
Publ. Math. Debrecen

57 / 3-4 (2000), 455–473

Connections of Berwald type

By M. CRAMPIN (Milton Keynes)

Abstract. Associated with any horizontal distribution on the tangent bundle
of a differentiable manifold is a certain linear connection which can be regarded as a
linearization of the corresponding non-linear connection. I call this linear connection
a connection of Berwald type, and show how its covariant derivative operator can be
specified in terms of the projections of the horizontal distribution. I explain how the
Berwald connection of Finsler geometry can be regarded as a special case of this general
construction, and describe the relation between the Berwald connection and the other
standard Finsler connections from this point of view.

1. Introduction

A number of papers have been published recently (see [1], [5] and
references therein) in which axiom systems are given for the Berwald con-
nection and the other important connections of Finsler geometry. The
discussion is generally carried out in relation to the metric derived from
the energy associated with a Finsler function. This may be an appropriate
approach in context, but it has the side effect, unfortunate in my view, of
obscuring the fact that the Finslerian Berwald connection is a particular
case of a general and natural construction which has nothing in particular
to do with metrics. Thus unlike the Cartan, Chern–Rund and Hashiguchi
connections, the Berwald connection can be regarded as associated primar-
ily with the geodesic spray of the energy metric, and its metrical properties
as consequences of those of the geodesic spray. The construction of the
Berwald connection from the geodesic spray is in turn a particular case of
a more general construction, which associates in a unique way a certain
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linear connection with an arbitrary non-linear connection on the tangent
bundle of a differentiable manifold. Following Szilasi, I have called these
more general connections, connections of Berwald type.

These facts suggest an alternative to the axiomatic approach to con-
nection theory in Finsler geometry, which is to regard the Berwald-type
connection as the logically prior concept, and to treat the others as deriving
from it. This paper is a description of the theory of Berwald-type and
Finslerian connections using this approach.

The observation that Berwald-type connections can be defined in quite
general situations dates back at least to Vilms’s paper of 1968, [6], and is
discussed in a number of places, for example Bejancu’s book [2]. What is
new and distinctive about the present paper is that it develops a synthe-
sis of results whose interrelations have not been spelled out so explicitly
before, by presenting them in the distinctive framework described in the
opening paragraphs. It also attempts to give coherence to a collection
of results which have previously appeared in a number of different guises:
sometimes in coordinate or tensorial versions, and sometimes in more mod-
ern formalisms, of which there are at least three in current use. By the
latter remark I mean that we are concerned with a family of connections
in some vector bundle over the tangent bundle τ : TM → M of a manifold
M , and there are in current use three different vector bundles in which
the theory is formulated. These are T (TM), the tangent bundle over
TM ; the vertical sub-bundle V (TM) of T (TM); and the pull-back bundle
τ∗(TM). I shall impose coherence by developing the theory in terms of
the latter bundle; this is not an arbitrary choice, but the one which seems
to me to be geometrically the most natural, as I shall explain below. A
reader who has also read Szilasi’s excellent study of Finsler connections
in [5] will realise my debt to him; in fact I started work on this subject by
translating his results, which are expressed in the T (TM) formalism, into
the τ∗(TM) formalism with which I have become familiar through joint
researches with Eduardo Mart́ınez, Willy Sarlet and others into
the geometry of second-order differential equation fields and the inverse
problem of the calculus of variations (see [3], [4]).

2. Linearization of non-linear connections

I shall motivate my account of Berwald-type connections by first con-
sidering the theory of linear connections on the tangent bundle.
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Given a linear connection on a manifold M one can construct in a well-
known way a horizontal distribution on its tangent bundle τ : TM → M .
This horizontal distribution provides a comprehensive way of describing
the notion of parallel translation of vectors along curves in M as an oper-
ation carried out in TM : in fact it provides two such descriptions which
are, in the case of a linear connection, equivalent.

The first description is given directly in terms of the horizontal lift
of a curve. Suppose given a curve σ : [a, b] → M , with σ(a) = x and
σ(b) = y; and suppose given some v ∈ TxM . Then the parallel translate
of v along σ is obtained as follows. Let σH

v be the horizontal lift of σ to
TM which starts at v ∈ TxM ; then σH

v (b) ∈ TyM is the parallel translate
of v to y along σ.

