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On cosymplectic quasi-Sasakian manifolds
with quasi-Reeb vector field

By I. MIHAI (Bucharest), A. OIAGĂ (Bucharest)

and R. ROSCA (Paris)

Abstract. A cosymplectic quasi-Sasakian manifold M (see [O]) with quasi-Reeb
vector field is considered. We study some distinguished vector fields on M : skew sym-
metric Killing vector fields [MRV] and vector fields which define strong automorphisms
of the symplectic structure. Some foliations on M are obtained.

Let M(φ, Ω, η, ξ, g) be a (2m + 1)-dimensional cosymplectic quasi-
Sasakian manifold (abbr. CQS) in the sense of [O], i.e. the structure tensors
satisfy:

(0.1) φ2 = −I + η ⊗ ξ, dΩ = 0, dη = 0, ξ(η) = 1.

If J means the anti-invariant operator of square +1 [R3], then [BR]
have initiated the case when the covariant differential of the structure
vector ξ satisfies:

(0.2) ∇ξ = c(J ◦ φ)dp,

where c is a non vanishing constant (called the essential constant) and dp

the soldering form of M . Such a manifold is called a CQS manifold with
quasi-Reeb vector field ξ (abbr. CQSQR).
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Clearly the distribution {Z ∈ ΓTM ; η(X) = 0} is a horizontal invo-
lutive distribution.

In the present paper, we study some properties of skew symmetric
Killing vector fields [R1] (abbr. SSK) and of vector fields which define
strong automorphisms of the (1 × Sp(2m,R))-structure considered, i.e.
LZΩ = 0, LZη = 0, where LZ is the Lie derivative with respect to Z.

In Section 2 it is shown that the existence of an SSK vector field X is
assured by an exterior differential system in involution (in the sense of [C])
and the following properties are proved:
(i) M is foliated by surfaces MX of constant Ricci curvature, tangent

to X and its generative T .
(ii) ‖X‖2 is an isoparametric function [W], where ‖X‖2 = g(X,X).
(iii) the conditions:

a) ‖X‖2 is an eigenfunction of ∆;
b) X is an affine vector field,

are mutually equivalent.
In Section 3 we obtain a necessary and sufficient condition for a strong

automorphism of the (1×Sp(2m,R))-structure to be a Killing vector field.
In Section 4 one considers on the horizontal hypersurface Mξ defined

by η = 0 two associated principal vector fields W and W in the sense
of [Ph]. Then if W and W are SSK vector fields having ξ as generative,
this implies that both define strong automorphisms of the (1×Sp(2m,R))-
structure under consideration.

1. Preliminaries

Let (M, g) be a (2m+1)-dimensional oriented C∞-manifold with Rie-
mannian metric g. Let ΓTM be the set of sections of the tangent bundle
and ∇ be the covariant derivative operator defined by g. Assume that M
carries the quadruple of structure tensors (φ, Ω, η, ξ), where φ is a (1, 1)
tensor field, Ω is a closed 2-form of rank 2m, η a closed Pfaffian and ξ = η]

the structure vector field (one may also call ξ the quasi-Reeb vector field
(abbr. QR)). Then, if these tensor fields satisfy:

(1.1)





φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0,

g(φZ, φZ ′) = g(Z, Z ′)− η(Z)η(Z ′), η(Z) = g(ξ, Z),

dΩ = 0, Ω(Z, Z ′) = g(Z, φZ ′), Ωm ∧ η 6= 0,



On cosymplectic quasi-Sasakian manifolds with quasi-Reeb vector field 477

and

(1.2) dη = 0,

one says [O] that M is a quasi-Sasakian manifold endowed with a cosym-
plectic structure (1× Sp(2m,R)), and the distribution Dη = {Z ∈ ΓTM ;
η(Z) = 0}, which is called the horizontal distribution, is always involutive.

We also recall that [ : TM → T ∗M , ] : T ∗M → TM mean the musical
isomorphisms defined by g, and

(1.3) Ω[ : TM → T ∗M, Z 7→ −iZΩ = [Z, Z ∈ ΓTM

denotes the symplectic isomorphism, where iZ is the interior product op-
erator with respect to Z.

Further, if we set Aq(M, TM) = Hom(ΛqTM, TM)
(elements of Aq(M, TM) are vector valued q-forms), then following [P],
d∇ : Aq(M,TM) → Aq+1(M, TM) denotes the exterior covariant operator
with respect to ∇.

