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Modified Stringer bounds

By G. PAP (Debrecen) and M. C. A. VAN ZUIJLEN (Nijmegen)

Abstract. The asymptotic theory of some alternatives proposed by Lucassen,
Moors and Van Batenburg for the Stringer bound has been developed. It indicates that
these alternatives cannot compete with the Stringer bound. Moreover, it is proved that
the so called “all or nothing method” is superiour.

1. Introduction

Monetary unit sampling is a widely used technique in auditing ac-
counts (Van Batenburg and Kriens [1], Tamura [13]), which makes it
possible to obtain an upper bound for the total misstatement percentage
in an accounting population. One of these upper bounds is the Stringer
bound, which is a linear combination of the ordered taintings. These taint-
ings are defined as the relative misstatement in the sample items, i.e.,
the quotient of the difference between the book value and the audited
value, and the book value. Simulation studies (Burdick and Reneau [3],
Leitch et al. [5], Plante et al. [10], Reneau [11]) have indicated that
the Stringer bound is conservative, which means that the actual confidence
level achieved by the Stringer bound exceeds the nominal conficence level
α (say). Pap and Van Zuijlen [9] have proved the conservatism for large
sample sizes n in case α ≤ 1

2 and the anticonservatism for α > 1
2 . Moreover

they proposed a modified Stringer bound which has the right confidence
level for large samples. See also Bickel [2]. In Lucassen, Moors and
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Van Batenburg [6] several other modifications of the Stringer bound
are proposed with the aim to decrease the conservatism. Some of these
modifications are based on their conjecture that the coefficients in the
Stringer bound are decreasing for α < 0.28. This statement and also some
of the proposed alternatives for the Stringer bound are supported by their
simulation study.

In this paper we will investigate analytically the monotonicity state-
ment mentioned above and the behavior of the proposed alternatives (and
others) for the Stringer bound. We conclude that in general these alter-
natives cannot be considered as competitors of the Stringer bound. The
results are presented in Section 2. In Section 3 we prove the superiority
of the “my dollar right or wrong method” (also called the “all or nothing
method”) as compared with the use of the Stringer bound which is based
on the taintings. It confirms a conjecture of G.B. Broeze (1998, per-
sonal communication). This somewhat suprising result is important for
practical purposes and throws quite a different light on the effectiveness of
procedures based on the Stringer bound. The proofs of the theorems are
given in Section 4.

2. Results

Let T1, T2, . . . , Tn be independent, identically distributed random
variables with distribution function F on [0, 1] and let µ := ET1. Our
aim is to find confidence upper bounds for µ of level 1− α. Therefore let

0 =: T0:n ≤ T1:n ≤ · · · ≤ Tn:n ≤ Tn+1:n := 1

be the order statistics of T1, . . . , Tn. Moreover, for α ∈ (0, 1) and j =
0, 1, . . . , n− 1, let pn(j; 1− α) be the unique solution in p of the equation

n∑

k=j+1

(
n

k

)
pk(1− p)n−k = P(Bin(n, p) ≥ j + 1) = 1− α,

and let pn(n; 1− α) := 1, pn(−1, 1− α) := 0. We define for j = 0, 1, . . . , n

(omitting the α in the notation)

cn(j) := pn(j)− pn(j − 1).
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The definition of the well-known Stringer bound µ1n is

µ1n := pn(0) +
n∑

j=1

(pn(j)− pn(j − 1))Tn−j+1:n

=
n∑

j=0

cn(j)Tn−j+1:n.

There has been a common belief in the auditing literature that the Stringer
bound works well in the sense that the real confidence probability is at least
the nominal confidence level (1− α, say). Or in mathematical terms

(1) P
{

µ
(n)
ST ≥ µ

}
≥ 1− α

for all α ∈ (0, 1), for all n ≥ 1 and for all underlying distributions F of
the taintings Ti. However, simulation studies indicated that the Stringer
bound is rather conservative which could mean that the difference of the
probability in (1) and 1− α can be rather large.