Parallel translation can of course be thought of as a map between
tangent spaces, say Πσ : TxM → TyM ; in terms of horizontal lifts this map
is given by Πσ(v) = σH

v (b). Since Πσ is a linear map, it may be replaced
by its tangent map Πσ∗, if the tangent spaces to the linear spaces TxM
and TyM are identified with those spaces themselves. This observation
leads to a second way of describing parallel translation. Consider the
restriction of TM to the image of σ, or more exactly the pull-back bundle
σ∗(TM), which can be considered as a bundle over some open interval
of R containing [a, b]. The horizontal distribution on TM pulls back to a
one-dimensional distribution on σ∗(TM), which contains a unique vector
field which projects onto the coordinate vector field on R. Since the value
of this vector field at each point in σ∗(TM) is just the tangent vector to
the horizontal lift of σ at that point, or equally the horizontal lift to that
point of the tangent vector to σ, it is appropriate to denote the vector field
by σ̇H . Then the parallel translate along σ of a vector v ∈ TxM to y is
its Lie translate with respect to the flow generated by σ̇H . To be exact,
take any point w ∈ TxM , and regard v ∈ TxM , the vector which is to be
parallel-translated, as a vector tangent to TxM at w; that is to say, identify
v with vV

w, its vertical lift to w. Then the Lie translate of vV
w along the flow

of σ̇H to σH
w(b) ∈ TyM is a vertical vector which is the vertical lift of the

parallel translate of v to y along σ. The linearity of the connection ensures
that the construction is well-defined in the sense that the result does not
depend on the choice of w. The operation of covariant differentiation ∇
(with respect to the given linear connection on M) may be recovered as
follows: for any vector fields X and Y on M ,

[XH , Y V ] = (∇XY )V
,
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where XH is the horizontal lift of X and Y V the vertical lift of Y , both vec-
tor fields on TM . This formula fits in naturally with this way of thinking
about parallel translation.

One can think of the second description of parallel translation as be-
ing in an obvious sense a linearization of the first; though in the case of
a linear connection this is a pretty pointless observation, since lineariz-
ing something which is already linear merely takes one back to where one
started. But suppose now that one is given a non-linear connection on M ,
that is to say, a horizontal distribution on TM for which the maps Πσ de-
fined by horizontal lifting of curves σ in M cannot be assumed to be linear.
It will still be possible to introduce a notion of linear parallel transport
associated with the non-linear connection by using Πσ∗, as before; this will
indeed be linear, and it will be a linearization of the given non-linear con-
nection. When it is fully developed, this idea will prove to give rise to the
Berwald-type linear connection associated with the horizontal distribution
which defines the non-linear connection.

Consider again the pull-back bundle σ∗(TM). The horizontal vector
field σ̇H is defined as it was before. However, it will no longer be the
case that the Lie translate of vV

w along the flow of σ̇H from w ∈ TxM

to σH
w(b) ∈ TyM is independent of the choice of w. So linear parallel

translation will not be an operation defined on vectors at x ∈ M along
curves in M ; rather it will be defined on vectors at x ∈ M along horizontal
curves in TM . That is to say, given a point w ∈ TxM , let σH

w be a
horizontal curve starting at w, which is the horizontal lift of some curve
σ in M ; and let v be an element of TxM , considered as a vector tangent
to TxM at the point w, and therefore identifiable with a vertical vector
in Tw(TM) itself. Then the linear parallel translate of v to σH

w(b) ∈ TyM

along σH
w is the Lie translate of vV

w ∈ Tw(TM) to σH
w(b) by the flow of the

vector field σ̇H on σ∗(TM). Since σ̇H is projectable with respect to the
projection σ∗(TM) → R, the action of its flow will preserve the fibration,
and so the Lie translate of vV

w will be vertical, that is, tangent to TyM , and
therefore identifiable with a vector in TyM itself. Thus parallel translation
may be regarded as a linear map TxM → TyM , but dependent on which
horizontal lift of σ is chosen, rather than just on σ itself as it is in the
linear case.

The construction just described defines parallel translation of elements
of each tangent space TxM along a certain class of curves which start at
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points of TM over x ∈ M , namely horizontal ones. It is clearly desirable
to extend the class of curves in TM along which parallel translation may
be defined, if possible to all (smooth) curves. There is certainly a natural
way to introduce a notion of parallel translation of elements of TxM along
curves in TM which are vertical above x, that is, along curves in TxM :
since TxM is a vector space, it is endowed with a canonical flat symmetric
affine connection or complete parallelism, in which vectors at points w1

and w2 are parallel if and only if they correspond to the same element
of TxM when Tw1(TxM) and Tw2(TxM) are identified with TxM in the
canonical way. It turns out that knowing what it is for vectors to be
parallelly translated along horizontal and along vertical curves is enough
to define a linear connection.

