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Linked dichotomies and asymptotic theory
of nondiagonal differential systems

By RAÚL NAULIN (Cumaná) and MANUEL PINTO (Santiago)

Abstract. This paper introduces the notion of linked dichotomies for a linear
system of ordinary differential equations. Roughly speaking, this is a family of (hi, ki)-
dichotomies with nested subspaces of ki-bounded solutions. This concept is stable
under L1-perturbations. We show that if B(t) ∈ L1 and the system x′ = A(t)x,
with fundamental matrix Φ(t), has an exhaustive chain of linked dichotomies, then

there exists a fundamental matrix eΦ(t) of x′ = [A(t) + B(t)]x, such that eΦ(t) =Pr
i=1 ((Φ(t) + o(hi(t)))Ri + (Φ(t) + o(ki(t)))Si) , and Ri, Si are orthogonal projections

satisfying
Pr

i=1(Ri + Si) = I.

1. Introduction

This paper concerns the problem of asymptotic integration of the
linear system

(1) y′ = [A(t) + B(t)] y,

where A(t) is continuous and in general a nondiagonal matrix function;
the function B(t) is absolutely integrable.

The theory of asymptotic integration of differential systems is an im-
portant field of research of applicable analysis, whose fundamentals were
given by Levinson in his research papers [11], [12]. This theory has re-
ceived the contributions of many mathematicians [1–3], [6–9], [11], [12],
[18], who have investigated different conditions on the linear system

(2) x′ = A(t)x
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316 Raúl Naulin and Manuel Pinto

and on the function B(t), in order to characterize the solutions of Sys-
tem (1) assuming knowledge of the solutions of System (2). Concerning
this study, we point out the role played by Coppel’s book [5], where the
importance of the notion of asymptotic equivalence in the study of Sys-
tem (1) is emphasized. In these bibliographic notes we point out also the
monography [7], which expounds the asymptotic integration theory from
the point of view of the Levinson asymptotic theorem.

In [11], in order to study the asymptotic integration of System (1),
Levinson introduced the notion of asymptotic equivalence between

(3) x′ = Ax, A = constant,

and its perturbed system

(4) y′ = [A + B(t)]y,

∫ ∞

0

|B(t)|dt < ∞.

He established that if the real parts of the eigenvalues of the matrix A are
nonpositive and the eigenvalues with vanishing real parts are simple in the
Jordan sense, then the solutions of Systems (3) and (4) are in bijective
correspondence satisfying

lim
t→∞

(x(t)− y(t)) = 0.

Later on, the construction of the theory of dichotomies given by
Massera and Schäffer [10] for the study of the nonautonomous Sys-
tem (2) and the important contributions of Coppel [5] and Palmer [19] to
this subject, gave an important impulse to the investigation of asymptotic
equivalence [2], [6], [8], [18], where essentially a correspondence between
bounded solutions of Systems (2) and (1) and those of System (2) and the
nonlinear system

(5) y′ = A(t)y + f(t, y)

were established [2], [6]. In this historical account we emphasize also the
recent paper [14] where by means of the notion of (h, k)-dichotomy [14],
[22], the asymptotic equivalence between the bounded (and respectively
the unbounded) solutions of Systems (2) and (5) was given.
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In [12] Levinson obtained another important result concerning System
(1), with nonperturbed System (2) having the diagonal form

(6)
x′ = Λ(t)x,

Λ(t) = diag(λ1(t), λ2(t), . . . , λn(t)),

where the complex valued functions λj(t) are continuous. If the coefficients
of System (6) satisfy the Levinson dichotomic conditions and B(t) ∈ L1

(for definitions see Section 6 of this paper), then the system

(7) y′ = [Λ(t) + B(t)]y

has a fundamental matrix Ψ(t) satisfying the asymptotic formula

(8) Ψ(t) = (I + o(1)) exp
{∫ t

t0

Λ(s)ds

}
,

where we have used the Landau asymptotic symbol o(h) to represent a
function with the property limt→∞ h(t)−1o(h)(t) = 0. A similar result,
using other dichotomic conditions, was obtained by Hartman and Wint-

ner [7] for a System (1) and a function B(t) ∈ Lp, 1 < p ≤ 2.
In summary, the theory of asymptotic integration, started by Levinson

was developed in two directions: the theory of asymptotic equivalence and
the asymptotic theory of diagonal systems.

In this paper we point out the remarkable fact used by Levinson in his
asymptotic theory, that the dichotomic character of System (6) is described
by a family of h-dichotomies. This idea has been emphasized in the recent
papers [13–17], [20–22]. Apparently, this situation has not been exploited
for a general System (2). The aim of this paper is the construction of an
asymptotic theory for (1), assuming that the nondiagonal System (2) has
a family of (h, k)-dichotomies [14], [15]. The basic problem to solve here is
the following: How to use a family of (h, k)-dichotomies of System (2) in
order to obtain maximal information on System (1)? To solve this problem
we introduce the notion of an ordered chain of dichotomies, linked by the
subspaces of solutions of (2) with different asymptotic growths. By a step
by step procedure of asymptotic equivalence, involving solutions of (1) and
(2) of the same growth, we construct an asymptotic theory for the general
System (1). We prove an asymptotic formula for Φ̃, a fundamental matrix
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of the nonautonomous System (1), for a general System (2). This formula
has the form

Ψ(t) =
r∑

i=1

((Φ(t) + o(hi(t)))Ri + (Φ(t) + o(ki(t)))Si) ,

where {Ri, Si}r
i=1 is a family of orthogonal projections satisfying∑r

i=1(Ri + Si) = I and Φ denotes a fundamental matrix of System (2).
This formula makes explicit the correspondence between hi-bounded solu-
tions (and also ki-bounded ones) of Systems (1) and (2).