Bickel [2] has proved that

P
{

µ
(n)
ST ≥ µ

}
≥

{ (1− α)n+1 for n ≥ 2

(1− α) for n = 1

under certain conditions on the distribution of the taintings Ti. Let Φ de-
note the standard normal distribuiton function and let z1−α :=Φ−1(1−α).
In Pap and Van Zuijlen [8] the following asymptotic expansion has been
obtained for the Stringer bound:

µ1n =
1
n

n∑

j=1

Tj +
c1(F )√

n
z1−α + o(n−

1
2 ) a.s.

where

c1(F ) :=
∫ 1

0

F−1(t)
2t− 1

2
√

t(1− t)
dt =

∫ 1

0

√
t(1− t) dF−1(t).
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Since c1(F ) ≥ σ(F ) :=
√

Var T1, the asymptotic expansion implies that

lim
n→∞

P(µ1n ≥ µ)(2)

= Φ
(

c1(F )
σ(F )

z1−α

)




≥ Φ(z1−α) = 1− α for α ∈
[
0,

1
2

]
,

≤ Φ(z1−α) = 1− α for α ∈
[
1
2
, 1

]
.

In other words, the Stringer bound is not asymptotically conservative
for α ∈ [ 12 , 1], which implies that also in a finite sampling situation the
Stringer bound does not necessarily have the right confidence level. Pap
and Van Zuijlen [7] gave recursive relations for obtaining the exact dis-
tribution of the Stringer bound in case if the underlying distribution of the
taintings is a uniform distribution on the interval [0, 1], or a distribution
with positive mass at zero and conditionally uniform on (0, 1]. Based on
these recurrence relations a concrete example has been found where the
Stringer bound is not conservative. Moreover, (2) implies that

lim
r→∞

Φ(rz1−α) =





1 for α ∈
(

0,
1
2

)
,

1
2

for α =
1
2
,

0 for α ∈
(

1
2
, 1

)
,

hence if the ratio r = c1(F )/σ(F ) is a large number then the Stringer
bound is highly asymptotically conservative for α ∈ (0, 1

2 ) and it is highly
asymptotically non-conservative for α ∈ ( 1

2 , 1). Pap and Van Zuijlen [8]
showed that the ratio r = c1(F )/σ(F ) can be an arbitrary large number.
Of course, both the highly asymptotically conservative and highly asymp-
totically non-conservative cases are not desirable. Note that Pap and Van
Zuijlen [8] contains several limit theorems for the Stringer bound, and
from the general results in Pap and Van Zuijlen [9] a Berry-Esseen in-
equality has been derived.

In Pap and Van Zuijlen [8] a so called modified Stringer bound
µ̃n has been proposed in order to remove the conservatism, respectively,
anticonservatism. This µ̃n is defined as follows

µ̃n := µ1n − c1(Fn)− σ(Fn)√
n

z1−α,
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where Fn denotes the empirical distribution function based on
T1, T2, . . . , Tn:

Fn(t) :=
1
n

n∑

i=1

1[0,t](Ti),

with

1[0,t](Ti) :=
{

1 if Ti ≤ t

0 otherwise.

It has been shown that this modified Stringer bound µ̃n is asymptotically
correct for all α, i.e.,

lim
n→∞

P(µ̃n ≥ µ) = 1− α, for α ∈ (0, 1).

Next, let us define

Mn :=
n∑

i=1

1(0,1](Ti), % := P(Ti > 0).

Note that Mn is the number of nonzero T1, T2, . . . , Tn,

Mn

n

a.s.−−→ % (n →∞)

by the strong law of large numbers, and

µ1n =
Mn∑

j=0

cn(j)Tn−j+1:n.

We will consider the following four modifications of the Stringer bound
(with T0 := 0):

µ2n :=
Mn∑

j=0

cn(n−Mn + j)Tn−j+1:n, µ3n :=
n∑

j=0

cn(j)Tj:n,

µ4n :=
Mn∑

j=0

cn(j)Tn−Mn+j:n, µ5n :=
n∑

j=0

cn(j)Tj ,

and note that µ1n = µ2n and µ3n = µ4n in case if Mn = n, i.e., if the
distribution of the taintings has no mass in zero.
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Remark 1. In Van Batenburg et al. [6] µ4n and µ5n are introduced
and called ITO (Increased Tainting Order) and RTO (Random Tainting
Order), respectively. For completeness we have added the two others µ2n

and µ3n, which are quite natural in this setting.