The connection thus defined will therefore be based on a law of parallel
translation of vectors tangent to M , along curves in TM . To express it
in terms of a covariant derivative operator, as will be done below, it is
necessary to choose a vector bundle on whose sections the operator can
act. That is, the required covariant derivative operator ∇ξ, where ξ is
either a tangent vector to TM or a local (i.e. locally defined) vector field
on TM , must act on local sections of some vector bundle over TM , and
give back elements or local sections of the same bundle as the case may
be. Among the possible arguments of ∇ξ must be vector fields on M
defined along curves in M to which τ∗ξ is tangent (where τ : TM → M
is the projection). The natural choice of vector bundle over TM whose
local sections over curves include such vector fields on M is the pull-back
of the vector bundle TM → M to TM by τ , which I write as τ∗(TM).
Indeed, a point in the fibre of τ∗(TM) over w ∈ TM is just an element of
Tτ(w)M , by the definition of τ∗(TM). This bundle may be identified with
the vertical sub-bundle of T (TM), but conceptually the two are distinct:
in particular, a fibre of τ∗(TM) need not, and should not, be thought of
as a subspace of a larger vector space.

I denote the C∞(TM) module of sections of τ∗(TM) by X (τ); its
elements may be (and often are) described as vector fields along the pro-
jection τ . Given a horizontal distribution on TM I denote by vH

w the
horizontal lift of v ∈ TxM to w, where x = τ(w); thus vH

w is the unique
horizontal vector at w which projects onto v. The identification of Tw(TM)
with (TxM)H⊕(TxM)V extends to a direct sum decomposition of X (TM),
the module of vector fields on TM , as

X (TM) = (X (τ))H ⊕ (X (τ))V .
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Every horizontal (vertical) vector field ξ ∈ X (TM) may be written uniquely
in the form ξ = XH (ξ = XV ) for some X ∈ X (τ); I denote such X by
ξH (ξV ). Let PH (PV ) be the horizontal (vertical) projector. Then for
arbitrary ξ ∈ X (TM) I define ξH ∈ X (τ) (ξV ∈ X (τ)) by (ξH)H = PH(ξ)
((ξV )V = PV (ξ)). Thus for ξ ∈ X (TM),

(ξH)H + (ξV )V = ξ,

while for X ∈ X (τ),

(XH)
H

= (XV )
V

= X, (XV )
H

= (XH)
V

= 0.

Let (xi) be local coordinates on M and (xi, vi) the corresponding local
coordinates on TM . I shall denote by {Hi} the local basis of horizontal
vector fields on TM which project onto ∂/∂xi, so that

Hi =
∂

∂xi
−N j

i

∂

∂vj

for certain local functions N j
i on TM ; and by {Vi} the local basis of vertical

vector fields given by Vi = ∂/∂vi. I shall denote by {∂i} the local basis of
X (τ) such that ∂i

V = Vi; then ∂i
H = Hi.

Theorem 1. Given any horizontal distribution on TM , there is a

unique linear connection on the vector bundle τ∗(TM) with the properties

that

• parallel translation along any horizontal curve is given by Lie trans-

port with respect to the corresponding horizontal vector field, as de-

scribed above;

• the restriction of the connection to any fibre TxM of τ : TM → M is

the canonical complete parallelism on the vector space TxM .

The covariant derivative operator ∇ : X (TM)× X (τ) → X (τ) of the

connection is defined as follows:

∇ξX = [PH(ξ), XV ]
V

+ [PV (ξ), XH ]
H

.

Proof. I shall show first that the given operator is a covariant deriv-
ative operator, and then that it has the stated properties. Finally, I shall
show that it is uniquely determined by these properties.



Connections of Berwald type 461

To show that the operator is indeed a covariant derivative, it is enough
to show that it obeys the correct rules when its arguments are multiplied
by functions. For any f ∈ C∞(TM),

∇fξX = [fPH(ξ), XV ]
V

+ [fPV (ξ), XH ]
H

= f∇ξX − (XV f)PH(ξ)V − (XHf) PV (ξ)H = f∇ξX,

since the terms involving derivatives of f also involve PH(ξ)V and PV (ξ)H ,
both of which are zero. On the other hand,

∇ξ(fX) = [PH(ξ), fXV ]
V

+ [PV (ξ), fXH ]
H

= f∇ξX + (PH(ξ)f) (XV )
V

+ (PV (ξ)f) (XH)
H

= f∇ξX + (ξf)X.

The condition for X to be parallel along a horizontal curve σH , where
σ is a curve in M , is that ∇σ̇H X = 0. But

∇σ̇H X = (Lσ̇H XV )
V

,

where the Lie derivative is calculated in σ∗(TM). The vector field σ̇H on
σ∗(TM) is projectable, so Lσ̇H XV is vertical. Thus ∇σ̇H X = 0 if and only
if Lσ̇H XV = 0.