It should be noticed that generally d∇
2

= d∇ ◦ d∇ 6= 0, unlike d2 =
d ◦ d = 0. If p ∈ M , then the vector valued 1-form dp ∈ A1(M, TM) is the
canonical vector valued 1-form of M and is called the soldering form [Di].
A (non-parallel) vector field X on a Riemannian (or pseudo-Riemannian)
manifold is, following [R2], is said to be exterior concurrent (abbr. EC) if

(1.4) d∇(∇X) = ∇2X = r ∧ dp

for some 1-form r, called the concurrence form associated with X. The
above formula is equivalent to

(1.5) ∇2X = − 1
n− 1

Ric(X)X[ ∧ dp,

where Ric(X) denotes the Ricci curvature of M with respect to X and
n = dim M .

A function f : Rn → R is isoparametric [W] if ‖∇f‖2 and div(∇f)
are functions of f (∇f = grad f).

Let O = vect{eA, A = 1, . . . , n} be a local field of adapted vectorial
frames over M , and let O∗ = covect{ωA} be its associated coframe. Then
the soldering form dp is expressed by

(1.6) dp = ωA ⊗ eA,
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and E. Cartan’s structure equations written in the indexless manner are:

∇e = θ ⊗ e,(1.7)

dω = −θ ∧ ω,(1.8)

dθ = −θ ∧ θ + Θ.(1.9)

In the above equations, θ (resp. Θ) are the local connection forms in
the tangent bundle TM (resp. the curvature 2-forms of M).

On a (2m + 1)-dimensional manifold carrying the structure tensors φ
and Ω one sets generally

(1.10) Ω = ωi ∧ ωi∗ , i ∈ {1, . . . , m}, i∗ = i + m,

and the (1, 1) tensor field φ induces the Kaehlerian relations for the hori-
zontal connection forms

(1.11) θi
j = θi∗

j∗ , θi∗
j = θj∗

i .

Further, following [R3] (see also [VR]) the anti-invariant operator with
respect to φ is defined by

(1.12) Jei = ei∗ , Jei∗ = ei, J2 = I,

and one has

(1.13) J ◦ φ + φ ◦ J = 0, Jξ = 0.

In order to simplify, we set A = J ◦ φ and agree to call A the mixed
anti-invariant operator (abbr. MA). By (1.7) we write:

(1.14) ∇ξ = c(J ◦ φ)dp, c = const.,

and it is easily seen that equations (1.1) and (1.2) are satisfied.
Such a quasi-Sasakian manifold is defined as a cosymplectic quasi-

Sasakian manifold with Jφ-structure vector field ξ. We agree to call it a
quasi-Reeb vector field. One may write (1.14) as

(1.15) ∇ξ = c(ωi ⊗ ei − ωi∗ ⊗ ei∗), c 6= 0, c = const.,

and the constant c will be called the essential constant. By (1.15), we
notice that a short calculation gives

(1.16) div ξ = 0.
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2. Skew symmetric Killing vector fields
on a CQSQR-manifold

In this section we study some properties of skew symmetric Killing
vector fields X on a CQSQR manifold M(φ, Ω, η, ξ, J, g) defined by (0.1)
and (0.2). Following [R1] such a vector field is defined by

(2.1) ∇X = X ∧ T = τ ⊗X −X[ ⊗ T ,

where τ = T [ and the vector field T is called the generative of X (see also
[MRV]), and as in [R1] we assume that T is a closed torse forming (abbr.
TF) [Y].

If Z ∈ ΓTM is any vector field on M , then by reference to (1.7) and
(1.15) its covariant differential is expressed by

(2.2)
∇Z = (dZi + Zaθi

a+cZ0ωi)⊗ ei+(dZi∗+Zaθi∗
a −cZoωi∗)⊗ ei∗

+
(
dZ0 − c(Ziωi − Zi∗ωi∗)

)⊗ξ,

where a ∈ {1, . . . , 2m}.
If X coincides with the SSK vector field, then one derives by (2.1)

(2.3) dX[ = 2τ ∧X[,

and so one refinds Rosca’s lemma for SSK vector fields [R1], i.e. X[ is an
exterior recurrent [D] form, having τ as recurrence form. In addition, if T
is a closed TF, then one has

(2.4) ∇T = fdp− τ ⊗ T , f ∈ C∞M,

and it is easily seen that

(2.5) dτ = 0.