For these modifications we can prove the following asymptotic expan-
sions.

Theorem 1. We have a.s.

µ2n =
1
n

n∑

i=1

Ti +
c2(F )√

n
z1−α + o(n−

1
2 ),

µ3n =
1
n

n∑

i=1

Ti − c1(F )√
n

z1−α + o(n−
1
2 ),

µ4n =
1
n

n∑

i=1

Ti − c2(F )√
n

z1−α + o(n−
1
2 ),

and

µ5n
P−→ µ,

where c1(F ) and z1−α are defined as earlier and

c2(F ) :=
∫ %

0

F−1(t + 1− %)
2t− 1

2
√

t(1− t)
dt

=
∫ %

0

√
t(1− t) dF−1(t + 1− %)−

√
%(1− %).

Remark 2. It follows from Theorem 1 that for instance

lim
n→∞

P(µ2n ≥ µ) = Φ
(

c2(F )
σ(F )

z1−α

)
.

However, in this case we do not know whether

c2(F ) ≥ σ(F ).

In fact we have
c2(F ) ≤ c1(F ),
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since c2(F ) can be written in the form

c2(F ) =
∫ 1

1−%

2(t + %)− 3
2
√

(t− 1 + %)(2− t− %)
F−1(t) dt,

and the integrand is monotone increasing on the interval [1− %, 1], hence

c2(F ) ≤
∫ 1

1−%

2t− 1
2
√

t(1− t)
F−1(t) dt =

∫ 1

0

2t− 1
2
√

t(1− t)
F−1(t) dt = c1(F ).

But the following examples shows that c2(F ) can be smaller but also
greater than σ(F ), depending on F . Hence lim

n→∞
P(µ2n ≥ µ) can be on

both sides of 1− α.

Example 1. Let X be a random variable with
{ P(X = 0) = 1− %,

P(X = x) = %,

where x ∈ (0, 1). We have

µ = EX = %x, EX2 = %x2,

so that
σ2(X) = Var(X) = %(1− %)x2.

Moreover,

c2(X) =
∫ %

0

2u− 1
2
√

u(1− u)
F−1(u + 1− ρ) du

=
∫ %

0

2u− 1
2
√

u(1− u)
x du =

[
−x

√
u(1− u)

]u=%

u=0

=− x
√

%(1− %) < 0 < σ(X) = x
√

%(1− %).

Hence in this example we have

c2(X) < 0 < σ(X).
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Example 2. The purpose of this example (which is an extension of
Example 1) is to demonstrate that c2(X) can also be positive. Let X be
a random variable with





P(X = 0) = 1− %,

P(X = x) = %− q,

P(X = 1) = q,

where x ∈ (0, 1) and 0 < q < % < 1. We have

EX = %x + q(1− x), EX2 = %x2 + q(1− x2)

σ2(F ) = %(1− %)x2 + q(1− q)(1− x2)− 2q(%− q)x(1− x)

and
∫ %

0

√
u(1− u) dF−1(u + 1− ρ) = (1− x)

√
(%− q)(1− % + q)

so that

c2(X) =
√

(%− q)(1− % + q)−
√

%(1− %)− x
√

(%− q)(1− % + q).

Taking for example q = 1
4 and % = 1

2 we obtain

c2(X) =
1− x

2
−
√

3
4





> 0 for x < 1− 1
2
√

3,

< 0 for x > 1− 1
2
√

3.

Clearly c2(F ) can be even larger than σ(F ) since if F is not concentrated
on only two points and % = 1 then c2(F ) = c1(F ) > σ(F ).

Remark 3. Let us consider the proposal to replace the Stringer bound
µ1n by µ2n from another point of view. Note that one can rewrite µ1n and
µ2n as follows:

µ1n =
n∑

j=0

cn(j)Tn−j+1:n =
n+1∑

j=1

pn(n− j + 1)(Tj:n − Tj−1:n)
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µ2n =
Mn∑

j=0

cn(n−Mn + j)Tn−j+1:n

=
n+1∑

j=n−Mn+1

pn(2n−Mn − j + 1)(Tj:n − Tj−1:n)− pn(n−Mn − 1).