To say that the restriction of ∇ to any fibre of τ is the canonical
complete parallelism is to say that the covariant derivative in any vertical
direction of any basic vector field (vector field on M) – which, regarded as
a section of τ∗(TM), is constant on the fibres – is zero. But if Y is basic
then Y H is projectable (and projects onto Y ); and therefore [XV , Y H ] is
vertical, and so [XV , Y H ]H = 0. Thus ∇XV Y = 0 for any X and any
basic Y .

So the given formula defines the covariant derivative operator of a
connection which satisfies the given conditions. I shall now show that this
connection is unique.

Suppose there is another connection which satisfies the given con-
ditions, whose covariant derivative operator is D. The new connection
determines, and is determined by, a map δ : X (TM)×X (τ) → X (τ), such
that the new covariant derivative is given in terms of the old by

DξX = ∇ξX + δ(ξ, X);
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moreover, δ is tensorial (that is to say, C∞(TM)-linear in both arguments,
and consequently pointwise defined). I shall show that if D satisfies the
conditions in the statement of the theorem, as ∇ does, then δ = 0 at every
point of TM .

Take any point w ∈ TM , with τ(w) = x (so w ∈ TxM), let ξw ∈
Tw(TM) be an arbitrary horizontal vector, and v an arbitrary element of
TxM . Take any curve σ in M through x such that σ̇(t0) = τ∗ξw, where
x = σ(t0); then σ̇H(w) = ξw. Let V be the vector field along σH

w defined by
Lie translation of vV

w by σ̇H in σ∗(TM). Then Dσ̇H V = ∇σ̇H V = 0, and
therefore δw(ξw, v) = 0. Now let ηw ∈ Tw(TM) be vertical, and let X be
any basic vector field such that X(x) = v: then DηwX = ∇ηwX = 0, and so
δw(ηw, v) = 0 also. But these two results together show that δw(ζw, v) = 0
for any w ∈ TM , any ζw ∈ Tw(TM), and any v ∈ Tτ(w)M , and so D = ∇.

¤
If Hi = ∂/∂xi −N j

i ∂/∂vj , then

∇Hi
∂j =

∂Nk
i

∂vj
∂k.

3. Berwald-type connections and others

Not every connection on τ∗(TM) is of Berwald type. In this section
I shall derive the necessary and sufficient conditions for a connection D on
τ∗(TM) which reduces to the canonical complete parallelism on the fibres
of TM to be of Berwald type.

It may easily be checked that for any connection on τ∗(TM), and any
horizontal distribution on TM , each of the following expressions is tensorial
in both of its arguments (that is, it is C∞(TM)-linear in X,Y ∈ X (τ)),
where D is the covariant derivative operator:

A(X, Y ) = DXH Y −DY H X − [XH , Y H ]
H

R(X, Y ) = − [XH , Y H ]
V

B(X, Y ) = −DY V X − [XH , Y V ]
H

P(X, Y ) = DXH Y − [XH , Y V ]
V

S(X, Y ) = DXV Y −DY V X − [XV , Y V ]
V

.
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These type (1, 2) tensor fields along τ may be regarded as torsions
of D. The reason for this is to be found in the fact that any connection
on τ∗(TM), and any horizontal distribution on TM , between them induce
a connection on T (TM), whether or not the two are in any way related.
The covariant derivative operator of this connection on T (TM) is defined
by

Dξ (XH) = (DξX)H
, Dξ(Y V ) = (DξY )V

.

(That is to say, the connection on τ∗(TM) may be extended to T (TM)
by exploiting the ambiguity in each of the expressions DξX

H and DξY
V .)

The tensors defined above are the components of the torsion of the induced
linear connection on T (TM). (The conditions under which a given linear
connection on T (TM) comes from one on τ∗(TM) in this manner are
discussed by Szilasi [5], and my notation for the components of the torsion
is adapted from his.)

Note that R depends only on the horizontal distribution (it measures
the lack of integrability, in the sense of Frobenius, of the distribution).
Any connection which reduces to the canonical complete parallelism on the
fibres of T (TM) must have B = S = 0 for any horizontal distribution. For
the connection of Berwald type associated with the horizontal distribution
X 7→ XH the torsion P vanishes in addition.

I shall now derive the necessary and sufficient conditions for a con-
nection on τ∗(TM) which induces the canonical complete parallelism on
the fibres to be of Berwald type – that is, for there to be some horizon-
tal distribution for which it is the associated Berwald-type connection.
The conditions may be formulated in two ways, one of which involves the
torsion P, the other the curvature curv, of the given connection.