Setting s = g(X, T ), one quickly derives from (2.1) that

(2.6) ds ∧X[ = 0,

and so, we may set

(2.7) s = s0 = const.
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Further, from (2.1) and (2.3) a short calculation gives

(2.8) ds =
(
f − ‖T ‖2)X[ ⇒ f = ‖T ‖2 ,

and under these conditions one has

(2.9) [X, T ] = 0,

which shows that X and T commute. Moreover, considering 〈T , T 〉 and
taking account of (2.5), it follows from (2.8) that d‖T ‖2 = 0, and so by
(2.8) one may write

(2.10) f = ‖T ‖2 = const.

Operating now on (2.1) and (2.4) by d∇, one quickly derives by (2.10)

(2.11)

{ ∇2X = fX[ ∧ dp

∇2T = fT [ ∧ dp.

This proves the significant fact that both X and T are exterior concur-
rent vector fields with the constant conformal factor f . Hence, following
[MRV], one may write:

f = − 1
2m

Ric(X) = − 1
2m

Ric(T ).

Clearly, by (2.3) the distribution DX = {X, T } is involutive, and since
the property of exterior concurrency is preserved by linearity, one may say
that DX is an autoparallel exterior concurrent distribution whose leaves
are surfaces of constant Ricci curvature.

On the other hand, one derives from (2.1):

(2.12) ∇‖X‖2 = c ‖X‖2 T − 2s0X, s0 = const.,

and one may write

(2.13)
∥∥∇‖X‖2∥∥2

= 8‖X‖4f + 2s2
0‖X‖2,

and one also infers from (2.12):

(2.14) div
(∇‖X‖2) = 2(2m + 1)f ‖X‖2 − 2s0.
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Hence, since
∥∥∇‖X‖2∥∥2 and div(∇‖X‖2) are functions of ‖X‖2, we

conclude that ‖X‖2 : R2m+1 → R is an isoparametric function (see 1).
Further, by the well known formula ∆µ = − div∇µ, µ ∈ C∞M , it

follows from (2.14) that

(2.15) ∆ ‖X‖2 = −2(2m + 1)f ‖X‖2 + 2s0.

This equation affirms that the necessary and sufficient condition in
order that ‖X‖2 be an eigenfunction of ∆ is that the constant s0 vanishes.
In this case, since the constant f = ‖T ‖2 is positive definite, it follows by
a known Proposition that the manifold M under consideration cannot be
compact (see also [BR]).

In another order of ideas, remember that a vector field Z is affine if
LZ∇Z = 0.

Then, coming back to the case under discussion, one finds by (2.9)
and (2.10):

(2.16) LX∇X = s0X
[ ⊗ T ,

and so by (2.15) and (2.16) we may assert that the conditions
(i) ‖X‖2 is an eigenfunction of ∆;
(ii) X is an affine vector field

are equivalent.
Finally, denote by Σ the exterior differential system which determines

the vector field X. Then by (2.3) and (2.5) it is seen that the characteristic
numbers (or E. Cartan’s numbers) of Σ are r = 2, s0 = 0, s1 = 2. Since
r = s0 + s1, it follows that Σ is in involution and by E. Cartan’s test [C],
we conclude that the existence of X is determined by an arbitrary function
of one argument.

Summing up, we state the

Theorem 2.1. Let M(φ, Ω, η, ξ, J) be the CQSQR manifold of dimen-
sion 2m + 1 under consideration. The existence of an SSK vector field X
having a TF vector field T as generative is assured by an exterior differ-
ential system in involution and the following properties hold:

(i) M is foliated by surfaces MX of constant Ricci curvature, tangent
to X and T ;

(ii) ‖X‖2 is an isoparametric function;

(iii) the conditions ‖X‖2 is an eigenfunction of ∆ and X is an affine vector
field are equivalent.
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3. Strong automorphisms

Let Y be any vector field on a cosymplectic quasi-Sasakian mani-
fold M and let Ω (resp. η) be the structure 2-form (resp. the structure
1-form) which defines the cosymplectic structure (1× Sp(2m,R)) of M .

Following a known definition, if Y defines an infinitesimal automor-
phism of both Ω and η, i.e.

