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Some sufficient conditions for a map to be harmonic

By HURIYE ARIKAN (Istanbul) DEMIR N. KUPELI (Ankara)

Abstract. Some integral sufficient conditions for a map to be harmonic are ob-
tained. In achieving this result, the divergence and Laplacian of a vector field along a
map are defined and a divergence theorem for a vector field along a map (the generalized
divergence theorem) is used.

1. Introduction

It is claimed in ([1], p. 9) that a map from a compact Riemannian
manifold to a Riemannian manifold is harmonic if the kth covariant differ-
ential of its tension field vanishes. See ([5], Prop. 2.5) for the proof of this
result when the (first) covariant differential of its tension field vanishes.
In this paper, we generalize this result to integral inequalities involving
divergence and Laplacian of the tension field which in turn also provides
a proof of the above claim (see Theorem 3.1 and Remark 3.11). For this,
first we define divergence of a vector field along a map. Then we give a
divergence theorem for a vector field along a map, called the generalized
divergence theorem (Theorem 2.2). In fact, this theorem plays the crucial
role in obtaining the mentioned generalization of the result above. Also
we use two complementary theorems in achieving this result (see Theo-
rems 2.5 and 2.6). But these latter two theorems are the straightforward
generalizations of the well-known results of Bochner on vector fields to
vector fields along a map. Cf. ([4], p. 158) and ([3], p. 46). Finally, we
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make an application of our above mentioned result to closed geodesics on
Riemannian manifolds.

The main result (Theorem 3.1) of this paper may also be consid-
ered as an application of the generalized divergence theorem to harmonic
maps. Indeed, the generalized divergence theorem plays the central role in
obtaining Theorem 3.1 about harmonicity of maps between Riemannian
manifolds.

Throughout this paper, everything at hand is assumed to be smooth.

2. Preliminaries

Let (V1, g1) and (V2, g2) be real inner product spaces of dimensions n1

and n2 respectively, and let T : (V1, g1) → (V2, g2) be a linear transforma-
tion. The adjoint ∗T of T is defined to be the unique linear transformation
∗T : (V2, g2) → (V1, g1), such that for all x ∈ V1 and y ∈ V2

g1(x, ∗Ty) = g2(Tx, y).

The adjoint linear transformation enables us to define an inner product
〈 , 〉 in the space L(V1; V2) of linear transformations from V1 to V2 by

〈T, S〉 = trace ∗T ◦ S.

Note that if {x1, . . . , xn1} is an orthonormal basis for (V1, g1) then

〈T, S〉 =
n1∑

i=1

g2(Sxi, Txi).

Also, let ‖ ‖2 be the square norm on L(V1; V2) induced by 〈 , 〉, that is,

‖T‖2 = 〈T, T 〉.

Now let (M1, g1) and (M2, g2) be Riemannian manifolds of dimensions

n1 and n2 with Levi–Civita connections
1

∇ and
2

∇, respectively. Let f :
(M1, g1) → (M2, g2) be a map. We denote the set of vector fields on M1

by ΓTM1 and the set of vector fields along f by ΓfTM2. We also denote

the pullback of
2

∇ along f by
2

∇. Recall that the map

∇f∗ : ΓTM1 × ΓTM1 → ΓfTM2
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defined by

(∇f∗)(X, Y ) =
2

∇Xf∗Y − f∗
( 1

∇XY
)

is called the second fundamental form of f . The trace τ(f) of ∇f∗ is called
the tension field of f . That is,

τ(f) = trace∇f∗ =
n1∑

i=1

(∇f∗)(Xi, Xi),

where {X1, . . . , Xn1} is a local orthonormal frame for TM1. If τ(f) = 0
then f is called harmonic.

Let f : (M1, g1) → (M2, g2) be a map between Riemannian mani-
folds (M1, g1) and (M2, g2). For a given Z ∈ ΓfTM2, define a bundle
homomorphism

∗f∗
2

∇Z : TM1 → TM1

by (
∗f∗

2

∇Z
)
x = ∗f∗p1

2

∇xZ,

where x ∈ Tp1M1 and ∗f∗p1
is the adjoint of f∗p1

.

Definition 2.1. Let f : (M1, g1) → (M2, g2) be a map between Rie-
mannian manifolds (M1, g1) and (M2, g2). Then the divergence of Z ∈
ΓfTM2 is defined by

div Z = trace ∗f∗
2

∇Z.