Proposition 1. Let D be the covariant derivative operator of a con-
nection on τ∗(TM) which reduces to the canonical complete parallelism
on the fibres. Let X 7→ XH be any horizontal distribution. The following
two conditions are equivalent: for all X,Y, Z ∈ X (τ)

(DY V P) (X,Z) = (DZV P) (X,Y )

curv (XH , ZV )Y = curv (XH , Y V )Z;

and if either holds for one horizontal distribution both hold for all. Ei-
ther condition is necessary and sufficient for there to be some horizontal
distribution for which D is the associated Berwald-type connection.
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Proof. I first demonstrate the equivalence of the two conditions.
This comes from the first Bianchi identity for the connection, which in
turn follows from the Jacobi identity

[
[XH , Y V ] , ZV

]
+

[
[Y V , ZV ] , XH

]
+

[
[ZV , XH ] , Y V

]
= 0.

When the brackets are expressed in terms of covariant derivatives the
vertical component gives

curv (XH , ZV ) Y − curv (XH , Y V ) Z = (DY V P) (X, Z)− (DZV P) (X, Y ),

taking account of the facts that B = S = 0 for such a connection. The re-
striction of the connection to vertical vector fields is flat, that is, it satisfies
curv(XV , Y V )Z = 0; thus if the condition

curv(XH , ZV )Y − curv(XH , Y V )Z = 0

holds for some horizontal distribution it holds for all. On the other hand,
P = 0 for the Berwald-type connection associated with X 7→ XH , where
P is calculated with respect to this horizontal distribution, and therefore
both conditions hold for Berwald-type connections for all horizontal dis-
tributions.

The converse may be proved using either condition. Suppose that

DHi∂j = Ak
ij∂k.

Then the relevant curvature component is given by

curv(Hi, Vj)∂k = −∂Al
ki

∂vj
∂l,

and so the curvature condition is

∂Al
ki

∂vj
=

∂Al
kj

∂vi
;

it follows that there are functions N l
k such that

Al
kj =

∂N l
k

∂vj
,
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and the connection is the Berwald-type connection associated with the
horizontal distribution spanned by {Hi} where

Hi =
∂

∂xi
−N j

i

∂

∂vj
.

Alternatively, consider the effect of a change of horizontal distribution on
P: if the new horizontal lift of X is XH + δ(X)V , then the new torsion is
P(X, Y )+ (DY V δ)(X); the condition (DY V P)(X, Z)− (DZV P)(X,Y ) = 0
is the integrability condition for the differential equation (DY V δ)(X) =
−P(X, Y ) for δ. ¤

Given any connection on τ∗(TM) for which S = 0, and any func-
tion F on TM , we can associate with F a symmetric type (0, 2) tensor
field along τ , which may be called the Hessian of F with respect to the
fibre coordinates in TM , as follows. (By a type (0,m) tensor field along τ

I mean an object with the indicated tensorial properties, which takes its
arguments from X (τ).)

Proposition 2. Let D be the covariant derivative operator of a con-

nection on τ∗(TM) for which S = 0, and let F be any function on TM .

Set

gF (X, Y ) = XV (Y V F )− (DXV Y )V F,

for any X, Y ∈ X (τ). Then g is a symmetric type (0, 2) tensor field along τ .

Moreover, if the connection reduces to the canonical complete parallelism

on the fibres of TM then

(DXV gF )(Y, Z) = (DY V gF )(X, Z)

for any X, Y, Z ∈ X (τ).

Proof. Clearly

gF (X, Y )− gF (Y, X) = [XV , Y V ] F − (DXV Y )V
F + (DY V X)V

F = 0.

Moreover, for any function f on TM , gF (fX, Y ) = fgF (X,Y ). These
two facts together establish that gF is a symmetric type (0, 2) tensor field
along τ . It is a straightforward matter to show that

(DXV gF ) (Y,Z)− (DY V gF ) (X, Z) = [XV , Y V ] (ZV F )− (DXV Y )V (ZV F )

+ (DY V X)V (ZV F )− (curv (XV , Y V )Z)V
F,
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whence if S = 0 and curv(XV , Y V ) = 0, as is the case for a connection
which reduces to the canonical complete parallelism on the fibres of TM ,
then

(DXV gF )(Y, Z)− (DY V gF )(X, Z) = 0. ¤

4. Berwald-type connections
associated with semi-sprays and sprays

Having reduced the concept of a Berwald connection to its barest
essentials, I now commence the task of reconstruction, that is, of progres-
sively specializing Berwald-type connections so as to obtain the Finslerian
Berwald connection. There are three stages to this process, corresponding
to three salient facts about the Finslerian Berwald connection: firstly, the
horizontal distribution with which it is associated is derived from a semi-
spray, or second-order differential equation field; secondly, the semi-spray
is actually a spray, so that both it and the horizontal distribution it de-
fines satisfy homogeneity conditions with respect to dilations of the fibres;
and thirdly, the spray is actually the Euler–Lagrange field of the energy
associated with a Finsler function, or in other words its geodesic spray.

