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Symmetric words in free nilpotent groups of class 4

By WALDEMAR HOÃLUBOWSKI (Gliwice)

Abstract. A word w(X1, . . . , Xn) is called n-symmetric for a given group G
if w(g1, . . . , gn) = w(gσ(1), . . . , gσ(n)) for all g1, . . . , gn in G and all permutations σ
from the symmetric group Sn. In this note we describe n-symmetric words in the free
nilpotent groups of class 4.

1. Preliminaries and main results

The problem of characterizing the n-symmetric words in the given
group G was initiated by P lonka [8]–[10] who gave a complete description
of the n-symmetric words in nilpotent groups of class ≤ 3. For results for
metabelian and other groups we refer to [1]–[6].

Let Fn denote the absolutely free group on X1, . . . , Xn.

Definition. A word w(X1, . . . , Xn) ∈ Fn is called n-symmetric word
for a group G if w(gσ(1), . . . , gσ(n)) = w(g1, . . . , gn) for all g1, . . . , gn ∈ G

and all permutations σ from the symmetric group Sn.

It follows from the definition that we can restrict ourselves to relatively
free groups with n free generators and to natural action of Sn on them.
Let Fn(G) be the relatively free group on x1, . . . , xn in a variety generated
by the group G. Let A be the group of automorphisms of Fn(G) induced
by the mappings xi −→ xσ(i), 1 ≤ i ≤ n, (σ ∈ Sn). The group

S(n)(G) = {w ∈ Fn(G) : w = α(w) for every α ∈ A}

is called a group of n-symmetric words for G.
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In this paper we describe S(n)(G) in the case of G, the free nilpotent
group of class 4 which we denote shortly by S(n)(N4) (Nc – variety of
nilpotent groups of class c). Our results extend these from [8], [10] and
give a correction to one statement in [5].

We denote by [x, y] = x−1y−1xy a commutator of elements x, y.
Commutators of higher weight are defined as left-normed.

Let u1(x, y) = [y, x, x][y, x, y]−1, u2(x, y) = [y, x, x, x][y, x, y, y]−1.

Theorem 1. The group S(2)(N4) is a free nilpotent group of class 2
generated by u1(x, y), u2(x, y) and u3 = x4y4[y, x]8[y, x, x]24[y, x, x, x]16×
[y, x, x, y]18.

The Theorem 1 answers affirmatively a question raised in [9]. We note
here that all groups S(n)(Nc) are abelian if c ≤ 3.

Theorem 2. The group S(3)(N4) is a free abelian group generated by

w1(x, y, z) = u1(x, y)u1(x, z)u1(y, z),

w2(x, y, z) = u2(x, y)u2(x, z)u2(y, z).

Theorem 3. The group S(4)(N4) is a free abelian group generated by

w3(x, y, z, t) = u1(x, y)u1(x, z)u1(x, t)u1(y, z)u1(y, t)u1(z, t),

w4(x, y, z, t) = u2(x, y)u2(x, z)u2(x, t)u2(y, z)u2(y, t)u2(z, t).

Since we have isomorphisms S(n)(N4) ∼= S(4)(N4) (for n > 4 [9]), our
theorems give a full description of n-symmetric words for any natural n.

A map w(x1, . . . , xn, xn+1) → w(x1, . . . , xn, 1) induces homomor-
phism

δn+1
n (Nc) : S(n+1)(Nc) → S(n)(Nc).

It is clear that δn+1
n (N4) is an isomorphism for n ≥ 3. However, δ3

2(N4) is
a monomorphism, which contradicts a second part of Theorem 3 from [5]
which states that δn+1

n (Nn+2) is not a monomorphism for any n. In fact,
a sketch of the proof given in [5] shows that δn+1

n (Nn+2) is not monomor-
phism for n > 2. This raise a question of checking the validity of this
statement from [5] for other nilpotent groups of class 4.
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2. Identities in nilpotent groups

We use a standard definitions from [7] without explanations.

We need some well known identities:

(1) [x−1, y] = [x, y]−1[y, x, x−1], (2) [x, y−1] = [x, y]−1[y, x, y−1]

(3) [xy, z] = [x, z][x, z, y][y, z], (4) [x, yz] = [x, z][x, y][x, y, z]

valid in arbitrary groups. We use notation
(
n
i

)
= 1

i! ·n(n−1) · · · (n− i+1).