Theorem 2 in De Jager, Pap and Van Zuijlen [4] states that the coef-
ficients in the Stringer bound µ1n are minimal in a certain sense. Namely,
if

P(µ2n ≥ µ) ≥ 1− α

is satisfied for all n ∈ N, α ∈ (0, 1) and for all distributions concentrated
on the set {0, 1}, then the coefficients of µ2n have to be not less than the
coefficients of µ1n, that is,

pn(2n−Mn − j + 1) ≥ pn(n− j + 1) for j = 1, 2, . . . , n + 1.

Note, that these inequalities hold, since pn(j) is increasing in j.

Remark 4. To compare the alternative µ4n for µ1n, let U1, U2, . . . , Un

be i.i.d. random variables, uniformly distributed on the interval [0, 1], with
order statistics

U1:n ≤ U2:n ≤ · · · ≤ Un:n.

We define

Ũi := 1− Ui for i = 1, 2, . . . , n

so that

Ũ1, Ũ2, . . . , Ũn

are also i.i.d. random variables, uniformly distributed on the interval [0, 1],
with order statistics

Ũ1:n ≤ Ũ2:n ≤ · · · ≤ Ũn:n.

With probability one we have

1− Ũi:n = Un−i+1:n for i = 1, 2, . . . , n.
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Note that µ = EUi = EŨi = 1
2 and note that in this case we have Mn = n

with probability one. Writing down the bounds µ1n and µ4n for the sample
U1, U2, . . . , Un respectively. Ũ1, Ũ2, . . . , Ũn we have

µ1n =
n∑

j=0

cn(j)Un−j+1:n µ4n =
n∑

j=0

cn(j)Ũj:n.

Since µ1n is an asymptotic (1 − α)-upper confidence bound for µ = 1
2 , it

follows from symmetry reasons that 1−µ1n is an asymptotic (1−α)-lower
conficence bound for µ = 1

2 . Moreover, with probability one, we have

1− µ1n = 1−
n∑

j=0

cn(j)Un−j+1:n = 1−
n∑

j=0

cn(j)(1− Ũj:n)

= µ4n − pn(0) = µ4n + O

(
1
n

)
.

We conclude that in case of a uniform [0, 1] underlying distribution µ4n is
even an asymptotic (1− α)-lower bound for the mean, i.e.,

lim
n→∞

P(µ4n≤µ) ≥ 1− α.

The following theorem gives an analytic, but asymptotic support to
the conjecture on page 19 in Lucassen, Moors and Van Batenburg [6]
concerning the monotonicity of the function j 7→ cn(j).

Theorem 2. For j = 1, 2, . . . we have

cn(j)− cn(j + 1) =
z1−α(n + 1)

1
2

4(j(n− j + 1))
3
2

+ O

(
n

j2(n− j + 1)2

)
as n →∞.

Hence if 0 < γ < δ < 1 then there exists n0(α, γ, δ) such that

cn(j) > cn(j + 1) for α ∈
(

0,
1
2

)
and n ≥ n0(α, γ, δ),

j

n
∈ (γ, δ)

and

cn(j) < cn(j + 1) for α ∈
(

1
2
, 1

)
and n ≥ n0(α, γ, δ),

j

n
∈ (γ, δ).
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Remark 5. We note that tedious calculations leads to the longer ex-
pansion

cn(j)− cn(j + 1) =
z1−α(n + 1)

1
2

4(j(n− j + 1))
3
2

+
3z1−α(n + 1)

1
2 (n− 2j + 1)

4(j(n− j + 1))
5
2

+
z1−α(43− z2

1−α)(3(n + 1)2 − 8j(n + 1) + 8j2)

144(n + 1)
1
2 (j(n− j + 1))

5
2

+
z1−α(3n− 4j + 3)

2(n + 1)
1
2 j

5
2 (n− j + 1)

3
2

+
z1−α(1− z2

1−α)

8(n + 1)
1
2 (j(n− j + 1))

3
2

+ O

(
n2

j3(n− j + 1)3

)
.