Most of this story is well known, so I shall deal with it briefly and omit
some proofs. I shall also ignore complications relating to the behaviour
near the zero section of the geometric objects I shall define.

I denote by S the vertical endomorphism on TM , and ∆ the Liouville
field (the generator of dilations of the fibres): ∆ = TV , where T ∈ X (τ) is
the total derivative operator C∞(M) → C∞(TM) defined by (Tf)(v) =
vf for v ∈ TM , f ∈ C∞(TM). A vector field Γ on TM is a semi-spray if
S(Γ) = ∆.

A semi-spray Γ determines a horizontal distribution on TM , whose
horizontal projector is given by

PH =
1
2

(I − LΓS) .

Not every horizontal distribution can be derived from a semi-spray in
this way. The conditions for a horizontal distribution to be derived from
a semi-spray may be expressed in terms of the associated Berwald-type
connection ∇, as follows.
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Proposition 3. The necessary and sufficient condition for a horizontal

distribution to be derived from a semi-spray is that the torsion A of the

associated Berwald-type connection vanishes.

Proof. Of the several ways of stating the necessary and sufficient
condition for a horizontal distribution to be derived from a semi-spray the
most convenient for my purposes is the following: a horizontal distribution
on TM , with corresponding horizontal lift X 7→ XH , is derived from a
semi-spray if and only if for every pair of vector fields X and Y on M

[XH , Y V ]− [Y H , XV ] = [X,Y ]V .

Now A(X, Y ) = ∇XH Y −∇Y H X − [XH , Y H ]H , and ∇XH Y = [XH , Y V ]V .
When X, Y ∈ X (M), XH and Y H are τ -projectable, and project onto X

and Y respectively. Thus [XH , Y H ]H = [X, Y ] (regarded, as it may be, as
an element of X (τ)). Moreover, [XH , Y V ] and [Y H , XV ] are both vertical,
and so for X,Y ∈ X (M), [XH , Y V ] − [Y H , XV ] = [X, Y ]V if and only if
[XH , Y V ]V − [Y H , XV ]V = [X, Y ]. But since A is a tensor, it vanishes if
and only if it vanishes whenever its arguments are taken from X (M). ¤

Thus a Berwald-type connection associated with the horizontal distri-
bution derived from a semi-spray has all of its torsions which can be zero
equal to zero.

I turn next to the homogeneity conditions.

A horizontal distribution is homogeneous if L∆PH = 0, or equivalently
if the horizontal lift of any vector field on M is homogeneous of degree
zero with respect to dilations of the fibres, that is, [∆, XH ] = 0 for all X ∈
X (M). The condition for a horizontal distribution to be homogeneous can
also be expressed in terms of the corresponding Berwald-type connection.

Proposition 4. The necessary and sufficient condition for the hori-

zontal distribution X 7→ XH to be homogeneous is that ∇XH T = 0 for all

X ∈ X (τ).

Proof. We have

∇XH T = − [∆, XH ]
V

.

If the horizontal distribution is homogeneous then ∇XH T = 0 for X ∈
X (M), and therefore for all X ∈ X (τ) by the C∞(TM)-linearity of X 7→
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∇XH T. If ∇XH T = 0 then [∆, XH ]V = 0 for all X ∈ X (τ), and in
particular for all X ∈ X (M); but in the latter case [∆, XH ] is vertical, so
it follows that [∆, XH ] = 0. ¤

Given any connection which reduces to the canonical complete paral-
lelism on the fibres one can construct a horizontal distribution (as pointed
out by Abate [1]) as follows. The map Tw(TM) → Tτ(w)M by ξw 7→
DξwT is linear; its restriction to Vw(TM) is the identity; by the rank and
nullity theorem its kernel must be of dimension n; the kernel is clearly
complementary to Vw(TM) in Tw(TM), and therefore defines a horizontal
subspace of Tw(TM). If one starts with a horizontal distribution, takes
its Berwald-type connection, and then carries out this construction, then
the horizontal distribution so defined will in general be different from the
original one. Only in the case of a homogeneous horizontal distribution
will they be the same.

A semi-spray Γ is a spray if it is homogeneous of degree one with
respect to dilations of the fibres, that is, if [∆,Γ] = Γ.

Proposition 5. If Γ is a spray, then

1. the horizontal distribution associated with Γ is homogeneous

2. Γ is horizontal

3. ∇ΓT = 0.

