
Publ. Math. Debrecen

57 / 1-2 (2000), 153–161

On the asymptotic behavior of solutions
of the second order neutral differential equations

By ŠTEFAN KULCSÁR (Košice)

Abstract. Consider the second order neutral differential equation�
x(t)− px(t− τ)

�′′
+ q(t)x

�
σ(t)

�
= 0,

where σ(t) > t. Sufficient conditions for the convergence to zero of nonoscillatory
solutions are presented.

In this paper we deal with the asymptotic behavior of the solutions of
the neutral differential equation. We consider the second order differential
equation of the form

(1)
(
x(t)− px(t− τ)

)′′ + q(t)x
(
σ(t)

)
= 0

under the assumptions

(i) 0 < p < 1, τ > 0;

(ii) q, σ ∈ C(R+, R+), where R+ = (0,∞), σ(t) > t.

We put z(t) = x(t) − px(t − τ). By a proper solution of Eq. (1) we
mean a function x : [Tx,∞) → R which satisfies (1) for all sufficiently
large t and sup{|x(t)| : t ≥ T} > 0 for any T ≥ Tx so that z(t) is twice
continuously differentiable. Such a solution is called oscillatory if it has
a sequence of zeros tending to infinity; otherwise it is called nonoscilla-
tory. Recently several authors have studied the asymptotic behavior of
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the solutions of the second order neutral delay differential equations, see
for example [2]–[9]. There are only few papers devoted to the asymptotic
properties of the solutions of the Eq. (1) with advanced argument. We
begin with the following result which is known for differential equations
without the neutral term, that is for p = 0 (see [1]).

Theorem 1. Assume that (i) and (ii) hold and

(2)
∫ ∞

q(s)ds = ∞.

Then the nonoscillatory solutions of Eq. (1) tend to zero as t →∞.

Proof. Without loss of generality let x(t) be an eventually positive
solution of Eq. (1) and define

(3) z(t) = x(t)− px(t− τ).

From Eq. (1) we have z′′(t) < 0 for all large t, say t ≥ t0. If z′(t) < 0
eventually, then lim

t→∞
z(t) = −∞. But z(t) < 0 eventually implies that

x(t) < px(t− τ) < p2x(t− 2τ) < · · · < pnx(t− nτ)

for all large t, which implies in view of (i) that limt→∞ x(t) = 0. This
contradicts to limt→∞ z(t) = −∞. Therefore, z′(t) > 0 for t ≥ t0. There
are two possibilities for z(t):

(a) z(t) > 0 for t ≥ t1 ≥ t0,

(b) z(t) < 0 for t ≥ t1.

For case (a), Eq. (1) can be written in the form

(4) z′′(t) + q(t)x
(
σ(t)

)
= 0.

From (3) one can see that x(t) > z(t) which together with (4) implies

(5) z′′(t) + q(t)z
(
σ(t)

) ≤ 0.

Using monotonicity of z(t) and (ii), there exists a constant c > 0 such
that z(σ(t)) > c, for t ≥ t2 ≥ t1. Then

z′′(t) + cq(t) ≤ 0.
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Integration of the last inequality from t2 to t yields

z′(t)− z′(t2) + c

∫ t

t2

q(s) ds ≤ 0,

i.e.

c

∫ t

t2

q(s) ds ≤ z′(t2)

for t ≥ t2. This contradicts the hypothesis (2). For the case (b), as
mentioned above, we are led to that limt→∞ x(t) = 0. ¤

Example 1. Consider the following neutral equation

(
x(t)− px(t− τ)

)′′ + (peτ − 1)etx(2t) = 0.

Here 0 < p < 1, τ > 0 and by Theorem 1 every nonoscillatory solution of
given equation tends to zero as t →∞. One such solution is x(t) = e−t.

The following Theorem is intended to cover the case when∫∞
q(s)ds < ∞.

Theorem 2. Let (i), (ii) hold and moreover σ(t) is increasing. Further

assume that

(6) lim sup
t→∞

(∫ σ(t)

t

∫ ∞

x

q(s) ds dx +
∫ t

σ−1(t)

∫ ∞

σ(x)

q(s) ds dx

)
> 1.

Then the nonoscillatory solutions of Eq. (1) tend to zero as t →∞.