Now we list identities of nilpotent groups of class 4 which we use in
next sections to rewrite some words as the products of basic commutators.
We fix a natural order of basic commutators:

x < y < z < t < [y, x] < [z, x] < [t, x] < [z, y] < [t, y] < [t, z] < . . .

Lemma 1. The following identities hold in a nilpotent group G of

class four for any x, y, z, t ∈ G and all integers n, m, k, l.

[yn, xm] = [y, x]nm[y, x, x]n(m
2 )[y, x, y](

n
2)m[y, x, x, x]n(m

3 )(5)

× [y, x, x, y](
n
2)(m

2 )[y, x, y, y](
n
3)m,

[yn, xm, zk] = [y, x, z]nmk[y, x, y, z](
n
2)mk(6)

× [y, x, x, z](
m
2 )nk[y, x, z, z](

k
2)nm,

[yn, xm, zk, tl] = [y, x, z, t]nmkl.(7)

Proof. Using (1)–(4) one can prove that

[y−1, x] = [y, x]−1[y, x, y][y, x, y, y]−1,

[y, x−1] = [y, x]−1[y, x, x][y, x, x, x]−1

and by induction the following identities for all natural n, m

[yn, x] = [y, x]n[y, x, y](
n
2)[y, x, y, y](

n
3),

[y, xm] = [y, x]m[y, x, x](
m
2 )[y, x, x, x](

m
3 ).
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Now we have [y, x−m] = [y, (xm)−1] = [y, xm]−1[y, xm, xm]×
[y, xm, xm, xm]−1 = [y, x]−m[y, x, x](

−m
2 )[y, x, x, x](

−m
3 ) so, this identity is

valid for all integers. Similarly we obtain the expression for [y−n, x]. Fi-
nally, for all integers n, m, we have

[yn, xm] = [yn, x]m[yn, x, x](
m
2 )[yn, x, x, x](

m
3 ) =

i+j<5∏

i,j>0

[y,i x,(j−1) y](
n
i)(m

j ).

Using this identity one can easily prove (6); (7) is easy to check directly.
¤

Lemma 2. The following identities hold in any nilpotent group of

class four:

[x, y, z] = [y, x, z]−1,(8)

[z, y, x] = [z, x, y][y, x, z]−1[[z, x], [y, x]][[z, y], [y, x]][[z, y], [z, x]],(9)

[x, y, z, t] = [y, x, z, t]−1,(10)

[y, x, t, z] = [y, x, z, t][[z, t], [y, x]],(11)

[z, y, x, t] = [z, x, y, t][y, x, z, t]−1,(12)

[t, y, x, z] = [t, x, y, z][y, x, z, t]−1[[t, z], [y, x]],(13)

[z, y, t, x] = [z, x, y, t][y, x, z, t]−1[[t, x], [z, y]]−1,(14)

[t, y, z, x] = [t, x, y, z][y, x, z, t]−1[[t, y], [z, x]][[t, z], [y, x]].(15)

Proof. (8) and (10) follow easily from (1)–(4). (9) is the Jacobi
identity. We have

[xy, zt] = [xy, t][xy, z][xy, z, t]

= [x, t][x, t, y][y, t][x, z][x, z, y][y, z][x, z, t][x, z, y, t][y, z, t]

and similarly

[xy, zt] = [x, zt][x, zt, y][y, zt]

= [x, t][x, z][y, t][y, z][x, z, t][y, z, t][x, t, y][x, z, y][x, z, t, y]
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which implies (11). By Jacobi identity we have

[z, y, x, t] = [z, y, x]−1t−1[z, y, x]t = [y, x, z][z, x, y]−1[[z, y], [z, x]]−1

× [[z, y], [y, x]]−1[[z, x], [y, x]]−1t−1[z, x, y][y, x, z]−1

× [[z, y], [z, x]][[z, y], [y, x]][[z, x], [y, x]]t

= [y, x, z][z, x, y]−1t−1[z, x, y]t[y, x, z]−1[y, x, z, t]−1

= [y, x, z][z, x, y, t][y, x, z]−1[y, x, z, t]−1

which gives us (12). (13) follows from

[t, y, x, z]
(11)
= [t, x, y, z][y, x, t, z]−1 (12)

= [t, x, y, z][y, x, z, t]−1[[z, t], [y, x]]−1.