(3.1) LY Ω = 0, LY η = 0,

one says that Y is a strong automorphism of (1× Sp(2m,R)).
Assume that M is a CQSQR manifold and set

(3.2) Y = Y aea + Y 0ξ, a ∈ {1, . . . , 2m}.
Since dΩ = 0 and LY = diY + iY d, one may write

(3.3) LY Ω = 0 ⇐⇒ d[Y = 0 ⇐⇒ d(φY )[ = 0,

where [Y is the symplectic isomorphism.
In addition, since dη = 0, it is seen that Xη(Y ) = 0 (i.e. Y 0 = const.).
One finds after some caculations

(3.4) (φY )[ = Σ(Y iωi∗ − Y i∗ωi),

then from (1.8), (1.11) and (3.4), the equation (3.3) is expressed by

(3.5)

{
dY i + Y aθi

a − cY iη = λωi,

dY i∗ + Y aθi∗
a + cY i∗η = −λωi∗ ,

where λ is a certain scalar field.
Now, using (2.2) and carrying out the calculations one derives:

(3.6) ∇Y = A(
(λ + cY 0)dp + c(Y ∧ ξ)

)− c(Y iωi − Y i∗ωi∗)⊗ ξ,

where A = φ ◦ J is the mixed anti-invariant operator.
From (3.6) we quickly find

g(∇ZY, Z ′) + g(∇Z′ , Z) = 2(λ + cY 0)g(Z,AZ ′), Z, Z ′ ∈ ΓTM,

which says that in order that Y be a Killing vector, the necessary and
sufficient condition is that the conformal scalar associated with Y satisfies

λ + cY 0 = 0.
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Theorem 3.1. Let Y be a strong automorphism in the CQSQR man-

ifold defined in Section 2, Y 0 = η(Y ) the constant vertical component

of Y and λ the associated conformal scalar of Y . Then the necessary and

sufficient condition in order that Y be a Killing vector is that

λ + cY 0 = 0

holds good.

4. Principal vector fields

Let Mξ be a hypersurface defined by η = 0, which foliates the manifold
M(φ, Ω, η, ξ,A) under consideration and let

L : TMξ → TMξ, LV = ∇V ξ

be the Weingarten map.
One finds from (1.15)

(4.1)

{
L(JV + φV ) = −c(JV + φV ),

L(JV − φV ) = c(JV − φV ),

where J is the anti-invariant operator on Mξ and V denotes any horizontal
vector field.

The vector fields

W = JV + φV, W = JV − φV, η(V ) = 0,

have been defined in [BR] as the principal vector fields of Mξ (see also [Ph]).
Taking into account (1.7) and the operators J and φ, one finds

(4.3) ∇W = dW i ⊗ ei∗ + W i(θa
i∗ ⊗ ea + cωi∗ ⊗ ξ),

and expressing that W is an SSK vector field having ξ as generative, one
refinds Rosca’s lemma

(4.4) dW [ = 2η ∧W [,

and in addition

c = −1,(4.5)
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{
dW i + W jθi∗

j∗ = W iη,

W iθi∗
j = 0.

(4.6)

In these conditions one finds

(4.7) (φW )[ = −W iωi = −iW Ω,

and making use of (1.1) and LW = diW + iW d, one infers

(4.8) d(φW )[ = 0 ⇔ LW Ω = 0.

Also, we find that W is a horizontal vector field, i.e. η(W ) = 0, if
and only if LW η = 0. Thus W defines a strong automorphism of the
cosymplectic structure (1× Sp(2m,R)) of M .

Proceeding in a similar manner for the associated principal vector field
W of W , one finds that the essential scalar c is equated by +1 and like W ,
the vector field W defines a strong automorphism of the (1× Sp(2m,R))-
structure considered.

On the other hand, it is easily seen that one has d‖W‖2 = 2‖W‖2η
and d‖W‖2 = 2‖W‖2η and similarly as for ‖X‖2, we may prove that ‖W‖2
and ‖W‖2 are isoparametric functions.

Theorem 4.1. Let Mξ be the hypersurface defined by η = 0 and let

W and W be the principal vector fields defined by the Weingarten map L.

If W and W are SSK vector fields having ξ = η] as generative, then both

W and W define a strong automorphism of the (1× Sp(2m,R))-structure

carried by the manifold M (CQSQR) under consideration.
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