Note that if {X1, . . . , Xn1} is a local orthonormal frame for TM1, then

div Z = trace ∗f∗
2

∇Z =
n1∑

i=1

g1

((
∗f∗

2

∇Z
)
Xi, Xi

)
=

n1∑

i=1

g2

( 2

∇XiZ, f∗Xi

)
.

A motivation for the definition of the divergence of a vector field
along a map may be found in [2]. Also in [2], a generalization of the
divergence theorem to vector fields along a map was obtained. Since this
generalization is not well-known and plays a crucial role in the proof of
the main theorem of this paper, we give this theorem with its proof here.
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Theorem 2.2 (The Generalized Divergence Theorem). Let (M1, g1)
be an oriented Riemannian manifold with boundary ∂M1 (possibly
∂M1 = ∅) and Riemannian volume form µ1, and let (M2, g2) be a Rie-
mannian manifold. Let f : (M1, g1) → (M2, g2) be a map and Z ∈ ΓfTM2

with compact support. Then
∫

M1

(div Z)µ1 +
∫

M1

g2(Z, τ(f))µ1 =
∫

∂M1

g2(Z, f∗N1)µ1∂M1
,

where N1 is the unit outward normal vector field to ∂M1 and µ1∂M1
is the

induced Riemannian volume on ∂M1.

Proof. Let ∗f∗Z be a vector field on M1 defined by

(∗f∗Z)(p1) = ∗f∗p1
Z(p1)

at each p1 ∈ M1, where ∗f∗p1
is the adjoint of f∗p1

. Now, if {X1, . . . , Xn1}
is an adapted moving frame for TM1 near p1, that is, {X1, . . . , Xn1} is a

local orthonormal frame for TM1 with (
1

∇Xi)(p1) = 0 for i = 1, 2, . . . , n1

(cf. [4], pp. 151–152), then we have at p1,

div ∗f∗Z =
n1∑

i=1

g1

( 1

∇Xi(
∗f∗Z), Xi

)

=
n1∑

i=1

Xig1(∗f∗Z, Xi) =
n1∑

i=1

Xig2(Z, f∗Xi)

=
n1∑

i=1

g2

( 2

∇XiZ, f∗Xi

)
+

n1∑

i=1

g2

(
Z,

2

∇Xif∗Xi

)

=
n1∑

i=1

g2

( 2

∇XiZ, f∗Xi

)
+

n1∑

i=1

g2(Z, (∇f∗)(Xi, Xi))

= div Z + g2(Z, τ(f)).

Thus
div ∗f∗Z = div Z + g2(Z, τ(f)).

Now, by applying the usual divergence theorem to ∗f∗Z, we obtain
∫

M1

(div ∗f∗Z)µ1 =
∫

∂M1

g1(∗f∗Z,N1)µ1∂M1
=

∫

∂M1

g2(Z, f∗N1)µ1∂M1
.
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Hence it follows that
∫

M1

(div Z)µ1 +
∫

M1

g2(Z, τ(f))µ1 =
∫

∂M1

g2(Z, f∗N1)µ1∂M1
. ¤

Note that if (M1, g1) = (M2, g2) and f = id, then the generalized di-
vergence theorem reduces to the usual divergence theorem.

Let f : (M1, g1) → (M2, g2) be a map between Riemannian manifolds
(M1, g1) and (M2, g2), and let Z ∈ ΓfTM2. Recall that the map

∇
2

∇Z : ΓTM1 × ΓTM1 → ΓfTM2

defined by (
∇

2

∇Z
)
(X, Y ) =

2

∇X

2

∇Y Z −
2

∇ 1
∇XY

Z

is called the second covariant differential of Z.

Definition 2.3. Let f : (M1, g1) → (M2, g2) be a map between Rie-
mannian manifolds (M1, g1) and (M2, g2). Then the Laplacian of Z ∈
ΓfTM2 is defined by

∆Z = trace∇
2

∇Z.

Note that, if {X1, . . . , Xn1} is a local orthonormal frame for TM1,
then

∆Z = trace∇
2

∇Z =
n1∑

i=1

(
∇

2

∇Z
)
(Xi, Xi).

Lemma 2.4. Let f : (M1, g1) → (M2, g2) be a map between Riemann-

ian manifolds (M1, g1) and (M2, g2). If Z ∈ ΓfTM2 then

−1
2

1

∆g2(Z, Z) = g2(∆Z,Z) +
∥∥∥

2

∇Z
∥∥∥

2

,

where
1

∆ is the Laplacian on (M1, g1).