We will show that the dichotomy of Levinson for the diagonal Sys-
tem (6) can certainly be treated as a particular case of linked dichotomies.
We obtain an asymptotic formula for System (7) that contains formula
(8). These results unify the asymptotic theory of diagonal systems and the
theory of asymptotic integration developed under the notion of asymptotic
equivalence.

2. Preliminaries

Let J = [t0,∞). V will denote the space Rn or Cn. For a function
h(t) we will denote h(t)−1 = 1/h(t). We will say that a function x : J → V

is h-bounded iff the function h(t)−1x(t) is bounded. Let (h, k) denote a
pair of continuous and positive functions. We will say that this pair is
compensated [14–16], iff there exists a positive constant C such that

h(t)h(s)−1 ≤ Ck(t)k(s)−1, t ≥ s.

Definition 1. We will say that the System (2) has an (h, k)-dichotomy
iff (h, k) is compensated and there exists a projection matrix P and a
constant K such that

(9)
|Φ(t)PΦ−1(s)| ≤ Kh(t)h(s)−1, t ≥ s,

|Φ(t)(I − P )Φ−1(s)| ≤ Kk(t)k(s)−1, s ≥ t.

The (h, h)-dichotomy will shortly be called an h-dichotomy. Since we
will use different (h, k)-dichotomies, sometimes we will be identify this con-
cept with the triad (h, k, P ) and consequently an h-dichotomy will be iden-
tified with (h, P ). The notion of (h, k)-dichotomy was introduced in [20].
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By x(t, t0, ξ) we denote the solution of System (2) with initial condi-
tion ξ at initial time t0. In the following we use the notations

Vh =
{

ξ ∈ V : sup
t≥t0

|h(t)−1x(t, t0, ξ)| < ∞
}

,

Vh,0 =
{

ξ ∈ Vh : lim
t→∞

h(t)−1x(t, t0, ξ) = 0
}

.

Qh and Qh,0 will denote projections such that Qh[V ] = Vh, Qh,0[V ] = Vh,0.
Similar subspaces and projections are defined for the System (1) and they
will be distinguished by a tilde: Ṽh, Ṽh,0, Q̃h, etc.

The following results are basic properties of these dichotomies.

Theorem A [13]. If the System (2) has an (h, k)-dichotomy with pro-
jection matrix P , then it has an (h, k)-dichotomy with projection matrix
Q iff

Vh,0 ⊂ Vk,0 ⊂ Q[V ] ⊂ Vh ⊂ Vk.

The projection P of the dichotomy (9) can be chosen with the property

lim
t→∞

h(t)−1Φ(t)P = 0,

iff Vh,0 = Vk,0.

Theorem A implies the following assertion: If System (2) has an h-di-
chotomy with projection P , then it has an h-dichotomy with projection Q,
iff

Vh,0 ⊂ Q[V ] ⊂ Vh.

In this case, the definition of an h-dichotomy can be accomplished with
the projection Qh,0 satisfying

(10) lim
t→∞

h(t)−1Φ(t)Qh,0 = 0.

The (h, k)-dichotomies have the following roughness property:

Theorem B [15]. Let us suppose System (2) has an (h, k)-dichotomy
with projection P . If B(t) ∈ L1, then System (1) has an (h, k)-dichotomy

(11)
|Φ̃(t)P̃ Φ̃−1(s)| ≤ K̃h(t)h(s)−1, t ≥ s,

|Φ̃(t)(I − P̃ )Φ̃−1(s)| ≤ K̃k(t)k(s)−1, s ≥ t,

where P̃ is a projection similar to P .
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Finally, for the sake of simplicity, we will assume that Φ(t0) = I and
the functions (h, k) in definitions (9) and (11) satisfy (h(t0), k(t0)) = (1, 1).
This can be obtained if instead of (h, k) we use ( h(t)

h(t0)
, k(t)

k(t0)
). Thus, from

(9) and (11) we have the estimates

(12) |Φ(t)P | ≤ Kh(t), |Φ̃(t)P̃ | ≤ K̃h(t), t ≥ t0.

3. Asymptotic equivalence

If System (2) has an (h, k) dichotomy, then according to Theorem A
the projections Qh and Qk have the property

(13) QkQh = Qh.

Definition 2. Whe shall say that the h-bounded solutions of Sys-
tem (1) are in bijective correspondence with the h-bounded solutions of
System (2) iff dimension Vh = dimension Ṽh.

Theorem 1. Let us assume that System (2) has an h-dichotomy. If

(14) KK̃

∫ ∞

t0

|B(s)|ds < 1,

then the h-bounded solutions of System (2) and the h-bounded solutions of

System (1) are in bijective correspondence. This correspondence satisfies

(15) y(t) = x(t) + o(h(t)).

Moreover, the fundamental matrix Ψ of System (1), Ψ(t0) = I, has the

asymptotic representation

(16) Ψ(t)Q̃h = (Φ(t) + o(h(t)))Qh.