Remark 6. We have for j = 0, 1, . . . , n + 1

pn(n− j; 1− α) = 1− pn(j − 1; α),

(see Pap and Van Zuijlen [8]) which implies

cn(n− j; 1− α) = cn(j; α),

hence

cn(n− j; 1− α)− cn(n− j − 1; 1− α) = cn(j; α)− cn(j + 1; α).

Particularly, in case α = 1
2 we obtain the symmetry

cn

(
n− j;

1
2

)
− cn

(
n− j − 1;

1
2

)
= cn

(
j;

1
2

)
− cn

(
j + 1;

1
2

)
,

so that monotonicity of the function j 7→ cn(j; 1
2 ) cannot take place.

3. “My dollar right or wrong” method

Let U1, U2, . . . , Un be i.i.d. random variables, uniformly distributed
on the interval [0, 1]. We define the random variables X1, X2, . . . , Xn as
follows

Xi := 1[0,Ti](Ui) = 1[Ui,1](Ti) =
{

1 if Ui ≤ Ti ≤ 1,

0 elsewhere.
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It is clear that the Xi’s are i.i.d. Bernoulli random variables with the same
mean as the Ti’s since

E(Xi) = EE(Xi | Ti) = EE
(
1[0,Ti](Ui) | Ti

)
= E(Ti) = µ.

Note that the Ti’s represent the taintings, whereas the Xi’s represent the
“good” or “false” dollars, obtained from the taintings, when the “my dollar
right or wrong” method is used.

The Stringer bound based on the Bernoulli random variables
X1, X2, . . . , Xn, denoted by νn, is

νn :=
n∑

j=1

cn(j)Xn−j+1:n = pn(X),

where X1:n ≤ X2:n ≤ . . . ≤ Xn:n are the order statistics of the Xi’s and

where X :=
n∑

i=1

Xi. As has been mentioned in Section 2,

lim
n→∞

P(µ1n ≥ µ) = Φ
(

c1(F )
σ(F )

z1−α

)
,

and c1(F ) ≥ σ(F ) implies that for α ∈ (0, 1
2 ] we also have

lim
n→∞

P(µ1n ≥ µ) ≥ Φ(Φ−1(1− α)) = 1− α.

Since X1 has a 2-point distribution on [0, 1] we have c1(X1) = σ(X1);
consequently

lim
n→∞

P(νn ≥ µ) = Φ(z1−α) = Φ(Φ−1(1− α)) = 1− α,

and we conclude that for α ∈ (0, 1
2 ]

lim
n→∞

P(νn ≥ µ) = 1− α ≤ lim
n→∞

P(µ1n ≥ µ).

Hence, indeed, we see that the “my dollar right or wrong” method is
asymptotically preferable to the tainting method, since asymptotically the
coverage probability of νn is closer to 1− α than that of µ1n.

Moreover, the following important ‘finite n result’ holds:

P(νn ≥ µ) ≥ 1− α for all n = 1, 2, . . . ,
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since X1 has a 2-point distribution (see Theorem 1 in De Jager, Pap and
Van Zuijlen [4]), and the closeness of P(νn ≥ µ) to 1−α is described by
the following statement.

Theorem 3.

P(νn ≥ µ) = 1− α + O

(
1√
n

)
as n →∞.

4. Proofs

Proof of Theorem 1. We will use the method of the proof of The-
orem 3 in Pap and Van Zuijlen [8]. Applying Theorem 2 in Pap and
Van Zuijlen [8] for m = 2 we obtain

cn(j) =
1

n + 1
+

z1−α

(n + 1)
3
2

n− 2j + 1
2
√

j(n− j + 1)
+ O

(
1

j(n− j + 1)

)
.

We note that from the expansion for m = 3 given in Pap and Van Zui-

jlen [8] one term is missing; the true expansion is

cn(j) =
1

n + 1
+

z1−α

(n + 1)
3
2

n− 2j + 1
2
√

j(n− j + 1)
+

2(1− z1−α)
3(n + 1)2

+ O

(
n

1
2

(j(n− j + 1))
3
2

)
.

