On a theorem of H. Daboussi

By K.-H. INDLEKOFER (Paderborn) and I. KÁTAI (Budapest)

Abstract

The main result is a generalization of Daboussi's theorem: If f is a uniformly summable multiplicative function with a void Bohr-Fourier spectrum, and if g is a q-multiplicative function with $|g(n)|=1$ for all n, then we have $$
\sum_{n \leq x} f(n) g(n)=o(x) \quad(x \rightarrow \infty)
$$

1. Introduction

Let $e(\alpha)=\exp (2 \pi i \alpha)$.
Let $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$ be the set of natural numbers, integers, real and complex numbers, respectively.

Furthermore, let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
Let $q \geq 2$ and let $n=\sum \varepsilon_{j}(n) q^{j}$ be the q-ary expansion of $n \in \mathbb{N}_{0}$ with digits $\varepsilon_{j}(n) \in \mathbb{A}=\{0,1, \ldots, q-1\}$. A function $g: \mathbb{N}_{0} \rightarrow \mathbb{C}$ is called q-multiplicative if $g(0)=1$, and

$$
g(n)=\prod_{j=0}^{\infty} g\left(\varepsilon_{j}(n) q^{j}\right) .
$$

Let $\overline{\mathcal{M}}_{q}$ be the class of q-multiplicative functions with modulus 1: i.e. $g \in \overline{\mathcal{M}}_{q}$, if g is q-multiplicative and $|g(n)|=1\left(n \in \mathbb{N}_{0}\right)$.

Mathematics Subject Classification: 11A63, 11N37.
Key words and phrases: uniformly summable functions, q-multiplicative functions, Bohr-Fourier spectrum.
Supported by WTZ-OMFB D-41/97, and by OTKA 2153.

Similarly, $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is called q-additive if $f(0)=0$, and

$$
f(n)=\sum_{j=0}^{\infty} f\left(\varepsilon_{j}(n) q^{j}\right) .
$$

A sequence $x_{n}(n=1,2, \ldots)$ of real numbers is said uniformly distributed $\bmod 1$, if

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \#\left\{n \leq M \mid\left\{x_{n}\right\} \subseteq(\alpha, \beta]\right\}=\beta-\alpha,
$$

for all $0 \leq \alpha<\beta \leq 1$, where $\{y\}$ denotes the fractional part of y.
A classical theorem of H . Weyl asserts that x_{n} is uniformly distributed $\bmod 1$ if and only if for every $k \in \mathbb{Z}$,

$$
\frac{1}{M} \sum_{n=1}^{M} e\left(k x_{n}\right) \rightarrow 0 \quad \text { as } \quad M \rightarrow \infty
$$

A function $f: \mathbb{N} \rightarrow \mathbb{C}$ is called uniformly summable, if

$$
C(K):=\sup _{x \geq 1} \frac{1}{x} \sum_{\substack{n \leq x \\|f(n)| \geq K}}|f(n)| \rightarrow 0 \quad \text { as } \quad K \rightarrow \infty .
$$

The notion of uniformly summable arithmetical functions was introduced and studied by K.-H. Indlekofer in [11]. The space of uniformly summable arithmetical functions can be considered as the closure of the l_{1} space.

Let f be a uniformly summable function. We say that $\alpha \in \mathbb{R}$ belongs to its Bohr-Fourier spectrum, if

$$
\limsup _{x \rightarrow \infty} \frac{1}{x}\left|\sum_{n \leq x} f(n) e(-n \alpha)\right|>0
$$

This notion originally was introduced for the space of almost periodic (arithmetical) functions and later extended to wider spaces.