Proof (Following [4], p. 158.). Let
1

∇g2(Z, Z) denote the gradient of
g2(Z,Z) on (M1, g1). First note that, for any X ∈ ΓTM1,

g1

( 1

∇g2(Z,Z), X
)

= Xg2(Z, Z) = 2g2

( 2

∇XZ,Z
)
.
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Now let {X1, . . . , Xn1} be an adapted moving frame for TM1 near p1∈M1.
Then at p1,

−1
2

1

∆g2(Z,Z) =
1
2

n1∑

i=1

g1

( 1

∇Xi

1

∇g2(Z, Z), Xi

)

=
1
2

n1∑

i=1

Xig1

( 1

∇g2(Z,Z), Xi

)
=

n1∑

i=1

Xig2

( 2

∇XiZ, Z
)

=
n1∑

i=1

g2

( 2

∇Xi

2

∇XiZ,Z
)

+
n1∑

i=1

g2

( 2

∇Xi
Z,

2

∇Xi
Z

)

= g2(∆Z,Z) +
∥∥∥

2

∇Z
∥∥∥

2

.

Thus

−1
2

1

∆g2(Z,Z) = g2(∆Z, Z)+
∥∥∥

2

∇Z
∥∥∥

2

. ¤

Theorem 2.5. Let (M1, g1) be an oriented compact Riemannian man-
ifold with Riemannian volume form µ1 and let (M2, g2) be a Riemannian
manifold. Let f : (M1, g1) → (M2, g2) be a map and Z ∈ ΓfTM2. If
∫

M1
g2(∆Z, Z)µ1 ≥ 0 then

2

∇Z = 0, that is, Z is parallel.

Proof. Since ∫

M1

( 1

∆g2(Z,Z)
)
µ1 = 0,

it follows from Lemma 2.4 that
∫

M1

g2(∆Z,Z)µ1 +
∫

M1

∥∥∥
2

∇Z
∥∥∥

2

µ1 = 0.

Hence, since
∫

M1
g2(∆Z,Z)µ1 ≥ 0, it follows that ‖

2

∇Z‖2 = 0, that is,
2

∇Z = 0. ¤
Let (M1, g1) be an oriented compact Riemannian manifold with Rie-

mannian volume form µ1 and let (M2, g2) be a Riemannian manifold. Let
f : (M1, g1) → (M2, g2) be a map. Considering ΓfTM2 as a real vector
space, introduce on ΓfTM2 the inner product

(Y, Z) =
∫

M1

g2(Y, Z)µ1,
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where Y, Z ∈ ΓfTM2. Then note that (ΓfTM2, ( , )) is an inner prod-
uct space and the Laplacian ∆ : ΓfTM2 → ΓfTM2 is a linear operator.
Furthermore we have the following properties of ∆ in (ΓfTM2, ( , )):

Theorem 2.6. Let (M1, g1) be an oriented compact Riemannian man-

ifold with Riemannian volume form µ1 and let (M2, g2) be a Riemannian

manifold. Let f : (M1, g1) → (M2, g2) be a map. Then the Laplacian

∆ : ΓfTM2 → ΓfTM2 is a self-adjoint, negative semi-definite operator

with respect to ( , ).

Proof (Following [3], p. 46.). Let Y,Z ∈ΓfTM2 and {X1, . . . , Xn1}
be an oriented adapted moving frame for TM1 near p1 ∈ M1. Then at p1,
we have

n1∑

i=1

Xig2

( 2

∇XiY, Z
)

=
n1∑

i=1

g2

( 2

∇Xi

2

∇XiY, Z
)

+
n1∑

i=1

g2

( 2

∇XiY,
2

∇XiZ
)

= g2(∆Y,Z)+
〈 2

∇Y,
2

∇Z
〉
.

If we now define on M1 a 1-form ω by setting

ω(X) = g2

( 2

∇XY,Z
)
,

then it is not difficult to show that the above equation tells us

d ∗ ω =
(
g2(∆Y, Z) +

〈 2

∇Y,
2

∇Z
〉)

µ1,

where ∗ is the Hodge star operator. Integrating by using Stokes’ theorem,
since ∂M1 = ∅, we get

∫

M1

g2(∆Y,Z)µ1 = −
∫

M1

〈 2

∇Y,
2

∇Z
〉
µ1.

