Symmetric words in free nilpotent groups of class 4

By WALDEMAR HOŁUBOWSKI (Gliwice)

Abstract

A word $w\left(X_{1}, \ldots, X_{n}\right)$ is called n-symmetric for a given group G if $w\left(g_{1}, \ldots, g_{n}\right)=w\left(g_{\sigma(1)}, \ldots, g_{\sigma(n)}\right)$ for all g_{1}, \ldots, g_{n} in G and all permutations σ from the symmetric group S_{n}. In this note we describe n-symmetric words in the free nilpotent groups of class 4 .

1. Preliminaries and main results

The problem of characterizing the n-symmetric words in the given group G was initiated by P乇onka [8]-[10] who gave a complete description of the n-symmetric words in nilpotent groups of class ≤ 3. For results for metabelian and other groups we refer to [1]-[6].

Let F_{n} denote the absolutely free group on X_{1}, \ldots, X_{n}.
Definition. A word $w\left(X_{1}, \ldots, X_{n}\right) \in F_{n}$ is called n-symmetric word for a group G if $w\left(g_{\sigma(1)}, \ldots, g_{\sigma(n)}\right)=w\left(g_{1}, \ldots, g_{n}\right)$ for all $g_{1}, \ldots, g_{n} \in G$ and all permutations σ from the symmetric group S_{n}.

It follows from the definition that we can restrict ourselves to relatively free groups with n free generators and to natural action of S_{n} on them. Let $F_{n}(G)$ be the relatively free group on x_{1}, \ldots, x_{n} in a variety generated by the group G. Let A be the group of automorphisms of $F_{n}(G)$ induced by the mappings $x_{i} \longrightarrow x_{\sigma(i)}, 1 \leq i \leq n,\left(\sigma \in S_{n}\right)$. The group

$$
S^{(n)}(G)=\left\{w \in F_{n}(G): w=\alpha(w) \text { for every } \alpha \in A\right\}
$$

is called a group of n-symmetric words for G.
Mathematics Subject Classification: 20F18, 20F12.
Key words and phrases: symmetric words, nilpotent groups, commutator calculus.

In this paper we describe $S^{(n)}(G)$ in the case of G, the free nilpotent group of class 4 which we denote shortly by $S^{(n)}\left(\mathfrak{N}_{4}\right)\left(\mathfrak{N}_{c}\right.$ - variety of nilpotent groups of class c). Our results extend these from [8], [10] and give a correction to one statement in [5].

We denote by $[x, y]=x^{-1} y^{-1} x y$ a commutator of elements x, y. Commutators of higher weight are defined as left-normed.

$$
\text { Let } u_{1}(x, y)=[y, x, x][y, x, y]^{-1}, u_{2}(x, y)=[y, x, x, x][y, x, y, y]^{-1} \text {. }
$$

Theorem 1. The group $S^{(2)}\left(\mathfrak{N}_{4}\right)$ is a free nilpotent group of class 2 generated by $u_{1}(x, y), u_{2}(x, y)$ and $u_{3}=x^{4} y^{4}[y, x]^{8}[y, x, x]^{24}[y, x, x, x]^{16} \times$ $[y, x, x, y]^{18}$.

The Theorem 1 answers affirmatively a question raised in [9]. We note here that all groups $S^{(n)}\left(\mathfrak{N}_{c}\right)$ are abelian if $c \leq 3$.

Theorem 2. The group $S^{(3)}\left(\mathfrak{N}_{4}\right)$ is a free abelian group generated by $w_{1}(x, y, z)=u_{1}(x, y) u_{1}(x, z) u_{1}(y, z)$, $w_{2}(x, y, z)=u_{2}(x, y) u_{2}(x, z) u_{2}(y, z)$.

Theorem 3. The group $S^{(4)}\left(\mathfrak{N}_{4}\right)$ is a free abelian group generated by $w_{3}(x, y, z, t)=u_{1}(x, y) u_{1}(x, z) u_{1}(x, t) u_{1}(y, z) u_{1}(y, t) u_{1}(z, t)$, $w_{4}(x, y, z, t)=u_{2}(x, y) u_{2}(x, z) u_{2}(x, t) u_{2}(y, z) u_{2}(y, t) u_{2}(z, t)$.

Since we have isomorphisms $S^{(n)}\left(\mathfrak{N}_{4}\right) \cong S^{(4)}\left(\mathfrak{N}_{4}\right)$ (for $n>4[9]$), our theorems give a full description of n-symmetric words for any natural n.