Similarly we have

[z, y, t, x]
(11)
= [z, y, x, t][[t, x], [z, y]]−1 (12)

= [z, x, y, t][y, x, z, t]−1[[t, x], [z, y]]−1

and

[t, y, z, x]
(11)
= [t, y, x, z][[t, y], [z, x]]

(12)
= [t, x, y, z][y, x, t, z]−1[[t, y], [z, x]]

(11)
= [t, x, y, z][y, x, z, t]−1[[t, z], [y, x]][[t, y], [z, x]]. ¤

We need a characterization of elements of S(2)(N4). Every element
from S(n)(N4) has a form xa

1x
a
2 . . . xa

n·c, where c belongs to the commutator
subgroup (see Lemma 4 of [2]). Moreover, we have

Lemma 3. An element w(x, y) from F2(N4) belongs to S(2)(N4) if

and only if

w(x, y) = xaya[y, x]b[y, x, x]c1 [y, x, y]c2 [y, x, x, x]d1 [y, x, x, y]d2 [y, x, y, y]d3

where

a2 = 2b, c1 + c2 = a

(
a

2

)
, d1 + d3 = a

(
a

3

)
, 2d2 =

(
a

2

)(
a

2

)
.
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Proof. We have to prove the equality

w(y, x) = yaxa[x, y]b[x, y, y]c1 [x, y, x]c2 [x, y, y, y]d1 [x, y, y, x]d2 [x, y, x, x]d3

= xaya[ya, xa][y, x]−b[y, x, x]−c2 [y, x, y]−c1 [y, x, x, x]−d3

× [y, x, x, y]−d2 [y, x, y, y]−d1

= xaya[y, x]a
2−b[y, x, x]a·(

a
2)−c2 [y, x, y]a·(

a
2)−c1 [y, x, x, x]a·(

a
3)−d3

× [y, x, x, y](
a
2)(a

2)−d2 [y, x, y, y]a·(
a
3)−d1 = w(x, y).

The lemma now follows from the fact that in the free nilpotent group a
presentation of the element as a product of basic commutators is unique [7].

¤

3. Proofs of main results

Now we are ready to prove our theorems.

Proof of Theorem 1. It follows from the Lemma 3 that every element
of S(2)(N4) has a form

x4my4m[y, x]8m2
[y, x, x]c[y, x, y]8m2(4m−1)−c[y, x, x, x]d

×[y, x, x, y]2m2(4m−1)2 [y, x, y, y]
1
38m2(4m−1)(4m−2)−d,

where m, c, d are arbitrary integers. So, the group S(2)(G) is generated
by three elements

u1 = [y, x, x][y, x, y]−1, u2 = [y, x, x, x][y, x, y, y]−1,

u3 = x4y4[y, x]8[y, x, x]24[y, x, x, x]16[y, x, x, y]18.

We have u3u1 6= u1u3 = u3u1u
4
2 and commutator of any two 2-symmetric

words from S(2)(N4) belongs to the centre, so the theorem is proved. ¤
Proof of Theorem 2. Every element of S(3)(N4) has a form

v(x, y, z) = xayaza[y, x]b[z, x]b[z, y]bv1(x, y)v2(x, z)v3(y, z)v0(x, y, z)

where

vi(x, y) = [y, x, x]ci,1 [y, x, y]ci,2 [y, x, x, x]di,1 [y, x, x, y]di,2 [y, x, y, y]di,3
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and v0 is a product of basic commutators on exactly three letters. Simple
calculation using transpositions of generators, shows that v1 = v2 = v3.
Since v(x, y, 1) belongs to S(2)(N4), we can apply Lemma 3. So we have

v1(x, y) = [y, x, x]c1 [y, x, y]c2 [y, x, x, x]d1 [y, x, x, y]d2 [y, x, y, y]d3

and a, b, c1, c2, d1, d2, d3 satisfy the conditions of Lemma 3. We put

v0(x, y, z) = [y, x, z]c3 [z, x, y]c4 [y, x, x, z]d4 [y, x, y, z]d5 [y, x, z, z]d6