But in fact, we need only the shorter expansion of the case m = 2, which
implies

∣∣∣∣µ2n−pn(0)−
Mn∑

j=1

Tn−j+1:n

(
1

n+1
+

z1−α

(n+1)
3
2

2(Mn − j)− n + 1
2
√

(n−Mn + j)(Mn−j+1)

)∣∣∣∣

≤ c

Mn∑

j=1

Tn−j+1:n

(n−Mn + j)(Mn − j + 1)
≤ c

n∑

j=1

1
j(n− j + 1)

=
c

n + 1

n∑

j=1

(
1
j

+
1

n− j + 1

)
= O

(
log n

n

)
.
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Moreover
pn(0) = 1− n

√
α = O(n−1),

and we have

Mn∑

j=1

2(Mn − j)− n + 1
2
√

(n−Mn + j)(Mn − j + 1)
Tn−j+1:n

=
n∑

k=n−Mn+1

2(Mn + k)− 3n− 1
2
√

(Mn − n + k)(2n−Mn − k + 1)
Tk:n

= n

∫ 1

1−Mn−1
n

2
(
t + Mn

n

)− 3− 1
n

2
√(

2− Mn

n − t + 1
n

) (
Mn

n − 1 + t
)F−1

n (t) dt.

Hence we have the expansion

µ2n =
1
n

n∑

j=1

Tj

+
nz1−α

(n + 1)
3
2

∫ 1

1−Mn−1
n

2
(
t + Mn

n

)− 3− 1
n

2
√(

2− Mn

n − t + 1
n

) (
Mn

n − 1 + t
)F−1

n (t) dt

+ O

(
log n

n

)
.

As in Lemma 5 in Pap and Van Zuijlen [8] we obtain

∫ 1

1−Mn−1
n

2
(
t + Mn

n

)− 3− 1
n

2
√(

2− Mn

n − t + 1
n

) (
Mn

n − 1 + t
)F−1

n (t) dt

a.s.−−−→
∫ 1

1−%

2(t + %)− 3
2
√

(2− %− t)(%− 1 + t)
F−1

n (t) dt = c2(F ).

Consequently

µ2n =
1
n

n∑

j=1

Tj +
c2(F )√

n
z1−α + o(n−

1
2 ) a.s.

The expansion for µ3n and µ4n can be proved similarly.
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Moreover, we clearly have

Eµ5n =
n∑

j=1

cn(j)ETj = µ

n∑

j=1

cn(j) = µ(1− pn(0)),

pn(0) = 1− n
√

α = O(n−1),

and

Varµ5n =
n∑

j=1

(cn(j))2 VarTj = σ2
n∑

j=1

(cn(j))2.

Applying Theorem 2 in Pap and Van Zuijlen [8] for m = 1 we obtain

cn(j) =
1

n + 1
+ O

(
1√

nj(n− j + 1)

)
,

hence
(cn(j))2 ≤ 2

(n + 1)2
+

c

nj(n− j + 1)

which implies

n∑

j=1

(cn(j))2 ≤ 2n

(n + 1)2
+

c

n

n∑

j=1

1
j(n− j + 1)

= O

(
1
n

)
.

Thus for all ε > 0 we have

P(|µ5n − Eµ5n| ≥ ε) ≤ Varµ5n

ε2
→ 0 as n →∞,

consequently we obtain µ5n − Eµ5n
P−→ 0 and finally µ5n

P−→ µ. See also
Schapendonk-Maas [12]. ¤

Proof of Theorem 2. Applying Theorem 1 in Pap and Van Zui-

jlen [8] for m = 3 we obtain the expansion

(n + 1)
3
2

(j(n− j + 1))
1
2

(
pn(j − 1)− j

n + 1

)

= z1−α + R1,j,n(z1−α) + R2,j,n(z1−α) + O

(
(n + 1)

3
2

(j(n− j + 1))
3
2

)
,
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where

R1,j,n(z) = −S1,j,n(z) = − n− 2j + 1
3(n + 1)

1
2 (j(n− j + 1))

1
2
(1− z2),

R2,j,n(z) = S1,j,n(z)S′1,j,n(z)− z

2
(S1,j,n(z))2 − S2,j,n(z)

=
z

j
+

z(1− z2)
4(n + 1)

− (n− 2j + 1)2z(43− z2)
36(n + 1)j(n− j + 1)

.