According to a nice theorem of H . Daboussi [1], if f is a multiplicative function, $|f(n)| \leq 1$, then

$$
\begin{equation*}
x^{-1} \sum_{n \leq x} f(n) e(n \alpha) \rightarrow 0 \quad(x \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

for each irrational α.
There are several generalizations of this theorem. (See e.g. [2-9].)
Let \mathcal{T} be that class of arithmetical functions t, for which for each $K>0$ there exist suitable prime numbers $p_{1}<p_{2}<\cdots<p_{R}$ such that $\sum_{j=1}^{R} 1 / p_{j}>K$, and

$$
\begin{equation*}
\frac{1}{x} \sum_{m<x} e\left(t\left(p_{i} m\right)-t\left(p_{j} m\right)\right) \rightarrow 0 \quad(x \rightarrow \infty) \tag{1.2}
\end{equation*}
$$

for every $i \neq j$.
In our paper [7] we proved
Theorem A. Let f be an arbitrary uniformly summable multiplicative function, $t \in \mathcal{T}$. Then

$$
\lim \frac{1}{x} \sum_{n \leq x} f(n) e(t(n))=0
$$

In a recent paper [10] we proved the following theorem which we quote now as

Lemma 1. Let $1 \leq a<b(a, b)=1(a b, q)=1, g \in \overline{\mathcal{M}}_{q}$.
If

$$
\varlimsup_{x \rightarrow \infty}\left|\frac{1}{x} \sum_{n<x} g(a n) \bar{g}(b n)\right|>0
$$

then there exists such an $r \in \mathbb{N}$ for which

$$
\sum_{j=0}^{\infty} \sum_{c \in \mathbb{A}} \operatorname{Re}\left(1-e\left(\frac{-r c q^{j}}{b-a}\right) g\left(c q^{j}\right)\right)<\infty
$$

Hence, and from Theorem A we deduce
Theorem 1. Assume that f is a uniformly summable multiplicative function, $g \in \overline{\mathcal{M}}_{q}$, and that

$$
\limsup _{x} \frac{1}{x}\left|\sum_{n \leq x} f(n) g(n)\right|>0
$$

Then $g(n)$ can be written as $g(n)=e\left(\frac{r}{D}\right) h(n)$ with a suitable rational number $\frac{r}{D}$ and with a function $h \in \overline{\mathcal{M}}_{q}$ for which

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{c \in \mathbb{A}} \operatorname{Re}\left(1-h\left(c q^{j}\right)\right)<\infty \tag{1.4}
\end{equation*}
$$

holds.
If the Bohr-Fourier spectrum of f is empty, then

$$
\frac{1}{x} \sum_{n \leq x} f(n) g(n) \rightarrow 0
$$

for each $g \in \overline{\mathcal{M}}_{q}$.
Remark. Since $e(\alpha n) \in \overline{\mathcal{M}}_{q}$ for each $\alpha \in \mathbb{R}$, Theorem 1 contains the theorem of Daboussi.

2. Proof of Theorem 1

Let us write $g(n)$ as $e(t(n))$ where $t\left(c q^{j}\right) \in\left(-\frac{1}{2}, \frac{1}{2}\right]$, and is extended as a q-additive function. For $x \in \mathbb{R}$ let $\|x\|$ the distance of x to the closest integer.

If $p_{1} \neq p_{2}$ primes, $\left(p_{1} p_{2}, q\right)=1$, then either (1.2) holds, or by Lemma 1 there exists an integer $r=r\left(p_{1}, p_{2}\right),|r| \leq\left|p_{2}-p_{1}\right|$, such that

$$
\sum_{j=1}^{\infty} \sum_{c \in \mathbb{A}}\left\|\frac{r c q^{j}}{p_{2}-p_{1}}-t\left(c q^{j}\right)\right\|^{2}<\infty
$$

It is clear that no more than one rational number $\frac{k}{l}$ may exist in $[0,1]$ for which

$$
\begin{equation*}
\sum_{j=1}^{\infty} \sum_{c \in \mathbb{A}}\left\|\frac{k}{l} c q^{j}-t\left(c q^{j}\right)\right\|^{2}<\infty \tag{2.1}
\end{equation*}
$$

Thus, either (1.2) holds for each prime pairs $p_{1}, p_{2}>q, p_{1} \neq p_{2}$, or (2.1) holds. Then (1.4) holds with $h(n):=e\left(-\frac{k}{l} n\right) g(n)$.