A map $w\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \rightarrow w\left(x_{1}, \ldots, x_{n}, 1\right)$ induces homomorphism

$$
\delta_{n}^{n+1}\left(\mathfrak{N}_{c}\right): S^{(n+1)}\left(\mathfrak{N}_{c}\right) \rightarrow S^{(n)}\left(\mathfrak{N}_{c}\right) .
$$

It is clear that $\delta_{n}^{n+1}\left(\mathfrak{N}_{4}\right)$ is an isomorphism for $n \geq 3$. However, $\delta_{2}^{3}\left(\mathfrak{N}_{4}\right)$ is a monomorphism, which contradicts a second part of Theorem 3 from [5] which states that $\delta_{n}^{n+1}\left(\mathfrak{N}_{n+2}\right)$ is not a monomorphism for any n. In fact, a sketch of the proof given in [5] shows that $\delta_{n}^{n+1}\left(\mathfrak{N}_{n+2}\right)$ is not monomorphism for $n>2$. This raise a question of checking the validity of this statement from [5] for other nilpotent groups of class 4.

2. Identities in nilpotent groups

We use a standard definitions from [7] without explanations.
We need some well known identities:
(1) $\quad\left[x^{-1}, y\right]=[x, y]^{-1}\left[y, x, x^{-1}\right]$,
(2) $\left[x, y^{-1}\right]=[x, y]^{-1}\left[y, x, y^{-1}\right]$
(3) $[x y, z]=[x, z][x, z, y][y, z]$,
(4) $[x, y z]=[x, z][x, y][x, y, z]$
valid in arbitrary groups. We use notation $\binom{n}{i}=\frac{1}{i!} \cdot n(n-1) \cdots(n-i+1)$.
Now we list identities of nilpotent groups of class 4 which we use in next sections to rewrite some words as the products of basic commutators. We fix a natural order of basic commutators:

$$
x<y<z<t<[y, x]<[z, x]<[t, x]<[z, y]<[t, y]<[t, z]<\ldots
$$

Lemma 1. The following identities hold in a nilpotent group G of class four for any $x, y, z, t \in G$ and all integers n, m, k, l.

$$
\begin{align*}
& {\left[y^{n}, x^{m}\right]=} {[y, x]^{n m}[y, x, x]^{n\binom{m}{2}}[y, x, y]^{\binom{n}{2} m}[y, x, x, x]^{n\binom{m}{3}} } \tag{5}\\
& \times[y, x, x, y]^{\binom{n}{2}\binom{m}{2}}[y, x, y, y]^{\binom{n}{3} m}, \\
& {\left[y^{n}, x^{m}, z^{k}\right]=} {[y, x, z]^{n m k}[y, x, y, z]^{\binom{n}{2} m k} } \tag{6}\\
& \times[y, x, x, z]^{\binom{m}{2} n k}[y, x, z, z]^{\binom{k}{2} n m}, \\
& {\left[y^{n}, x^{m}, z^{k}, t^{l}\right]=[y, x, z, t]^{n m k l} . } \tag{7}
\end{align*}
$$

Proof. Using (1)-(4) one can prove that

$$
\begin{aligned}
& {\left[y^{-1}, x\right]=[y, x]^{-1}[y, x, y][y, x, y, y]^{-1},} \\
& {\left[y, x^{-1}\right]=[y, x]^{-1}[y, x, x][y, x, x, x]^{-1}}
\end{aligned}
$$

and by induction the following identities for all natural n, m

$$
\begin{aligned}
{\left[y^{n}, x\right] } & =[y, x]^{n}[y, x, y]^{\binom{n}{2}}[y, x, y, y]^{\binom{n}{3}}, \\
{\left[y, x^{m}\right] } & =[y, x]^{m}[y, x, x]^{\binom{m}{2}}[y, x, x, x]^{\binom{m}{3}} .
\end{aligned}
$$

Now we have $\left[y, x^{-m}\right]=\left[y,\left(x^{m}\right)^{-1}\right]=\left[y, x^{m}\right]^{-1}\left[y, x^{m}, x^{m}\right] \times$
$\left[y, x^{m}, x^{m}, x^{m}\right]^{-1}=[y, x]^{-m}[y, x, x]^{\binom{-m}{2}}[y, x, x, x]^{\binom{-m}{3}}$ so, this identity is valid for all integers. Similarly we obtain the expression for $\left[y^{-n}, x\right]$. Finally, for all integers n, m, we have

$$
\left[y^{n}, x^{m}\right]=\left[y^{n}, x\right]^{m}\left[y^{n}, x, x\right]^{\binom{m}{2}}\left[y^{n}, x, x, x\right]^{\binom{m}{3}}=\prod_{i, j>0}^{i+j<5}[y, i x,(j-1) y]^{\binom{n}{i}\binom{m}{j}} .
$$

Using this identity one can easily prove (6); (7) is easy to check directly.