Proof. Let x(t) be an eventually positive solution of Eq. (1) and set
z(t) = x(t) − px(t − τ). Then z′′(t) < 0 eventually. Similarly is in the
proof of Theorem 1 we are led to z′(t) > 0. There are two possibilities (a)
and (b) for z(t) (see proof of Theorem 1). For case (b) the proof is similar
as in the proof of Theorem 1 and so it can be omitted. In case (a) we
proceede exactly as in the proof of Theorem 1 and we get inequality (5).
Integrating (5) from t to ∞, we get

(7) z′(t) ≥
∫ ∞

t

q(s)z(σ(s)) ds
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and integrating the last inequality from t to σ(t) we have

(8) z(σ(t))− z(t) ≥ z(σ(t))
∫ σ(t)

t

∫ ∞

x

q(s) ds dx, t ≥ t1,

where we have used that z(t) and σ(t) are increasing. Now integrating (7)
from t1 to t we obtain

(9)

z(t) ≥
∫ t

t1

∫ ∞

x

q(s)z(σ(s)) ds dx ≥
∫ t

σ−1(t)

∫ ∞

σ(x)

q(s)z(σ(s)) ds dx

≥ z(σ(t))
∫ t

σ−1(t)

∫ ∞

σ(x)

q(s) ds dx, t ≥ t1,

where we have used that z(t) and σ(t) are increasing. From (8) and (9)
we get

z(σ(t)) ≥ z(σ(t))

(∫ σ(t)

t

∫ ∞

x

q(s) ds dx +
∫ t

σ−1(t)

∫ ∞

σ(x)

q(s) ds dx

)
,

i.e. ∫ σ(t)

t

∫ ∞

x

q(s) ds dx +
∫ t

σ−1(t)

∫ ∞

σ(x)

q(s) ds dx ≤ 1.

We arrive at a contradiction to (6). The Theorem 2 is proved. ¤
Example 2. Consider the following neutral equation

(
x(t)− px(t− τ)

)′′ + a

t2
x
(
λt

)
= 0,

where λ > 1 and a is a positive real number. Then the condition (6) takes
the form

a

(
1 +

1
λ

)
ln λ > 1

and for example, for a = 1, the condition (6) is satisfied for λ = 1, 933.

In the sequel we deal with special type of Eq. (1) and further we
consider the second order neutral differential equation of the form

(10)
(
x(t)− px(t− τ)

)′′ + q(t)x(t + α) = 0.

In the sequel we shall assume that (i) holds. Moreover we assume that
(iii) q ∈ C(R+, R+) and α is a positive number.
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Theorem 3. Let (i) and (iii) hold and k be an integer such that

(11) α− kτ < 0.

Further assume that there exists an integer number n ≥ k such that

(12)
∫ ∞(

pk(1− pn−k+1)
1− p

(s + α)q(s)− 1
4(s + α)

)
ds = ∞.

Then the nonoscillatory solutions of Eq. (10) tend to zero as t →∞.

Proof. Without loss of generality let x(t) be an eventually positive
solution of Eq. (10). Further analogously as in the proof of the Theorem 1
we get for case (a) that Eq. (10) we can written in the form

z′′(t) + q(t)x(t + α) = 0.

Using (3) we have

z′′(t) + q(t)z(t + α) + pq(t)x(t + α− τ) = 0.

Repeating this procedure we arrive at

z′′(t) + q(t)
n∑

i=0

piz(t + α− iτ) + pn+1q(t)x(t + α− (n + 1)τ) = 0,

i.e. by (i) and (iii) we have

z′′(t) + q(t)
k−1∑

i=0

piz(t + α− iτ) + q(t)
n∑

i=k

piz(t + α− iτ) ≤ 0.

Using (i) and (iii) we get

z′′(t) + q(t)
n∑

i=k

piz(t + α− iτ) ≤ 0.

Denote an(t) =
∑n

i=k piz(t + α− iτ). Then

(13) z′′(t) + an(t)q(t) ≤ 0.
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Define

v(t) =
(t + α)

∑n
i=k pi

an(t)
z′(t), t ≥ t1.

Then v(t) > 0. Observe that

v′(t) =
∑n

i=k pi

an(t)
z′(t) +

(t + α)
∑n

i=k pi

an(t)
z′′(t)

− (t + α)
∑n

i=k pi

an(t)
z′(t)

∑n
i=k piz′(t + α− iτ)

an(t)
.

Since z′(t) is decreasing, one gets that z′(t + α − iτ) ≥ z′(t + α − kτ) for
i ≥ k and by (11) we have z′(t + α− kτ) ≥ z′(t). Thus by (13) we get

v′(t) ≤ 1
t + α

(
v(t)− v2(t)

)− (t + α)q(t)
n∑

i=k

pi.