Proof. (1) If [∆,Γ] = Γ then

L∆PH = −1
2
L∆LΓS = −1

2
(LΓL∆S + LΓS) = 0,

since L∆S = −S.
(2) We have

PV (Γ) =
1
2

(Γ + LΓS(Γ)) =
1
2
(Γ− [∆, Γ]),

and so PV (Γ) = 0 if (and indeed only if) Γ is a spray.
(3) If Γ is a spray it is horizontal, and the corresponding distribution

is homogeneous, so ∇ΓT = 0 by Proposition 3. ¤

Given any horizontal distribution, it is natural to ask which curves
on M are autoparallel. In general this question is ambiguous: does it
mean autoparallel with respect to the non-linear or the linear connection?
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If the former, then the answer is the projections onto M of the integral
curves of the semi-spray TH . If the latter, the answer is slightly more
complicated: there is a unique semi-spray Γ̂ such that ∇bΓT = 0, and the
required curves are the projections onto M of the integral curves of Γ̂.
The semi-sprays TH and Γ̂ are in general distinct. Worse, if the horizontal
distribution is derived from a semi-spray Γ, in general all three semi-sprays
Γ, TH and Γ̂ are distinct. When Γ is a spray, however, they are the same,
and the autoparallel curves of both non-linear and linear connections are
the projections onto M of the integral curves of Γ.

I now restrict my attention to Berwald-type connections associated
with sprays.

The Berwald-type covariant derivative is defined in terms of the brack-
et operation on vector fields on TM . For a Berwald-type connection de-
rived from a spray, the definition can be turned round so as to express the
bracket in terms of covariant derivatives: for X, Y ∈ X (τ),

[XV , Y V ] = (∇XV Y )V − (∇Y V X)V

[XH , Y V ] = (∇XH Y )V − (∇Y V X)H

[XH , Y H ] = (∇XH Y )H − (∇Y H X)H −R(X,Y )V .

The particular cases of these formulae involving the spray, Γ = TH , are
useful:

[Γ, Y V ] = (∇ΓY )V − Y H

[Γ, Y H ] = (∇ΓY )H −R(T, Y )V .

I shall need the following result in the next section.

Proposition 6. Let Γ be a spray. Then for any X ∈ X (τ),

curv(Γ, XV ) = 0.

Proof. For any Y ∈ X (τ),
[
Γ, [XV , Y H ]

]
H

+
[
XV , [Y H , Γ]

]
H

+
[
Y H , [Γ, XV ]

]
H

= 0,

by Jacobi’s identity. If one now substitutes for the brackets, using the
formulae above, one finds that

∇Γ∇XV Y −∇XV ∇ΓY −∇(∇ΓX)V Y +∇XH Y = 0.

But (∇ΓX)V −XH = [Γ, XV ], so this says that curv(Γ, XV )Y = 0. ¤
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5. The Finslerian Berwald connection

Let Γ be the geodesic spray of a Finsler space whose energy is E, let
X 7→ XH be the homogeneous horizontal distribution defined by Γ, and ∇
the covariant derivative of the corresponding Berwald-type connection.

The energy metric g of the Finsler space is the Hessian of E, as defined
in Proposition 2. The Cartan tensor C of g is the type (1, 2) tensor field
along τ defined by

g(C(X, Y ), Z) = (∇XV g) (Y, Z).

It follows from Proposition 2 that C is symmetric, and that g(C(X, Y ), Z)
is symmetric in all three arguments.

It is well-known that when Γ is the geodesic spray, ∇Γg = 0. This is
easily established by using the expression of the Euler–Lagrange equations
in terms of the Cartan 2-form ω = d(dE◦S). This 2-form is related to g by
g(X,Y ) = ω(XV , Y H); moreover, LΓω = 0, from which the required result
follows by evaluation on XV , Y H . The homogeneity of E is not required in
this proof, and in fact the result holds for the Euler–Lagrange semi-spray
of any Lagrangian L, where g = gL is the Hessian. Indeed, ∇Γg = 0
and (∇XV g)(Y, Z) = (∇Y V g)(X,Z) are two of the Helmholtz conditions,
which together comprise the usual starting point for investigations of the
inverse problem of the calculus of variations, where now Γ is a given semi-
spray and the task is to find g satisfying the conditions, if possible; see for
example [4].

I use the fact that ∇Γg = 0, together with Proposition 6, in the
following proposition.

Proposition 7. Let C ′ be the type (1, 2) tensor field along τ defined

by

g(C ′(X, Y ), Z) = (∇XH g) (Y, Z).

Then

C ′ = −∇ΓC.