Lemma 2. The following identities hold in any nilpotent group of class four:
(11) $[y, x, t, z]=[y, x, z, t][[z, t],[y, x]]$,
(12) $\quad[z, y, x, t]=[z, x, y, t][y, x, z, t]^{-1}$,
(13) $[t, y, x, z]=[t, x, y, z][y, x, z, t]^{-1}[[t, z],[y, x]]$,
(15) $[t, y, z, x]=[t, x, y, z][y, x, z, t]^{-1}[[t, y],[z, x]][[t, z],[y, x]]$.

Proof. (8) and (10) follow easily from (1)-(4). (9) is the Jacobi identity. We have

$$
\begin{aligned}
{[x y, z t] } & =[x y, t][x y, z][x y, z, t] \\
& =[x, t][x, t, y][y, t][x, z][x, z, y][y, z][x, z, t][x, z, y, t][y, z, t]
\end{aligned}
$$

and similarly

$$
\begin{aligned}
{[x y, z t] } & =[x, z t][x, z t, y][y, z t] \\
& =[x, t][x, z][y, t][y, z][x, z, t][y, z, t][x, t, y][x, z, y][x, z, t, y]
\end{aligned}
$$

which implies (11). By Jacobi identity we have

$$
\begin{aligned}
{[z, y, x, t]=} & {[z, y, x]^{-1} t^{-1}[z, y, x] t=[y, x, z][z, x, y]^{-1}[[z, y],[z, x]]^{-1} } \\
& \times[[z, y],[y, x]]^{-1}[[z, x],[y, x]]^{-1} t^{-1}[z, x, y][y, x, z]^{-1} \\
& \times[[z, y],[z, x]][[z, y],[y, x]][[z, x],[y, x]] t \\
= & {[y, x, z][z, x, y]^{-1} t^{-1}[z, x, y] t[y, x, z]^{-1}[y, x, z, t]^{-1} } \\
= & {[y, x, z][z, x, y, t][y, x, z]^{-1}[y, x, z, t]^{-1} }
\end{aligned}
$$

which gives us (12). (13) follows from

$$
[t, y, x, z] \stackrel{(11)}{=}[t, x, y, z][y, x, t, z]^{-1} \stackrel{(12)}{=}[t, x, y, z][y, x, z, t]^{-1}[[z, t],[y, x]]^{-1} .
$$

Similarly we have

$$
[z, y, t, x] \stackrel{(11)}{=}[z, y, x, t][[t, x],[z, y]]^{-1} \stackrel{(12)}{=}[z, x, y, t][y, x, z, t]^{-1}[[t, x],[z, y]]^{-1}
$$

and

$$
[t, y, z, x] \stackrel{(11)}{=}[t, y, x, z][[t, y],[z, x]] \stackrel{(12)}{=}[t, x, y, z][y, x, t, z]^{-1}[[t, y],[z, x]]
$$

$$
\stackrel{(11)}{=}[t, x, y, z][y, x, z, t]^{-1}[[t, z],[y, x]][[t, y],[z, x]] .
$$

We need a characterization of elements of $S^{(2)}\left(\mathfrak{N}_{4}\right)$. Every element from $S^{(n)}\left(\mathfrak{N}_{4}\right)$ has a form $x_{1}^{a} x_{2}^{a} \ldots x_{n}^{a} \cdot c$, where c belongs to the commutator subgroup (see Lemma 4 of [2]). Moreover, we have

Lemma 3. An element $w(x, y)$ from $F_{2}\left(\mathfrak{N}_{4}\right)$ belongs to $S^{(2)}\left(\mathfrak{N}_{4}\right)$ if and only if

$$
w(x, y)=x^{a} y^{a}[y, x]^{b}[y, x, x]^{c_{1}}[y, x, y]^{c_{2}}[y, x, x, x]^{d_{1}}[y, x, x, y]^{d_{2}}[y, x, y, y]^{d_{3}}
$$

where

$$
a^{2}=2 b, \quad c_{1}+c_{2}=a\binom{a}{2}, \quad d_{1}+d_{3}=a\binom{a}{3}, \quad 2 d_{2}=\binom{a}{2}\binom{a}{2} .
$$