Proof. From Theorem A, the h-dichotomy of System (2) can be
accomplished with the projection Qh,0. Moreover we can assume that this
h-dichotomy is accomplished with the fundamental matrix Φ satisfying
Φ(t0) = I. Given x(t), an h-bounded solution of System (2), we consider
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the integral equation

y(t) = x(t) +
∫ t

t0

Φ(t)Qh,0Φ−1(s)B(s)y(s)ds(17)

−
∫ ∞

t

Φ(t)(I −Qh,0)Φ−1(s)B(s)y(s)ds.

Then, following [14] it is possible to prove that this system has a unique
h-bounded solution satisfying System (1) and the property (15). If we put
t = t0 in (17), we obtain

y(t0) = x(t0)−
∫ ∞

t0

(I −Qh,0)Φ−1(s)B(s)Ψ(s)y(t0)ds.

The estimate (12) implies |Ψ(t)Q̃h| ≤ K̃h(t). Henceforth
∣∣∣∣
∫ ∞

t0

(I −Qh,0)Φ−1(s)B(s)Ψ(s)Q̃hds

∣∣∣∣ ≤ KK̃

∫ ∞

t0

|B(s)|ds < 1.

From this estimate we obtain y(t0) = Θhx(t0), where

(18) Θh =
(

I +
∫ ∞

t0

(I −Qh,0)Φ−1(s)B(s)Ψ(s)Q̃hds

)−1

.

Thus Θh : Vh → Ṽh is bijective, implying bijective correspondence between
the solutions of Systems (1) and (2). The integral equation (17) implies

Ψ(t)Q̃hy(t0) = Φ(t)Qhx(t0) +
∫ t

t0

Φ(t)Qh,0Φ−1(s)B(s)Ψ(t)ΘhQhx(t0)ds

−
∫ ∞

t

Φ(t)(I −Qh,0)Φ−1(s)B(s)Ψ(t)ΘhQhx(t0)ds.

Since |Ψ(t)ΘhQhx(t0)| ≤ K̃h(t) and limt→∞ h(t)−1Φ(t)Qh,0 = 0, the
Lebesgue theorem on dominated convergence implies

∫ t

t0

Φ(t)Qh,0Φ−1(s)B(s)Ψ(t)ΘhQhx(t0)ds = o(h).

Since B ∈ L1, we have
∫ ∞

t

Φ(t)(I −Qh,0)Φ−1(s)B(s)Ψ(t)ΘhQhx(t0)ds = o(h).
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Formula (16) is a consequence of these asymptotic formulae. ¤
Let us now assume that System (2) has an (h, k)-dichotomy. Since

the pair of functions (h, k) is compensated, System (2) has both an h and
a k-dichotomy. If (14) is satisfied, Theorem 1 can be applied to this k-
dichotomy, and therefore the k-bounded solutions of Systems (2) and (1)
are in bijective correspondence with the k-bounded solutions of System (1);
this correspondence is obtained by the k-bounded solution of the integral
equation

y(t) = x(t) +
∫ t

t0

Φ(t)Qk,0Φ−1(s)B(s)y(s)ds

−
∫ ∞

t

Φ(t)(I −Qk,0)Φ−1(s)B(s)y(s)ds,

from where the asymptotic formula

(19) y(t) = x(t) + o(k(t))

follows [14]. This asymptotic formula yields the asymptotic correspon-
dence

(20) Ψ(t)Q̃k = (Φ(t) + o(k(t)))Qk.

As it is shown in [14], in general the function h of the pair (h, k) stands
for the asymptotic equivalence of bounded solutions, while the function
k generates the asymptotic equivalence of unbounded solutions. Since
Vh ⊂ Vk, the h-bounded solutions of System (2) can be considered as k-
bounded solutions and therefore for an h-bounded solution the asymptotic
representations (15) and (19) are valid. Simple examples show that for h-
bounded solutions formula (15) is more precise than (19), and therefore we
assign formula (15) to h-bounded solutions and formula (19) to k-bounded
solutions that are not h-bounded. In order to make this construction
precise, let us denote Wk = (Qk −Qh)[V ] and Sk = Qk −Qh. Thus (13)
implies

Vk = Vh

⊕
Wk.

The property of compensation of the (h, k)-dichotomy implies Qh[V ] ⊂
Qk[V ], from where it follows QkQh = Qh. But the projections Qh, Qk can
be defined so as to have the following property: KernelQk ⊂ Kernel Qh.
Thus, QhQk = Qh and Sk is a projection.
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Theorem 2. If (14) is satisfied and System (2) has an (h, k)-dicho-

tomy, then the fundamental matrix Ψ(t) (Ψ(t0) = I) of System (1) has

the asymptotic representation

(21) Ψ(t)(Q̃hQh + Q̃kSk) = (Φ(t) + o(h(t)))Qh + (Φ(t) + o(k(t)))Sk.

Proof. The proof of this theorem is obtained by adding (16) and
(20), previously multiplied from the right by Qh and Sk, respectively. ¤

The asymptotic formula (21) synthesizes the results of [14] concerning
the asymptotic equivalence of h-bounded and k-bounded solutions of Sys-
tems (2) and (1). A useful consequence of the above theorem is obtained in
the case Qk = I (in this case we will call this (h, k)-dichotomy exhaustive):

Theorem 3. Under the conditions of Theorem 2, if Vk = V , then

there exists Φ̃(t), a fundamental matrix of System, (1) with the asymptotic

representation

(22) Φ̃(t) = (Φ(t) + o(h(t)))Qh + (Φ(t) + o(k(t)))Sk.

