write g(n) as e(t(n)) where t(cqj) ∈ (− 1
2 , 1

2

]
, and is extended

as a q-additive function. For x ∈ R let ‖x‖ the distance of x to the closest
integer.

If p1 6= p2 primes, (p1p2, q) = 1, then either (1.2) holds, or by Lemma 1
there exists an integer r = r(p1, p2), |r| ≤ |p2 − p1|, such that

∞∑

j=1

∑

c∈A

∥∥∥∥
rcqj

p2 − p1
− t(cqj)

∥∥∥∥
2

< ∞.

It is clear that no more than one rational number k
l may exist in [0, 1] for

which

(2.1)
∞∑

j=1

∑

c∈A

∥∥∥∥
k

l
cqj − t(cqj)

∥∥∥∥
2

< ∞.

Thus, either (1.2) holds for each prime pairs p1, p2 > q, p1 6= p2, or (2.1)
holds. Then (1.4) holds with h(n) := e

(−k
l n

)
g(n).

Assume that

(2.2) lim sup
x→∞

1
x

∣∣∣∣
∑

n≤x

f(n)e
(

k

l
n

)
h(n)

∣∣∣∣ > 0.
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Let R ≥ 1 be an arbitrary integer,

hR(n) =
R∏

j=0

h(εj(n)qj), sR(n) =
∞∏

j=R+1

h(εj(n)qj).

Let λ(n) be defined as a q-additive function, where λ(cql) is defined
as the fractional part of t(cql)− k

l cq
l.

Let

MR,N :=
1
q

R+N−1∑

j=R

∑

c∈A
λ(cqj)

D2
R,N =

1
q

R+N−1∑

j=R

∑

c∈A
λ2(cqj),

ξR,N := e(MR,N ). Since |1− e(η)| ≤ c1|η|, we have
∑

n<qR+N

|1− ξ̄R,NsR(n)|2 ≤ cqR
∑

ν<qN

(λ(νqR)−MR,N )2.

We shall prove that the right hand side is less than c2q
R+ND2

R,N . If we
consider λ(νqR)−MR,N as a random variable defined on ν∈{0,1,. . . , qN−1},
then it is the sum of the independent random variables ηl (l = 0, . . . , N−1),
where

P (ηl = λ(cql+R)−ml) = 1/q (c ∈ A), ml =
1
q

∑

c∈A
λ(cql+R).

Thus the right hand side is less than c2q
R+N times

∑
D2ηl ≤ c2D

2
R,N .

Here c2 is an absolute constant.
Since D2

R,N → 0, if R →∞, N ≥ 1, the inequality

(2.3) lim sup
x→∞

1
x

∣∣∣∣
∑

n≤x

f(n)e
(

k

l
n

)
hR(n)

∣∣∣∣ > 0

holds, if R is large enough.
Let us fix an R for which (2.3) holds. The function hR(n) is periodic

mod qN , therefore it can be expanded in a finite Fourier series:

hR(n) =
qR−1∑

j=0

dje

(
jn

qR

)
.
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Then

lim sup
x→∞

1
x

∣∣∣∣
∑

n≤x

f(n)e
((

k

l
+

j

qR

)
n

)∣∣∣∣ > 0

for some j ∈ {0, . . . , qR − 1}.
The theorem is proved.

3. Further remarks

From a theorem of Delange we know that for g ∈ M̄q the mean value

1
x

∑
n<x

g(n)

tends to zero if and only if either
∑

c∈A
g(cqj) = 0

for some j, or
∞∑

j=0

∑

c∈A
Re(1− g(cqj)) = ∞.

Hence, by using Weyl’s criterion, the following assertion which we state
now as Lemma 2 follows easily:

Lemma 2. A q-additive function ϕ : N0 → R is uniformly distributed

mod 1 if and only if either for every k ∈ N, there exists such a j for which

∑

c∈A
e(kϕ(cqj)) = 0,

or

(3.1)
∞∑

j=0

∑

c∈A
‖ϕ(cqj)‖2 = ∞.

Hence we obtain
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Lemma 3. For a q-additive function ϕ the sequence ϕ(nqR) (n ∈ N0)
is uniformly distributed mod 1 for every R ∈ N0, if and only if the sum

(3.2)
∞∑

j=0

∑

c∈A
‖ϕ(cqj)‖2

is divergent.

Proof. The divergence of (3.2) implies the uniform distribution
mod 1 of ϕ(nqR) for every R ∈ N0.

Assume that (3.2) is convergent. Since ‖ϕ(cqj)‖ → 0 (j →∞), there-
fore ∑

c∈A
e(ϕ(cqj)) = 0

cannot hold if j ≥ R, R is large enough.
For such an R ϕ(nqR) (n ∈ N0) due to Lemma 2 cannot be uniformly

distributed mod 1. ¤

From Theorem 1 we obtain immediately

Theorem 2. Assume that ϕ is q-additive and ϕ(nqR) is uniformly

distributed mod 1 for every R ∈ N0. Then for each additive function

F (n), the sequence

F (n) + ϕ(nqR) (n ∈ N)

is uniformly distributed mod 1 for every R ∈ N0.

References

[1] H. Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives
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