Assume that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{1}{x}\left|\sum_{n \leq x} f(n) e\left(\frac{k}{l} n\right) h(n)\right|>0 \tag{2.2}
\end{equation*}
$$

Let $R \geq 1$ be an arbitrary integer,

$$
h_{R}(n)=\prod_{j=0}^{R} h\left(\varepsilon_{j}(n) q^{j}\right), \quad s_{R}(n)=\prod_{j=R+1}^{\infty} h\left(\varepsilon_{j}(n) q^{j}\right) .
$$

Let $\lambda(n)$ be defined as a q-additive function, where $\lambda\left(c q^{l}\right)$ is defined as the fractional part of $t\left(c q^{l}\right)-\frac{k}{l} c q^{l}$.

Let

$$
\begin{aligned}
& M_{R, N}:=\frac{1}{q} \sum_{j=R}^{R+N-1} \sum_{c \in \mathbb{A}} \lambda\left(c q^{j}\right) \\
& D_{R, N}^{2}=\frac{1}{q} \sum_{j=R}^{R+N-1} \sum_{c \in \mathbb{A}} \lambda^{2}\left(c q^{j}\right),
\end{aligned}
$$

$\xi_{R, N}:=e\left(M_{R, N}\right)$. Since $|1-e(\eta)| \leq c_{1}|\eta|$, we have

$$
\sum_{n<q^{R+N}}\left|1-\bar{\xi}_{R, N} s_{R}(n)\right|^{2} \leq c q^{R} \sum_{\nu<q^{N}}\left(\lambda\left(\nu q^{R}\right)-M_{R, N}\right)^{2} .
$$

We shall prove that the right hand side is less than $c_{2} q^{R+N} D_{R, N}^{2}$. If we consider $\lambda\left(\nu q^{R}\right)-M_{R, N}$ as a random variable defined on $\nu \in\left\{0,1, \ldots, q^{N}-1\right\}$, then it is the sum of the independent random variables $\eta_{l}(l=0, \ldots, N-1)$, where

$$
P\left(\eta_{l}=\lambda\left(c q^{l+R}\right)-m_{l}\right)=1 / q \quad(c \in \mathbb{A}), \quad m_{l}=\frac{1}{q} \sum_{c \in \mathbb{A}} \lambda\left(c q^{l+R}\right) .
$$

Thus the right hand side is less than $c_{2} q^{R+N}$ times $\sum D^{2} \eta_{l} \leq c_{2} D_{R, N}^{2}$. Here c_{2} is an absolute constant.
Since $D_{R, N}^{2} \rightarrow 0$, if $R \rightarrow \infty, N \geq 1$, the inequality

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{1}{x}\left|\sum_{n \leq x} f(n) e\left(\frac{k}{l} n\right) h_{R}(n)\right|>0 \tag{2.3}
\end{equation*}
$$

holds, if R is large enough.
Let us fix an R for which (2.3) holds. The function $h_{R}(n)$ is periodic $\bmod q^{N}$, therefore it can be expanded in a finite Fourier series:

$$
h_{R}(n)=\sum_{j=0}^{q^{R}-1} d_{j} e\left(\frac{j n}{q^{R}}\right) .
$$

Then

$$
\limsup _{x \rightarrow \infty} \frac{1}{x}\left|\sum_{n \leq x} f(n) e\left(\left(\frac{k}{l}+\frac{j}{q^{R}}\right) n\right)\right|>0
$$

for some $j \in\left\{0, \ldots, q^{R}-1\right\}$.
The theorem is proved.