Proof. Let us define Φ̃(t) = Ψ(t)E, where E = Q̃hQh + Q̃kSk. We
have to show that the matrix E is invertible. Let Eξ = 0. We decompose
ξ = ξ1 + ξ2, ξ1 ∈ Qh[V ], ξ2 ∈ (Qk −Qh)[V ]. Therefore

0 = Φ(t)ξ1 + o(h(t))ξ1 + Φ(t)ξ2 + o(k(t))ξ2.

This identity shows that ξ1+ξ2 ∈ Vk,0, but Theorem A implies ξ1+ξ2 ∈ Vh.
Thus ξ2 = 0. Since Φ(t)ξ1 + o(h(t))ξ1 = 0 is an h-bounded solution of
System (1), and the h-bounded solutions of Systems (1) and (2) are in
bijective linear correspondence as given by the matrix (18), ξ1 = 0. ¤

Multiplying (22) from the left by Qh and Sk respectively, we obtain

Φ̃(t)Qh = (Φ(t) + o(h(t)))Qh,

and
Φ̃(t)Sk = (Φ(t) + o(k(t)))Sk.

These formulas say not only that (22) is the asymptotic integration of a
fundamental matrix of solutions of System (1), but they also establish the
asymptotic integration of the h and k solutions of System (1).
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Instead of (22), an asymptotic formula having the form

(23) Φ̃(t) = (I + o(1))Φ(t),

(for example formula (8)) would be more attractive for its apparent sim-
plicity, but the precision of (22) yields consequences for System (1), that
cannot be obtained from (23); namely, the asymptotic formulas for Φ̃Qh

and Φ̃Sk follow from (22), but they cannot be obtained from an asymptotic
formula like (23).

4. Linked dichotomies

Let us consider two ordered sets of positive continuous functions

H = {h1, h2, . . . , hr} , K = {k1, k2, . . . , kr} ,

and an ordered collection of projection matrices

P = {P1, P2, . . . , Pr} .

Definition 3. We shall say that the triad (H,K,P) is a chain of linked
dichotomies for System (2) (briefly: a linked dichotomy) iff

For j = 1, . . . , r, the System (2) has a dichotomy (hj , kj , Pj).L1:

Vk1 ⊂ Vk2 ⊂ · · · ⊂ Vkr .L2:

Throughout, we will assume that all the dichotomies (hj , kj , Pj),
j = 1, . . . , r, are defined with the same constant K.

We will employ the abbreviation (H,P) = (H,H,P). In applications,
a convenient algebraic condition implying L2 is given by

L2’: For some constant D we have kj(t) ≤ Dkj+1(t), j = 1, 2, . . . , r − 1.
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A more stringent condition than L2’, useful in applications (see the
second example of the next section), is the uniform condition

L2”: For some constant D we have

kj(t)kj(s)−1 ≤ Dkj+1(t)kj+1(s)−1, j = 1, 2, . . . , r − 1, t ≥ s.

We observe that condition B(t) ∈ L1 implies that for each j = 1, . . . , r,
System (1) has a dichotomy (hj , kj , P̃j), where P̃j is a projection similar to
the projection Pj . We may assume that all these dichotomies are accom-
plished with the same constant K̃. We will give conditions under which
the triad (H,K,P ′) is a linked dichotomy for System (1).

Lemma 1. Let h, g be positive functions. If System (2) has an h-di-

chotomy and Vh ⊂ Vg properly (Vh 6= Vg), then the function g(t)−1h(t) is

bounded.

Proof. Let η ∈ Vg \ Vh and let P be the projection defining the
h-dichotomy. Then

η = Pη + (I − P )η.

From Theorem A we have Pη ∈ Vh. Therefore ξ = (I − P )η ∈ Vg, ξ 6= 0.
From the estimate |Φ(t)(I − P )Φ−1(s)| ≤ Kh(t)h(s)−1, s ≥ t, we obtain
h(t)−1|Φ(t)ξ| ≥ α > 0 for some constant α. Thus we can write

α ≤ h(t)−1|Φ(t)ξ| ≤ h(t)−1g(t)g(t)−1|Φ(t)ξ| ≤ h(t)−1g(t)|Φξ|g,

from where the assertion of the lemma follows. ¤

Lemma 2. Let h and g be positive functions. If System (2) has an

h-dichotomy and Vh ⊂ Vg properly, then condition (14) implies Ṽh ⊂ Ṽg.

Proof. Let η ∈ Ṽh \ Ṽg. From Theorem 1, there exists ξ ∈ Vh, such
that

Ψ(t)η = Φ(t)ξ + o(h)(t).

Since ξ ∈ Vg, Lemma 1 implies that the right hand side of the last identity
is g-bounded, whereas the left hand side is not. This contradiction shows
that Ṽh \ Ṽg is empty. ¤
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Theorem 4. If System (2) has a linked dichotomy (H,K,P), where

Vkj ⊂ Vkj+1 properly, j = 1, 2, . . . , r − 1, then condition (14) implies that

the triplet (H,K,P ′) is a dichotomy linked to the System (1).