It is easy to see that the polynomial P (v) = v − v2 ≤ 1
4 . Thus

v′(t) ≤ 1
4(t + α)

− (t + α)q(t)
n∑

i=k

pi.

Then integrating the last inequality from t1 to t, we are led to

v(t) ≤ v(t1)−
∫ t

t1

(
pk(1− pn−k+1)

1− p
(s + α)q(s)− 1

4(s + α)

)
ds.

Letting t →∞ we have in view of (12) that v(t) → −∞, a contradiction.
For case (b), as mentioned before, we are led to limt→∞ x(t) = 0. ¤
Corollary 1. Assume that (i), (iii) hold and let k be an integer such

that (11) holds. Let

lim inf
t→∞

(t + α)2q(t) >
1− p

4pk
.

Then the nonoscillatory solutions of Eq. (1) tend to zero as t →∞.

Proof. Denote a = lim inft→∞(t + α)2q(t). Let an integer n be
chosen such that

a− ε >
1− p

4pk
(
1− pn−k+1

) ,
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where ε > 0 is small enough. Then there exists a t1 (large enough) that

(14) q(t)(t + α)2 − 1− p

4pk
(
1− pn−k+1

) > ε, t ≥ t1.

Noting that (14) implies (12) we complete the proof. ¤

Example 3. Consider the neutral equation

(
x(t)− px(t− τ)

)′′ + (peτ − 1)eln 3x(t + ln 3) = 0.

For 0 < p < 1, τ > ln 2 and k > 1 the solution x(t) = e−t tend to zero as
t →∞. Now we give an analogy of Theorem 3 for the case p = 1.

Theorem 4. Assume that p = 1 and (11) holds. Then the nonoscil-

latory solutions of Eq. (10) are bounded provided there exists an integer

n ≥ k such that

(15)
∫ ∞(

(n− k + 1)(s + α)q(s)− 1
4(s + α)

)
ds = ∞.

Proof. For case (a) the proof follows the same line as the proof
of Theorem 3 and so it can be omitted. If z(t) < 0 eventually, then
x(t) < x(t− τ), which implies that x(t) is bounded. ¤

Corollary 2. Assume that p = 1. Let

lim inf
t→∞

(t + α)2q(t) > 0.

Then the nonoscillatory solutions of Eq. (10) are bounded.

Proof. Denote a = lim inft→∞ 4(t + α)2q(t). Let an integer n be
chosen such that a− ε > 1

n−k+1 , where ε > 0 is small enough. Then there
exists a t1 (large enough) such that

(17) 4(t + α)2q(t)− 1
n− k + 1

> ε, t ≥ t1.

Note that (17) implies (15). The proof is complete. ¤
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Example 4. Consider the neutral equation

(
x(t)− px(t− τ)

)′′ + (eτ − 1)e−(t+α) = 0.

For τ > 0, α > 0 and k = [α
τ ] + 1 the solution x(t) = e−t tend to zero as

t →∞.

In finally we give an analogy of Theorem 3 and 4 for the case p > 1.

Theorem 5. Assume that p > 1 and (11) holds. Further assume that

there exists an integer n ≥ k such that

(18)
∫ ∞(

pk(pn−k+1 − 1)
p− 1

(s + α)q(s)− 1
4(s + α)

)
ds = ∞.

Then every nonoscillatory solution x(t) of Eq. (10) satisfies x(t)<px(t−τ).

Proof. We begin equally that in the proof of Theorem 3 and we
get three possibilities as in the proof of Theorem 1. For case z′(t) > 0,
z(t) > 0 the proof runs exactly as in the proof of Theorem 3 and so it
can be omitted. For cases z′(t) > 0 or z′(t) < 0 we have assumed that
z(t) < 0, then x(t) < px(t− τ) is obvious. ¤

Example 5. Consider the neutral equation

(
x(t)− px(t− τ)

)′′ + 6(t + α)2
(

2
(t− τ)4

− 1
t4

)
x(t + α) = 0.

For τ > 0, α > 0 the condition (18) is fulfilled and the solution x(t) = t−2

of this equation has demanded properties.

Remark. When considering more general neutral differential equa-
tions with function p(t) instead of a constant p,

(
x(t)− p(t)x(t− τ)

)′′ + q(t)x
(
σ(t)

)
= 0,(19)

(
x(t)− p(t)x(t− τ)

)′′ + q(t)x(t + α) = 0,(19’)

then it is usual to impose the condition p1 < p(t) < p2 on the function p(t).
From the proofs of the abovementioned results one can see that the tech-
nique presented in this paper can be applied to Eqs. (19) and (19’).
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