Proof. The vanishing of the curvature component curv(Γ, XV ), to-
gether with the fact that ∇Γg = 0, implies that

∇Γ∇XV g −∇(∇ΓX)V g = −∇XH g.
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But ∇XV g = g(C(X, ·), ·), so (using ∇Γg = 0 again)

∇Γ∇XV g −∇(∇ΓX)V g = g((∇ΓC)(X, ·), ·),
whence C ′ = −∇ΓC. ¤

It follows that C ′ is symmetric, and that g(C ′(X,Y ), Z) is symmetric
in all three arguments.

By homogeneity, the energy may be expressed as E = 1
2g(T,T); it

follows that for any X ∈ X (τ)

XH(E) =
1
2

(∇XH g) (T,T) + g (∇XHT,T) =
1
2

(∇Γg) (X,T) = 0.

Now according to Abate [1], Theorem 2.3 (slightly modified to fit in with
my notation etc.), the Finslerian Berwald connection is uniquely deter-
mined by the properties that for all X ∈ X (τ)

1. ∇XHT = 0
2. XH(E) = 0
3. A = B = P = 0.

The Berwald-type connection associated with the geodesic spray Γ has
these properties, which confirms (if confirmation is required) that it is
indeed the Finslerian Berwald connection.

The symmetry of C and C ′ has the consequences:
C(T, ·) = 0, by homogeneity; C ′(T, ·) = 0, since ∇Γg = 0.

6. The Chern–Rund, Cartan and Hashiguchi connections

As has been noted before, a change of connection determines, and is
determined by, a tensorial map δ : X (TM)×X (τ) → X (τ), such that the
new covariant derivative is given in terms of the old (which I take to be
the Berwald one) by

DξX = ∇ξX + δ(ξ, X).

The torsions of the new connection are given by

A(X, Y ) = δ (XH , Y )− δ (Y H , X)

B(X, Y ) = −δ (Y V , X)

P(X, Y ) = δ (XH , Y )

S(X, Y ) = δ (XV , Y )− δ (Y V , X) .
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In particular, A = 0 if and only if δH is symmetric (where δH is the type
(1, 2) tensor field along τ given by δH(X, Y ) = δ(XH , Y )); and S = 0 if
and only if δV is symmetric (where δV is defined analogously to δH).

Furthermore,

(Dξg) (X, Y ) = g (C (ξV , X) , Y ) + g (C ′ (ξH , X) , Y )

− g(δ(ξ,X), Y )− g(X, δ(ξ, Y )).

Theorem 2. The necessary and sufficient condition for A = 0 and

DH
g = 0 is

δH =
1
2
C ′;

the necessary and sufficient condition for S = 0 and DV
g = 0 is

δV =
1
2
C.

Proof. The condition DH
g = 0 amountsto

g(C ′(Z, X), Y ) = g (δH(Z, X), Y ) + g (X, δH(Z, Y )) .

These equations may be solved for δH using the Christoffel trick, tak-
ing into account the symmetry of δH required to satisfy A = 0. The proof
of the second assertion is similar. ¤

Each of these conditions can be imposed independently, and they can
be imposed together. The three possibilities produce the other major
connections of Finsler geometry, as follows.

The Chern–Rund connection

The Chern–Rund connection is given by

δH =
1
2
C ′, δV = 0.

All of its torsions except R and P vanish; we have P(X, Y ) = 1
2C ′(X, Y ),

and in particular P(T, ·)= 0. The Chern–Rund connection is “horizontally-
metrical”, that is, DHg = 0 (but DV g = ∇V g is given by (DXV g)(Y,Z) =
g(C(X, Y ), Z)). The Chern–Rund connection induces the canonical com-
plete parallelism on the fibres of τ .
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The Hashiguchi connection

The Hashiguchi connection is given by

δV =
1
2
C, δH = 0.

All of its torsions except R and B vanish; we have B(X, Y ) = − 1
2C(X, Y ),

and in particular B(T, ·) = 0. The Hashiguchi connection is “vertically-
metrical”, that is, DV

g = 0 (butDHg = ∇Hg is given by (DXH g)(Y,Z) =
g(C ′(X, Y ), Z)). The Hashiguchi connection does not induce the canonical
complete parallelism on the fibres of τ .

The Cartan connection

The Cartan connection is given by

δV =
1
2
C, δH =

1
2
C ′.

Its torsionsA and S vanish; we have B(X, Y )=− 1
2C(X,Y ) and P(X, Y )=

1
2C ′(X, Y ), and in particular B(T, ·) = P(T, ·) = 0. The Cartan connec-
tion is metrical, that is, DV g = DHg = 0. The Cartan connection does not
induce the canonical complete parallelism on the fibres of τ .
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