Proof. From the compensation property of each dichotomy
(hj , kj , Pj), we obtain that System (2) has a kj-dichotomy with projection
Pj . From Lemma 2 we have Ṽk1 ⊂ Ṽk2 ⊂ · · · ⊂ Ṽkr . Thus conditions L1,
L2 are satisfied for the triplet (H,K,P ′). ¤

Assuming that System (2) has the linked dichotomy (H,K,P), we will
perform the following construction: Let us define Uh1 = Vh1 . Further, if
Vh1 = Vk1 we define Wk1 = {0}. If Vh1 is properly contained in Vk1 , then
we define Wk1 as a complementary subspace to Vh1 in the space Vk1 . In
both cases we can write the disjoint sum Vk1 = {0}+ Uh1 + Wk1 . Thus in
the space Uh1 we keep all the initial conditions corresponding to the h1-
bounded solutions of System (2). To the space Wk1 we assign the initial
conditions of k1-bounded solutions that are not h1-bounded. We repeat
this process for the space Vk2 in the following manner: If Vk2 = Vk1 , we
define Uh2 = Wk2 = {0}. If Vk1 is properly contained in Vk2 , then we define
Uh2 as the subspace of the initial conditions of the h2-bounded solutions
not contained in Vh1 and the subspace Wk2 groups the initial conditions of
k2-solutions not included in Uh2 ; therefore Vk2 can be written as a disjoint
sum Vk2 = Vk1 + Uk2 + Wk2 . Carrying out this process further, we obtain
the decomposition:

(24)

Vk1= {0} + Uh1+Wk1

Vk2= Vk1 + Uh2+Wk2

...
...

...
...

Vkr= Vkr−1+ Uhr+Wkr .

In applications the table (24) does not give a good decomposition of the
subspaces of initial conditions corresponding to solutions with different
growths; for example if k1 = k2 = . . . = kr, all subspaces of table (24)
would be trivial, except Uh1 and maybe Wk1 . This situation can be im-
proved by asking from the linked dichotomy the property defined as follows:
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Definition 4. We say that the linked dichotomy (H,K,P) is stratified
iff

Uh1 ⊂ Vk1 ⊂ Uh2 ⊂ Vk2 ⊂ · · · ⊂ Uhr ⊂ Vkr ,

where Vkj and Uhj are defined in (24).

This property holds if for some constant D we have

kj(t) ≤ Dhj+1(t), j = 1, 2, . . . , r − 1.

An (H,P) linked dichotomy is stratified. All examples considered in Sec-
tion 7 correspond to stratified linked dichotomies.

5. Asymptotic integration

In this section we generalize the asymptotic formula (22) under the
existence of a linked dichotomy for System (2). Let us consider a linked
dichotomy (H,K,P). According to (24), we define the projections Rj , Sj ,
such that

Rj [V ] = Uhj , Sj [V ] = Wkj .

Rj is a projection that chooses in V , exactly, the initial conditions of all
hj-bounded solutions of System (2). The projection Sj plays a similar role.
From the construction of the subspaces Uhj and Vkj we have

RjRi = 0, SjSi = 0, if i 6= j, RjSi = 0 for all indexes i, j.

Moreover, since the ranges of the projections Rj and Sj are contained in
Vhj and Vkj , respectively we have the identities

(25) Qhj Rj = Rj , Qkj Sj = Sj .

Theorem 5. If System (2) has a linked dichotomy (H,K,P) and con-

dition (14) is satisfied, then the fundamental matrix Ψ of System (1),
Ψ(t0) = I, has the property

(26) Ψ(t)E =
r∑

j=1

(Φ(t) + o(hj(t))) Rj +
r∑

j=1

(Φ(t) + o(kj(t))) Sj ,
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where

(27) E =
r∑

j=1

(Q̃hj Rj + Q̃kj Sj)

and some of the projections Rj or Sj in (26) could be equal zero.

Proof. Applying Theorem 1 to each (hj , kj)-dichotomy we obtain
from (16) and (20) the decompositions

Ψ(t)Q̃hj
= (Φ(t) + o(hj(t)))Qhj

, Ψ(t)Q̃kj
= (Φ(t) + o(k(t)))Qkj

.

Multiplying these formulas by Rj and Sj and using (25) we obtain

Ψ(t)Q̃hj
Rj = (Φ(t) + o(hj(t)))Rj , Ψ(t)Q̃kj

Sj = (Φ(t) + o(k(t)))Sj ,

whence (26) follows. ¤

Definition 5. A linked dichotomy (H,K,P) is called exhaustive iff
Vkr = V .

For an exhaustive linked dichotomy we have the property

I = Qkr =
r∑

j=1

Rj +
r∑

j=1

Sj .

From this identity, we can establish the following abstract version of the
Levinson asymptotic theorem for the nondiagonal System (1)–(2):

Theorem 6. Under the conditions of Theorem 1, let us assume that

System (2) has an exhaustive chain of linked dichotomies (H,K,P). Then

System (1) has a fundamental matrix Φ̃ allowing the asymptotic represen-

tation

Φ̃(t) =
r∑

j=1

(Φ(t) + o(hj(t))) Rj +
r∑

j=1

(Φ(t) + o(kj(t))) Sj .

Proof. We will prove that the matrix (27) is nonsingular. Let Eξ=0,
then 0 =

∑r
j=1 (Φ(t)Rj + o(hj(t))) Rjξ +

∑r
j=1 (Φ(t)Sj + o(kj(t))) Sjξ.

From the construction of table (24) we obtain that the solution Φ(t)Srξ
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of System (2) satisfies Φ(t)Srξ = o(kr(t)); therefore Srξ ∈ Vkr,0. Apply-
ing Theorem A to the dichotomy (hr, kr, Pr) we obtain Srξ ∈ Vhr . Since
Srξ ∈ Wkr

, the last row of table (24) says that Srξ = 0. Hence

0 =
r∑

j=1

(Φ(t) + o(hj(t))) Rjξ +
r−1∑

j=1

(Φ(t) + o(kj(t))) Sjξ.