Proof. We have to prove the equality

$$
\begin{aligned}
w(y, x)= & y^{a} x^{a}[x, y]^{b}[x, y, y]^{c_{1}}[x, y, x]^{c_{2}}[x, y, y, y]^{d_{1}}[x, y, y, x]^{d_{2}}[x, y, x, x]^{d_{3}} \\
= & x^{a} y^{a}\left[y^{a}, x^{a}\right][y, x]^{-b}[y, x, x]^{-c_{2}}[y, x, y]^{-c_{1}}[y, x, x, x]^{-d_{3}} \\
& \times[y, x, x, y]^{-d_{2}}[y, x, y, y]^{-d_{1}} \\
= & x^{a} y^{a}[y, x]^{a^{2}-b}[y, x, x]^{a \cdot\binom{a}{2}-c_{2}}[y, x, y]^{a \cdot\binom{a}{2}-c_{1}}[y, x, x, x]^{a \cdot\binom{a}{3}-d_{3}} \\
& \times[y, x, x, y]^{\binom{a}{2}\binom{a}{2}-d_{2}}[y, x, y, y]^{a \cdot\binom{a}{3}-d_{1}}=w(x, y) .
\end{aligned}
$$

The lemma now follows from the fact that in the free nilpotent group a presentation of the element as a product of basic commutators is unique [7].

3. Proofs of main results

Now we are ready to prove our theorems.
Proof of Theorem 1. It follows from the Lemma 3 that every element of $S^{(2)}\left(\mathfrak{N}_{4}\right)$ has a form

$$
\begin{aligned}
& x^{4 m} y^{4 m}[y, x]^{8 m^{2}}[y, x, x]^{c}[y, x, y]^{8 m^{2}(4 m-1)-c}[y, x, x, x]^{d} \\
& \times[y, x, x, y]^{2 m^{2}(4 m-1)^{2}}[y, x, y, y]^{\frac{1}{3} 8 m^{2}(4 m-1)(4 m-2)-d},
\end{aligned}
$$

where m, c, d are arbitrary integers. So, the group $S^{(2)}(G)$ is generated by three elements

$$
\begin{gathered}
u_{1}=[y, x, x][y, x, y]^{-1}, \quad u_{2}=[y, x, x, x][y, x, y, y]^{-1}, \\
u_{3}=x^{4} y^{4}[y, x]^{8}[y, x, x]^{24}[y, x, x, x]^{16}[y, x, x, y]^{18} .
\end{gathered}
$$

We have $u_{3} u_{1} \neq u_{1} u_{3}=u_{3} u_{1} u_{2}^{4}$ and commutator of any two 2 -symmetric words from $S^{(2)}\left(\mathfrak{N}_{4}\right)$ belongs to the centre, so the theorem is proved.

Proof of Theorem 2. Every element of $S^{(3)}\left(\mathfrak{N}_{4}\right)$ has a form

$$
v(x, y, z)=x^{a} y^{a} z^{a}[y, x]^{b}[z, x]^{b}[z, y]^{b} v_{1}(x, y) v_{2}(x, z) v_{3}(y, z) v_{0}(x, y, z)
$$

where

$$
v_{i}(x, y)=[y, x, x]^{c_{i, 1}}[y, x, y]^{c_{i, 2}}[y, x, x, x]^{d_{i, 1}}[y, x, x, y]^{d_{i, 2}}[y, x, y, y]^{d_{i, 3}}
$$

and v_{0} is a product of basic commutators on exactly three letters. Simple calculation using transpositions of generators, shows that $v_{1}=v_{2}=v_{3}$. Since $v(x, y, 1)$ belongs to $S^{(2)}\left(\mathfrak{N}_{4}\right)$, we can apply Lemma 3 . So we have

$$
v_{1}(x, y)=[y, x, x]^{c_{1}}[y, x, y]^{c_{2}}[y, x, x, x]^{d_{1}}[y, x, x, y]^{d_{2}}[y, x, y, y]^{d_{3}}
$$

and $a, b, c_{1}, c_{2}, d_{1}, d_{2}, d_{3}$ satisfy the conditions of Lemma 3. We put