Hence

pn(j − 1) =
j

n + 1
+

(j(n− j + 1))
1
2

(n + 1)
3
2

z1−α − n− 2j + 1
3(n + 1)2

(1− z2
1−α)

− (n− 2j + 1)2z1−α(43− z2
1−α)

36(n + 1) 5
2 (j(n− j + 1))

1
2

− (n− j + 1)
1
2 z1−α

(n + 1)
3
2 j

1
2

+
(j(n− j + 1))

1
2 z1−α(1− z2

1−α)
4(n + 1) 5

2

+ O

(
1

j(n− j + 1)

)
.

Using Taylor expansion of the functions t 7→ (t(1− t))
1
2 , t 7→ (1−2t)2

(t(1−t))
1
2

and

t 7→ (
1−t

t

) 1
2 at the point t = j

n+1 we obtain

((j + 1)(n− j))
1
2 − (j(n− j + 1))

1
2

=
n− 2j + 1

2(j(n− j + 1))
1
2
− (n + 1)2

2(j(n− j + 1))
3
2

+ O

(
n3

(j(n− j + 1))
5
2

)
,

(n− 2j − 1)2

((j + 1)(n− j))
1
2
− (n− 2j + 1)2

(j(n− j + 1))
1
2

= − (n + 1)2(n− 2j + 1)
2(j(n− j + 1))

3
2

+ O

(
n4

(j(n− j + 1))
5
2

)
,
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(
n− j

j + 1

) 1
2

−
(

n− j + 1
j

) 1
2

= − n + 1
2j

3
2 (n− j + 1)

1
2

+ O

(
n2

j 5
2 (n− j + 1)

3
2

)
.

We remark that by using Theorem 1 in Pap and Van Zuijlen [8] for
m = 5 we can even derive an expansion for pn(j− 1) with remainder term

O

(
n

j2(n− j + 1)2

)
.

The differrences of the additional terms in the expansion of pn(j) and
pn(j − 1) turn out to be of order O

(
n

j2(n−j+1)2

)
due to the smoothness

of the functions involved. In this way we obtain the expansion for cn(j) =
pn(j)− pn(j − 1):

cn(j) =
1

n + 1
+

z1−α

(n + 1)
3
2

(
n− 2j + 1

2(j(n− j + 1))
1
2
− (n + 1)2

2(j(n− j + 1))
3
2

)

+
2(1− z1−α)
3(n + 1)2

+
z1−α(43− z2

1−α)

36(n + 1)
1
2

n− 2j + 1
2(j(n− j + 1))

3
2

+
z1−α

(n + 1)
1
2

1
2j

3
2 (n− j + 1)

1
2

+
z1−α(1− z2

1−α)

4(n + 1)
5
2

n− 2j + 1
2(j(n− j + 1))

1
2

+ O

(
n

j2(n− j + 1)2

)
.

Using Taylor expansion of the functions t 7→ 1−2t

(t(1−t))
1
2
, t 7→ (t(1 − t))−

3
2 ,

t 7→ 1−2t

(t(1−t))
3
2

and t 7→ 1

t
3
2 (1−t)

1
2

at the point t = j
n+1 we obtain

n− 2j + 1
2(j(n− j + 1))

1
2
− n− 2j − 1

2((j + 1)(n− j + 1))
1
2

=
(n + 1)2

4(j(n− j + 1))
3
2

+ O

(
n

5
2

j2(n− j + 1)2

)
,
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1
(j(n− j + 1))

3
2
− 1

((j + 1)(n− j))
3
2

= O

(
n

1
2

j2(n− j + 1)2

)
,

n− 2j + 1
(j(n− j + 1))

3
2
− n− 2j + 1

((j + 1)(n− j))
3
2

= O

(
n

3
2

j2(n− j + 1)2

)
,

1
j

3
2 (n− j + 1)

1
2
− 1

(j + 1)
3
2 (n− j)

1
2

= O

(
n

3
2

j2(n− j + 1)2

)
.