The right hand side of this last equation is an hr-bounded solution of
System (1). But under condition (14), the hr-bounded solutions of Systems
(1) and (2) are in bijective corespondence. Therefore

(28) 0 =
r∑

j=1

Φ(t)Rjξ +
r−1∑

j=1

Φ(t)Sjξ + Φ(t)Rrξ.

Since
∑r−1

j=1 Φ(t)Rjξ +
∑r−1

j=1 Φ(t)Sjξ ∈ Vkr−1 and Φ(t)Rrξ ∈ Uhr
, we ob-

tain from the last row of table (24) Rrξ = 0. Inasmuch as Rrξ = 0 and
Srξ = 0, we obtain from (28)

0 =
r−1∑

j=1

(Φ(t) + o(hj(t))) Rj +
r−1∑

j=1

(Φ(t) + o(kj(t))) Sj .

If we repeat this reasoning we will obtain Rjξ = 0, Sjξ = 0, ∀j, implying

ξ =
r∑

j=1

(Rj + Sj)ξ = 0.

Since E is nonsingular, Φ̃(t) = Ψ(t)E is a fundamental matrix of Sys-
tem (1). ¤

6. A linked dichotomy for diagonal systems

In this section we show that the asymptotic formula (8) can be ob-
tained from the notion of a linked dichotomy. First we recall the notion of a
Levinson dichotomy [7], where we will use the notation N = {1, 2, . . . , n}.

Definition 6. We shall say that the diagonal System (6) allows a
Levinson dichotomy iff for any j ∈ N , the set N can be partitioned as
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N = N j
1 ∪N j

2 such that for any i ∈ N j
1

(29)
∫ t

s

(Reλi(u)−Reλj(u))du ≤ L1, t ≥ s,

and

(30) lim
t→∞

∫ t

t0

(Reλi(u)−Reλj(u))du = −∞

is satisfied, and for any i ∈ N j
2

(31)
∫ t

s

(Reλi(u)−Reλj(u))du ≥ L2, t ≥ s,

where L1, L2 are constants.

Let Pj = diag{p11, p22, . . . , pnn}, j = 1, 2, . . . , n, be a diagonal pro-
jection defined as follows: pii = 1 if i ∈ N j

1 , pii = 0, if i ∈ N j
2 . It is easy

to prove the following

Proposition 1. If System (6) satisfies conditions (29)–(31), then for

each j ∈ N System (6) allows an (hj , Pj)-dichotomy, where

hj(t) = exp
{∫ t

t0

Reλj(u)du

}
.

Hence, the conditions of a Levinson dichotomy imply the existence of
a family of n dichotomies (hj , Pj) for System (6). For each fixed j let us
define

N j
3 =

{
i ∈ N ; lim sup

t→∞

∫ t

t0

Re(λi(u)− λj(u))du < ∞
}

.

Note that j ∈ N j
3 .

Lemma 3. For i, j ∈ N either N j
3 ⊂ N i

3, or N i
3 ⊂ N j

3 .

Proof. We have two possibilities. Let i ∈ N j
3 ; then for r ∈ N i

3, we
have

∫ t

t0

Re(λr − λj)(u)du =
∫ t

t0

Re(λr − λi)(u)du +
∫ t

t0

Re(λi − λj)(u)du,
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implying r ∈ N j
3 . If i /∈ N j

3 , then
∫ t

t0

Re(λi(u)− λj(u))du

is not bounded from above. (31) implies j ∈ N i
3, from where N j

3 ⊂ N i
3.
¤

Definition 7. We say that the indexes i and j are equivalent iff i, j ∈
N j

3 ∩N i
3.

It is easy to verify that the indexes i and j are equivalent iff

K1 ≤ hj(t)−1hi(t) ≤ K2

for some positive constants K1, K2. Moreover, for equivalent indexes i
and j we have N i

3 = N j
3 . According to Lemma 3, we can order the sets

N j
3 as a chain

N j1
3 ⊂ N j2

3 ⊂ · · · ⊂ N jr

3 ,

where we agree to drop out repeated sets. This last chain implies

Kj1hj1 ≤ Kj2hj2 ≤ · · · ≤ Kjrhjr

for some positive constants Kji . In order to avoid composed indexes we
denote Mi = N ji

3 and ĥi = hji . Thus we have

(32) M1 ⊂ M2 ⊂ · · · ⊂ Mr, K̂1ĥ1 ≤ K̂2ĥ2 ≤ · · · ≤ K̂rĥr.

From Lemma 3 it follows that all indexes contained in Mi\Mi−1 are equiv-
alent. Let us define the diagonal projections Qi = {a11, a22, . . . , ann},
where amm = 1 if m ∈ Mi, and amm = 0, if m /∈ Mi. From the definition
of the set Mi we have Vĥi

= Qi[V ]. Since i ∈ Mi, we obtain Mr = N .
This formula implies

(33) I =
r∑

i=1

Qi = Qr.

From (32) and Vĥi
= Qi[V ] we have Vĥ1

⊂ Vĥ2
⊂ · · · ⊂ Vĥr

. Moreover,
from the definition of the projection Qi, we have for

Φ(t) = exp
{∫ t

t0

Λ(u)du

}
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the estimates (where we will use the definition Q0 = 0)

(34) |Φ(t)Φ−1(s)(Qi −Qi−1)| ≤ Kĥi(t)ĥi(s)−1, ∀t, s, i = 1, . . . , r,

and

(35)
|Φ(t)QiΦ−1(s)| ≤ Kĥi(t)ĥi(s)−1, t ≥ s,

|Φ(t)(I −Qi)Φ−1(s)| ≤ Kĥi(t)ĥi(s)−1, s ≥ t.