3. Further remarks

From a theorem of Delange we know that for $g \in \overline{\mathcal{M}}_{q}$ the mean value

$$
\frac{1}{x} \sum_{n<x} g(n)
$$

tends to zero if and only if either

$$
\sum_{c \in \mathbb{A}} g\left(c q^{j}\right)=0
$$

for some j, or

$$
\sum_{j=0}^{\infty} \sum_{c \in \mathbb{A}} \operatorname{Re}\left(1-g\left(c q^{j}\right)\right)=\infty
$$

Hence, by using Weyl's criterion, the following assertion which we state now as Lemma 2 follows easily:

Lemma 2. A q-additive function $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is uniformly distributed $\bmod 1$ if and only if either for every $k \in \mathbb{N}$, there exists such a j for which

$$
\sum_{c \in \mathbb{A}} e\left(k \varphi\left(c q^{j}\right)\right)=0,
$$

or

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{c \in \mathbb{A}}\left\|\varphi\left(c q^{j}\right)\right\|^{2}=\infty \tag{3.1}
\end{equation*}
$$

Hence we obtain

Lemma 3. For a q-additive function φ the sequence $\varphi\left(n q^{R}\right)\left(n \in \mathbb{N}_{0}\right)$ is uniformly distributed mod 1 for every $R \in \mathbb{N}_{0}$, if and only if the sum

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{c \in \mathbb{A}}\left\|\varphi\left(c q^{j}\right)\right\|^{2} \tag{3.2}
\end{equation*}
$$

is divergent.
Proof. The divergence of (3.2) implies the uniform distribution $\bmod 1$ of $\varphi\left(n q^{R}\right)$ for every $R \in \mathbb{N}_{0}$.

Assume that (3.2) is convergent. Since $\left\|\varphi\left(c q^{j}\right)\right\| \rightarrow 0(j \rightarrow \infty)$, therefore

$$
\sum_{c \in \mathbb{A}} e\left(\varphi\left(c q^{j}\right)\right)=0
$$

cannot hold if $j \geq R, R$ is large enough.
For such an $R \varphi\left(n q^{R}\right)\left(n \in \mathbb{N}_{0}\right)$ due to Lemma 2 cannot be uniformly distributed $\bmod 1$.

From Theorem 1 we obtain immediately
Theorem 2. Assume that φ is q-additive and $\varphi\left(n q^{R}\right)$ is uniformly distributed mod 1 for every $R \in \mathbb{N}_{0}$. Then for each additive function $F(n)$, the sequence

$$
F(n)+\varphi\left(n q^{R}\right) \quad(n \in \mathbb{N})
$$

is uniformly distributed mod 1 for every $R \in \mathbb{N}_{0}$.

References

[1] H. Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus egal á 1, C.R. Acad. Paris, Sér. A 278 (1974), 657-660.
[2] H. Daboussi and H. Delange, On multiplicative arithmetical functions whose module does not exceed one, J. London Math. Soc. (2), 26 (1982), 245-264.
[3] H. Daboussi and H. Delange, On a class of multiplicative functions, Acta Sci. Math. (Szeged) 49 (1985), 143-149.
[4] K.-H. Indlekofer, Properties of uniformly summable functions, Period. Math. Hungar. 17 (1986), 143-161.
[5] I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hung. 47 (1986), 223-225.
[6] I. KÁtai, Uniform distribution of sequences connected with arithmetical functions, Acta Math. Hung. 51 (1988), 401-408.
[7] K.-H. Indlekofer and I. Kátai, Exponential sums with multiplicative coefficients, Acta Math. Hung. 54 (1989), 263-268.
[8] H. L. Montgomery and R. C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), 69-82.
[9] H. Delange, Generalization of Daboussi's theorem, Topics in Classical Number Theory, Vol. I., II. (Coll. Math. Soc. János Bolyai 34), Budapest, 1984, 305-318.
[10] K.-H. Indlekofer and I. KÁtai, Investigations in the theory of q-additive and q-multiplicative functions, I, Acta Math. Hung., (submitted).
[11] K.-H. Indlekofer, Remarks on a theorem of G. Halász, Archív Math. 36, 145-151.

```
K.-H. INDLEKOFER
FACULTY OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF PADERBORN
WARBURGER STRASSE }10
33098 PADERBORN
GERMANY
I. KÁTAI
DEPARTMENT OF COMPUTER ALGEBRA
LORÁND EÖTVÖS UNIVERSITY
H-1518 BUDAPEST P.O. BOX 32
HUNGARY
```

(Received May 10, 1999; revised October 28, 1999)