Finally we conclude the expansion of cn(j)−cn(j+1) given in the theorem.
Thus there is a constant c > 0 such that

∣∣∣∣cn(j)− cn(j + 1)− z1−α

√
n + 1

4(j(n− j + 1))
3
2

∣∣∣∣ ≤
cn

j2(n− j + 1)2
.

Let now α ∈ (0, 1
2 ), which implies z1−α > 0. If j

n ∈ (γ, δ) with some
0 < γ < δ < 1 then we have

z1−α

√
n + 1

4(j(n− j + 1))
3
2
≥ cn

j2(n− j + 1)2

for sufficiently large n, since

√
(n + 1)j(n− j + 1)

n
=

√
(n + 1)

j

n

(
1− j

n
+

1
n

)

≥
√

(n + 1)γ
(

1− δ +
1
n

)
≥ 4c

z1−α

for sufficiently large n. Consequently, we obtain the monocity statement
for the function j 7→ cn(j). The case α ∈ ( 1

2 , 1) can be handled similarly.
¤

Proof of Theorem 3. Clearly

P(X = j) =
(

n

j

)
µj(1− µ)n−j for j = 0, 1, . . . , n.

Let nµ be the index such that

pn(nµ) ≤ µ < pn(nµ + 1).
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First we show that nµ

n → µ as n →∞. We have the expansion

pn(j − 1) =
j

n + 1
+ O

(
(j(n− j + 1))

1
2

(n + 1)
3
2

)

(see Theorem 1 in Pap and Van Zuijlen [8]), hence there exists c > 0
such that

µ ≥ pn(nµ) ≥ nµ + 1
n + 1

− c
((nµ + 1)(n− nµ))

1
2

(n + 1)
3
2

and

µ < pn(nµ + 1) ≤ nµ + 2
n + 1

+ c
((nµ + 2)(n− nµ − 1))

1
2

(n + 1)
3
2

.

Hence we can conclude

−c
((nµ + 2)(n− nµ − 1))

1
2

(n + 1)
3
2

− 1
n + 1

≤ nµ + 1
n + 1

− µ

≤ c
((nµ + 1)(n− nµ))

1
2

(n + 1)
3
2

,

which together with 0 ≤ nµ ≤ n imply nµ

n → µ as n →∞.

We have

P(νn ≥ µ) = P(pn(X) ≥ µ) =
n∑

j=nµ+1

(
n

j

)
µj(1− µ)n−j

=
∫ µ

0

n

(
n− 1
nµ

)
xnµ(1− x)n−nµ−1 dx

and

1− α =
n∑

j=nµ+1

(
n

j

)
(pn(nµ))j(1− pn(nµ))n−j

=
∫ pn(nµ)

0

n

(
n− 1
nµ

)
xnµ(1− x)n−nµ−1 dx,
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hence

P(νn ≥ µ)− (1− α) =
∫ µ

pn(nµ)

n

(
n− 1
nµ

)
xnµ(1− x)n−nµ−1 dx

≤ n(µ− pn(nµ)) sup
0≤x≤1

(
n− 1
nµ

)
xnµ(1− x)n−nµ−1

= n(µ− pn(nµ))
(

n− 1
nµ

)
qnµ
n (1− qn)n−nµ−1,

where qn := nµ

n−1 → µ as n →∞. We have
(

n− 1
nµ

)
qnµ
n (1− qn)n−nµ−1 = P(Bin(n− 1, qn) = nµ) = O

(
1√
n

)
,

since by the Moivre–Laplace theorem
∣∣∣∣∣P(Bin(n− 1, qn) = nµ)− 1√

2π(n− 1)qn(1− qn)

∣∣∣∣∣ → 0 as n →∞.

Moreover, we have

µ− pn(nµ) < pn(nµ + 1)− pn(nµ),

and Theorem 2 in Pap and Van Zuijlen [8] implies for some c1 > 0

|pn(j)− pn(j − 1)| ≤ c1

n

(
n + 1

j(n− j + 1)

) 1
2

≤
√

2c1

n
,

hence µ− pn(nµ) = O
(

1
n

)
. ¤
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