The properties (32) and (35) imply that System (6) has the linked
dichotomy (H,Q), where

H =
{

ĥ1, ĥ2, . . . , ĥr

}
, Q = {Q1, Q2, . . . , Qr} .

From (33), this linked dichotomy is exhaustive. Using Theorem 6, we
deduce the following formula for the fundamental matrix of System (7):

Φ̃(t) = (Φ(t) + o(ĥ1))Q1 + (Φ(t) + o(ĥ2))(Q2 −Q1)(36)

+ · · ·+ (Φ(t) + o(ĥr))(Qr −Qr−1).

Lemma 4.

(Φ(t) + o(ĥj))(Qj −Qj−1) = (Qj −Qj−1 + o(1))Φ(t).

Proof. Since the matrices Φ(t) and Qj −Qj−1 commute,

(Φ(t)+o(ĥj))(Qj−Qj−1) =
(
Qj −Qj−1 + o(ĥj)Φ−1(t)(Qj −Qj−1)

)
Φ(t).

From (34) we obtain |o(ĥj)Φ̂−1(t)(Qj −Qj−1)| ≤ o(ĥj)ĥj(t)−1. This esti-
mate implies the proof of the lemma. ¤

The property (33), Lemma 4 and (36) imply (8).
Formula (36) apparently is new and therefore has not been used in

problems of asymptotic integration of System (7). This formula differs
from the coordinate formulation of the Levinson theorem [4], [12]. Multi-
plying (36) by the projection Qj −Qj−1 we obtain

Φ̃(t)(Qj −Qj−1) = Φ(t)(Qj −Qj−1) + o(ĥj)(Qj −Qj−1),
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a formula that not only involves all the solutions of System (7) with the
same growth hj , but includes the projection Qj−Qj−1, which chooses the
initial conditions giving these solutions. Such considerations are important
in problems of asymptotic integration of nonlinear systems

y′ = [Λ(t) + B(t)] y + f(t, y),

where we are interested in the asymptotic equivalence of ĥj-bounded so-
lutions of System (7) and those of this nonlinear system [17].

7. Examples

7.1 A 2× 2 system

Let us consider the asymptotic integration of the following system:

(37) y′ = [diag{−1, 0}+ B(t)] y.

The fundamental matrix of x′ = diag{−1, 0}x, is Φ(t) = diag{e−t, 1}. In
order to obtain (8), the dichotomy of Levinson requires the construction
of two dichotomies, namely an e−t-dichotomy with projection P1 = 0 and
an 1-dichotomy with projection P2 = diag{1, 0}. The application of The-
orem 3 groups these two dichotomies in the exhaustive (e−t, 1)-dichotomy
with projection P = diag{1, 0} and gives the following asymptotic formula
for Ψ the fundamental matrix of System (37):

(38) Ψ(t) = (Φ(t) + o(e−t))P + (Φ(t) + o(1))(I − P ).

If we order the dichotomies given by the Levinson dichotomy as is done in
Section 6, then the asymptotic formula (36) coincides with (38).

Further, we observe that the adjoint system z′ = z diag{1, 0} has a
dichotomy (1, et, I − P ). Therefore, we obtain for Ψ−1(t) the formula

(39) Ψ−1(t) = P (Φ−1(t) + o(et)) + (I − P )(Φ−1(t) + o(1)).

In this example, the formula for the inverse Ψ−1 can be obtained also
from the Levinson asymptotic theorem; here the interesting fact is that
formula (39) was not obtained from the Levinson theory, and therefore
(39) suggests the possibility of extending the asymptotic formula (39) for
a general System (1) under suitable conditions on the linked dichotomy of
System (2).
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7.2 A diagonal example

Let us consider (7), where

(40) Λ(t) = diag(−t−1, 0, i, t−1), t ≥ 1,

whose fundamental matrix is Φ(t) = diag
{
t−1, 1, eit, t

}
. Let us define the

diagonal projections P1 = diag (1, 0, 0, 0), P2 = diag (1, 1, 0, 0), and let
H = {h1, h2} =

{
t−1, 1,

}
, K = {k1, k2} = {1, t}, P = {P1, P2}. It is easy

to see that System (2)–(40) has the linked dichotomy (H,K,P). In what
follows 〈ej〉 denotes the subspace generated by the coordinate vector j of
the canonical basis. In this case the table (24) is given by

Uh1 = 〈e1〉, Wk1 = 〈e2, e3〉, Uh2 = {0}, Wk2 = 〈e4〉.

These calculations show that (H,K,P) is an exhaustive chain of linked di-
chotomies. This decomposition and the definition of the functions (H,K)
say that the System (7)–(40) has a t−1-bounded solution generated by the
initial condition e1, two 1-bounded solutions defined by the initial condi-
tions e2 and e3, and a t-bounded solution given by the initial condition e4.
According to Theorem 6, the system

(41) y′ =
(
diag(−t−1, 0, i, t−1) + B(t)

)
y

has a fundamental matrix Ψ with the following asymptotic representation:

Ψ(t) = (Φ(t) + o(1/t))P1 + (Φ(t) + o(1))(P2 − P1)

+ (Φ(t) + o(t))(I − P2).