$$
\begin{aligned}
v_{0}(x, y, z)= & {[y, x, z]^{c_{3}}[z, x, y]^{c_{4}}[y, x, x, z]^{d_{4}}[y, x, y, z]^{d_{5}}[y, x, z, z]^{d_{6}} } \\
& \times[z, x, x, y]^{d_{7}}[z, x, y, y]^{d_{8}}[z, x, y, z]^{d_{9}} \\
& \times[[z, x],[y, x]]^{e_{1}}[[z, y],[y, x]]^{e_{2}}[[z, y],[z, x]]^{e_{3}}
\end{aligned}
$$

and rewrite the element $v(y, x, z)$ as a product of basic commutators. We consider now only the basic commutators on three letters. By rewriting v_{0} we obtain

$$
\begin{aligned}
v_{0}(y, x, z)= & {[y, x, z]^{-c_{3}-c_{4}}[z, x, y]^{c_{4}}[y, x, x, z]^{-d_{5}-d_{8}}[y, x, y, z]^{-d_{4}-d_{7}} } \\
& \times[y, x, z, z]^{-d_{6}-d_{9}}[z, x, x, y]^{d_{8}}[z, x, y, y]^{d_{7}}[z, x, y, z]^{d_{9}} \\
& \times[[z, x],[y, x]]^{-e_{2}+c_{4}+2 d_{8}}[[z, y],[y, x]]^{-e_{1}+c_{4}+2 d_{7}} \\
& \times[[z, y],[z, x]]^{-e_{3}+c_{4}}
\end{aligned}
$$

and from $v(y, x, z)\left(v_{0}(y, x, z)\right)^{-1}$ we have

$$
[y, x, z]^{a^{3}}[y, x, x, z]^{a^{2}\binom{a}{2}}[y, x, y, z]^{a^{2}\binom{a}{2}}[y, x, z, z]^{a^{2}\binom{a}{2}}[[z, y],[z, x]]^{b^{2}} .
$$

The same calculation for $v(y, z, x)$ gives us

$$
\begin{aligned}
v_{0}(y, z, x)= & {[y, x, z]^{-c_{3}-c_{4}}[z, x, y]^{c_{3}}[y, x, x, z]^{-d_{6}-d_{9}}[y, x, y, z]^{-d_{4}-d_{7}} } \\
& \times[y, x, z, z]^{-d_{5}-d_{8}}[z, x, x, y]^{d_{6}}[z, x, y, y]^{d_{4}}[z, x, y, z]^{d_{5}} \\
& \times[[z, x],[y, x]]^{e_{3}+c_{3}-d_{9}+2 d_{6}}[[z, y],[y, x]]^{e_{1}+c_{3}+2 d_{4}} \\
& \times[[z, y],[z, x]]^{e_{2}+c_{3}+d_{5}}
\end{aligned}
$$

from rewriting $v_{0}(y, z, x)$ and from $v(y, z, x)\left(v_{0}(y, z, x)\right)^{-1}$

$$
\begin{aligned}
& {[y, x, z]^{a^{3}}[y, x, x, z]^{a^{2}\binom{a}{2}}[y, x, y, z]^{a^{2}\binom{a}{2}}[y, x, z, z]^{a^{2}\binom{a}{2}}} \\
& \quad \times[[z, x],[y, x]]^{-b^{2}}[[z, y],[y, x]]^{-b^{2}}[[z, y],[z, x]]^{-b^{2}} .
\end{aligned}
$$

Comparing the powers of basic commutators we obtain

$$
\begin{gathered}
a^{2}=2 b, c_{3}=c_{4}=c, d_{4}=d_{6}=d_{7}=d_{8}=d, d_{5}=d_{9}=d_{0}, 3 c=a^{3}, \\
2 d+d_{0}=a^{2}\binom{a}{2}, 2 d_{0}=b^{2}, e_{1}+e_{2}=c+2 d, 2 e_{3}=c+b^{2}, \\
e_{1}+b^{2}+d_{0}=e_{3}+c+2 d, e_{2}+b^{2}=e_{1}+c+2 d, e_{3}+b^{2}=e_{2}+c+d_{0}
\end{gathered}
$$

This implies $3 c+4 d-6 d_{0}=0$ and for some integer k the equalities $a=6 k$, $b=18 k^{2}, c=12 k^{2}, d_{0}=3^{4} \cdot 2 k^{4}$ and $d=2 \cdot 3^{3} k^{3}(6 k-1)-3^{4} \cdot k^{4}$. But then we obtain $k^{2}(1-6 k)=0$ and consequently $k=0$ and $e_{1}=e_{2}=e_{3}=0$, which finishes the proof.