× [z, x, x, y]d7 [z, x, y, y]d8 [z, x, y, z]d9

× [[z, x], [y, x]]e1 [[z, y], [y, x]]e2 [[z, y], [z, x]]e3

and rewrite the element v(y, x, z) as a product of basic commutators. We
consider now only the basic commutators on three letters. By rewriting
v0 we obtain

v0(y, x, z) = [y, x, z]−c3−c4 [z, x, y]c4 [y, x, x, z]−d5−d8 [y, x, y, z]−d4−d7

× [y, x, z, z]−d6−d9 [z, x, x, y]d8 [z, x, y, y]d7 [z, x, y, z]d9

× [[z, x], [y, x]]−e2+c4+2d8 [[z, y], [y, x]]−e1+c4+2d7

× [[z, y], [z, x]]−e3+c4

and from v(y, x, z)(v0(y, x, z))−1 we have

[y, x, z]a
3
[y, x, x, z]a

2(a
2)[y, x, y, z]a

2(a
2)[y, x, z, z]a

2(a
2)[[z, y], [z, x]]b

2
.

The same calculation for v(y, z, x) gives us

v0(y, z, x) = [y, x, z]−c3−c4 [z, x, y]c3 [y, x, x, z]−d6−d9 [y, x, y, z]−d4−d7

× [y, x, z, z]−d5−d8 [z, x, x, y]d6 [z, x, y, y]d4 [z, x, y, z]d5

× [[z, x], [y, x]]e3+c3−d9+2d6 [[z, y], [y, x]]e1+c3+2d4

× [[z, y], [z, x]]e2+c3+d5

from rewriting v0(y, z, x) and from v(y, z, x)(v0(y, z, x))−1

[y, x, z]a
3
[y, x, x, z]a

2(a
2)[y, x, y, z]a

2(a
2)[y, x, z, z]a

2(a
2)

×[[z, x], [y, x]]−b2 [[z, y], [y, x]]−b2 [[z, y], [z, x]]−b2 .
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Comparing the powers of basic commutators we obtain

a2 = 2b, c3 = c4 = c, d4 = d6 = d7 = d8 = d, d5 = d9 = d0, 3c = a3,

2d + d0 = a2

(
a

2

)
, 2d0 = b2, e1 + e2 = c + 2d, 2e3 = c + b2,

e1 + b2 + d0 = e3 + c + 2d, e2 + b2 = e1 + c + 2d, e3 + b2 = e2 + c + d0.

This implies 3c+4d−6d0 = 0 and for some integer k the equalities a = 6k,
b = 18k2, c = 12k2, d0 = 34 ·2k4 and d = 2 ·33k3(6k−1)−34 ·k4. But then
we obtain k2(1 − 6k) = 0 and consequently k = 0 and e1 = e2 = e3 = 0,
which finishes the proof. ¤

Proof of Theorem 3. Let w = w(x, y, z, t) belong to S(4)(N4) and
let

w2 = xayazata[y, x]b[z, x]b[t, x]b[z, y]b[t, y]b[t, z]b.

Since the words w(x, y, z, 1), w(x, y, 1, t), w(x, 1, z, t), w(1, y, z, t) are both
in S(3)(N4) we have

w(x, y, z, t) = w2w1(x, y, z)w1(x, y, t)w1(x, z, t)w1(y, z, t)w0 = w′1 · w0,

where w′1 is a product of commutators which contain exactly 3 letters and

w0 = [y, x, z, t]f1 [z, x, y, t]f2 [t, x, y, z]f3 [[t, x], [z, y]]f4

× [[t, y], [z, x]]f5 [[t, z][y, x]]f6

is the product of all basic commutators on exactly 4 letters and w2 is trivial
because a = b = 0.

Using Lemmas 1, 2 we rewrite w(y, x, z, t) as a product of basic com-
mutators. Then we obtain

[y, x, z, t]−f1−f2−f3 [z, x, y, t]f2 [t, x, y, z]f3 [[t, x], [z, y]]f5

×[[t, y], [z, x]]f4 [[t, z], [y, x]]−f6 .

So we deduce that

2f1 + f2 + f3 = 0, f4 = f5, f5 = f4, 2f6 = f3.
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The similar calculations for the element w(y, z, t, x) give

[y, x, z, t]−f1−f2−f3 [z, x, y, t]f1 [t, x, y, z]f2 [[t, x], [z, y]]−f1−f6

×[[t, y], [z, x]]f2+f5 [[t, z], [y, x]]f2+f4 .

It follows that f1 = f2 = f3 = f4 = f5 = f6 = 0 and Theorem 3 is proved.
¤
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