This asymptotic integration has been obtained with two (h, k)-dichotomies.
Applying the Levinson theory to this example we require four dichotomies.
A third possibility for asymptotic integration of System (41) is given by
the formula (36); in this case three different dichotomies will be required.
This example says that the decomposition of (35) of a Levinson dichotomy
as linked dichotomy is not optimal. We can order a Levinson dichotomy
not as a chain of h-dichotomies, but as a chain of (h, k)-dichotomies (this
can be done for a general diagonal Levinson system), then it is easy to
verify that only two dichotomies, exactly the dichotomies of the present
examples, are required to obtain the asymptotic integration of the corre-
sponding System (1).
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7.3 Asymptotic integration of block-diagonal systems

We ask for the asymptotic integration of (1), where (2) is a block
diagonal system

(42) A(t) = diag{A1(t), . . . , Ar(t)}.

We will suppose that the system

(43) x′ = Ai(t)x

is an hi-system [21], that is Φi, the fundamental matrix of (43), satisfies

(44) |Φi(t)Φ−1
i (s)| ≤ Khi(t)hi(s)−1 for all t and s;

moreover let us assume that

(45) hi(t)hi(s)−1 ≤ Chi+1(t)hi+1(s)−1, t ≥ s, C = constant.

The fundamental matrix of (42) is Φ(t) = diag{Φ1(t), Φ2(t), . . . , Φr(t)}.
Let us define the projection matrices Qi = diag{P1, P2, . . . , Pr}, where

Pj =
{

Ij , 0 ≤ j ≤ i

0, i + 1 ≤ j ≤ r,

where Ii are identity matrices, dimension[Ii] = dimension[Ai]. The bounds
(44) imply

(46)
|Φ(t)QiΦ−1(s)| ≤ Khi(t)hi(s)−1, t ≥ s,

|Φ(t)(I −Qi)Φ−1(s)| ≤ Khi(t)hi(s)−1, s ≥ t.

The property (45) and the estimates (46) imply that System (42) has the
exhaustive linked dichotomy

H = {h1, h2, . . . , hr}, Q = {Q1, Q2, . . . , Qr}.

By Theorem 6 we can accomplish the asymptotic integration of the system

(47) y′ = (diag{A1, A2, . . . , Ar}+ B(t))y.
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This class of systems is important in the applications; we limit ourselves
to pointing out the asymptotic integration of the second order system

y′′ = (Λ(t) + B(t)) y,

a system that can be reduced to the form (47), where

Ai(t) =
(

0 1
λi(t) 0

)
.

Concerning this problem, we refer to [18] and the forthcoming paper [17].

7.4 Asymptotic integration of a nondiagonal system

Let us consider the System (2)–(42), with A(t) = diag{A1(t), A2(t)}
defined as follows:

(48) A1(t) =
(−1 t−1φ(t)

0 t−1

)
, A2(t) =

(
0 t−1

0 −t−1

)
,

where φ(t) is a continuous function, such that |φ(t)| ≤ 1 for all t ≥ 1. The
corresponding systems x′ = Ai(t)x have the fundamental matrices

Φ1(t) =
(

e−(t−1)
∫ t

1
e−(t−s)φ(s)ds

0 t

)
, Φ2(t) =

(
1 −t−1

0 t−1

)
.

For the projection matrix P = diag{1, 0} we have the following estimates:

|Φ1(t)PΦ−1
1 (s)| ≤ 3e−(t−s), |Φ1(s)(I − P )Φ−1

1 (t)| ≤ st−1, ∀t, s ≥ 1

and

|Φ2(t)PΦ−1
2 (s)| = 1, |Φ2(s)(I − P )Φ−1

2 (s)| = s−1t, ∀ t, s ≥ 1,

(it is worthwhile mentioning that Systems (2)–(48) are examples of non-
diagonal, nonautonomous systems, respectively possessing an (e−t, t) and
a (t−1, 1)-dichotomy). The fundamental matrix of the diagonal system

(49) x′ = diag{A1(t), A2(t)}x

is Φ(t) = diag{Φ1(t), Φ2(t)}. This system allows, among many others, the
following family of dichotomies:

– The (e−t, t−1)-dichotomy with projection Q1 = diag{1, 0, 0, 0},
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– The (t−1, 1)-dichotomy with projection Q2 = diag{1, 0, 0, 1},
– The (1, t)-dichotomy with projection Q3 = diag{1, 0, 1, 1}.

Defining H = {e−t, t−1, 1}, K = {t−1, 1, t}, P = {Q1, Q2, Q3}, we
obtain that System (49) allows the exhaustive linked dichotomy (H,K,Q}.
The nonzero subspaces given by the table (24) are the following: Uh1= 〈e1〉,
Wk1 = 〈e4〉, Uh1 = 〈0〉, Wk2 = 〈e3〉, Uh3 = 〈0〉, Wk3 = 〈e2〉. Thus, ac-
cording to Theorem 6, we can assure that the asymptotic representation
of the fundamental matrix Ψ(t) of the corresponding System (47) has the
columns given by the formulas

Ψ1(t) = e1−te1 + o(e1−t), Ψ2(t) = (1− e1−t)e1 + te2 + o(t),

Ψ3(t) = e3 + o(1), Ψ4(t) = t−1e4 + o(t−1).

We emphasize that the asymptotic representation displayed for this exam-
ple cannot be obtained from Levinson’s results expounded in [11], [12].
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