Proof of Theorem 3. Let $w=w(x, y, z, t)$ belong to $S^{(4)}\left(\mathfrak{N}_{4}\right)$ and let

$$
w_{2}=x^{a} y^{a} z^{a} t^{a}[y, x]^{b}[z, x]^{b}[t, x]^{b}[z, y]^{b}[t, y]^{b}[t, z]^{b} .
$$

Since the words $w(x, y, z, 1), w(x, y, 1, t), w(x, 1, z, t), w(1, y, z, t)$ are both in $S^{(3)}\left(\mathfrak{N}_{4}\right)$ we have

$$
w(x, y, z, t)=w_{2} w_{1}(x, y, z) w_{1}(x, y, t) w_{1}(x, z, t) w_{1}(y, z, t) w_{0}=w_{1}^{\prime} \cdot w_{0}
$$

where w_{1}^{\prime} is a product of commutators which contain exactly 3 letters and

$$
\begin{aligned}
w_{0}= & {[y, x, z, t]^{f_{1}}[z, x, y, t]^{f_{2}}[t, x, y, z]^{f_{3}}[[t, x],[z, y]]^{f_{4}} } \\
& \times[[t, y],[z, x]]^{f_{5}}[[t, z][y, x]]^{f_{6}}
\end{aligned}
$$

is the product of all basic commutators on exactly 4 letters and w_{2} is trivial because $a=b=0$.

Using Lemmas 1, 2 we rewrite $w(y, x, z, t)$ as a product of basic commutators. Then we obtain

$$
\begin{gathered}
{[y, x, z, t]^{-f_{1}-f_{2}-f_{3}}[z, x, y, t]^{f_{2}}[t, x, y, z]^{f_{3}}[[t, x],[z, y]]^{f_{5}}} \\
\times[[t, y],[z, x]]^{f_{4}}[[t, z],[y, x]]^{-f_{6}} .
\end{gathered}
$$

So we deduce that

$$
2 f_{1}+f_{2}+f_{3}=0, \quad f_{4}=f_{5}, \quad f_{5}=f_{4}, \quad 2 f_{6}=f_{3}
$$

The similar calculations for the element $w(y, z, t, x)$ give

$$
\begin{gathered}
{[y, x, z, t]^{-f_{1}-f_{2}-f_{3}}[z, x, y, t]^{f_{1}}[t, x, y, z]^{f_{2}}[[t, x],[z, y]]^{-f_{1}-f_{6}}} \\
\times[[t, y],[z, x]]^{f_{2}+f_{5}}[[t, z],[y, x]]^{f_{2}+f_{4}} .
\end{gathered}
$$

It follows that $f_{1}=f_{2}=f_{3}=f_{4}=f_{5}=f_{6}=0$ and Theorem 3 is proved．

References

［1］C．K．Gupta and W．Ho乇ubowski，On 2－symmetric words in groups，Arch．der Math．（to appear）．
［2］W．HoŁubowski，Symmetric words in metabelian groups，Comm．Algebra 23 （14） （1995），5161－5167．
［3］W．Ho乇ubowski，Symmetric words in a free nilpotent group of class 5，Groups St Andrews 1997 in Bath，vol．I，London Math．Soc．Lect．Notes Ser． 260 （1999）， 363－367．
［4］S．Krstic̆，On symmetric words in nilpotent groups，Publ．Inst．Math．（Beograd） （N．S） 27 （41）（1980），139－142．
［5］O．Macedońska，On symmetric words in nilpotent groups，Fund．Math． 120 （1984），119－125．
［6］O．Macedońska and D．Solitar，On binary σ－invariants words in a group， Contemp．Math． 169 （1994），431－449．
［7］H．Neumann，Varieties of groups，Springer V．，Berlin－Heidelberg－New York， 1967.
［8］E．P乇onka，Symmetric operations in groups，Colloq．Math． 21 （1970），179－186．
［9］E．P乇onka，On symmetric words in free nilpotent groups，Bull．Acad．Polon．Sci． 18 （1970），427－429．
［10］E．P乇onka，Symmetric words in nilpotent groups of class \leq 3，Fund．Math． 97 （1977），95－103．

WALDEMAR HOEUBOWSKI
INSTITUTE OF MATHEMATICS
SILESIAN TECHNICAL UNIVERSITY
UL．KASZUBSKA 23
44－101 GLIWICE
POLAND
E－mail：wholub＠zeus．polsl．gliwice．pl
（Received January 18，1999；revised June 15，1999）