Hence the result now follows immediately. ¤

3. Sufficient conditions for harmonicity

Let ∆k denote the k th power of the Laplacian ∆ : ΓfTM2 → ΓfTM2

and define ∆0 = id, that is, ∆0 = id and ∆k = ∆ · · ·∆ (k ≥ 1 times).
Now we are ready to state the main theorem of this paper.
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Theorem 3.1. Let (M1, g1) be an oriented compact Riemannian man-

ifold with Riemannian volume form µ1 and let(M2, g2) be a Riemannian

manifold. A map f : (M1, g1) → (M2, g2) is harmonic if it satisfies one of

the conditions below for some integer k ≥ 0.

a) (−1)k
∫

M1
(div ∆kτ(f))µ1 ≥ 0

b)
∫

M1
g2(∆k+1τ(f),∆kτ(f))µ1 ≥ 0.

We prove this theorem by induction. In the lemmas below, first we
show that Theorem 3.1 is true for k = 0, 1, 2, 3.

Throughout the lemmas, let f : (M1, g1) → (M2, g2) be a map between
Riemannian manifolds (M1, g1) and (M2, g2), where (M1, g1) is oriented
and compact with Riemannian volume form µ1.

Lemma 3.2. If
∫

M1
(div τ(f))µ1 ≥ 0 then f is harmonic.

Proof. Since ∂M1 = ∅, by Theorem 2.2,
∫

M1

(div τ(f))µ1 +
∫

M1

g2(τ(f), τ(f))µ1 = 0.

Hence by
∫

M1
(div τ(f))µ1 ≥ 0 it follows that g2(τ(f), τ(f)) = 0, that is,

τ(f) = 0 ¤
Lemma 3.3. If

∫
M1

g2(∆τ(f), τ(f))µ1 ≥ 0 then f is harmonic.

Proof. By Theorem 2.5,
2

∇τ(f) = 0. Thus div τ(f) = 0 and it follows
from Lemma 3.2 that f is harmonic. ¤

Lemma 3.4. If
∫

M1
(div ∆τ(f))µ1 ≤ 0 then f is harmonic.

Proof. Since ∂M1 = ∅, by Theorem 2.2,
∫

M1

(div ∆τ(f))µ1 +
∫

M1

g2(∆τ(f), τ(f))µ1 = 0.

Hence by
∫

M1
(div ∆τ(f))µ1 ≤ 0, we have

∫
M1

g2(∆τ(f), τ(f))µ1 ≥ 0 and
it follows from Lemma 3.3 that f is harmonic. ¤

Lemma 3.5. If
∫

M1
g2(∆2τ(f), ∆τ(f))µ1 ≥ 0 then f is harmonic.

Proof. By Theorem 2.5,
2

∇∆τ(f) = 0. Thus div ∆τ(f) = 0 and it
follows from Lemma 3.4 that f is harmonic. ¤
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Lemma 3.6. If
∫

M1
(div ∆2τ(f))µ1 ≥ 0 then f is harmonic.

Proof. Since ∂M1 = ∅, by Theorem 2.2,
∫

M1

(div ∆2τ(f))µ1 +
∫

M1

g2(∆2τ(f), τ(f))µ1 = 0.

But by Theorem 2.6,
∫

M1

g2(∆2τ(f), τ(f))µ1 =
∫

M1

g2(∆τ(f),∆τ(f))µ1.

Hence by
∫

M1
(div ∆2τ(f))µ1 ≥ 0, it follows that g2(∆τ(f),∆τ(f)) = 0,

that is, ∆τ(f) = 0. Thus either of Lemmas 3.4 or 3.5 implies that f is
harmonic. ¤

Lemma 3.7. If
∫

M1
g2(∆3τ(f), ∆2τ(f))µ1 ≥ 0 then f is harmonic.

Proof. By Theorem 2.5,
2

∇∆2τ(f) = 0. Thus div ∆2τ(f) = 0 and it
follows from Lemma 3.6 that f is harmonic. ¤

Lemma 3.8. If
∫

M1
(div ∆3τ(f))µ1 ≤ 0 then f is harmonic.

Proof. Since ∂M1 = ∅, by Theorem 2.2,
∫

M1

(div ∆3τ(f))µ1 +
∫

M1

g2(∆3τ(f), τ(f))µ1 = 0.

But by Theorem 2.6,
∫

M1

g2(∆3τ(f), τ(f))µ1 =
∫

M1

g2(∆2τ(f), ∆τ(f))µ1.

Hence by
∫

M1
(div ∆3τ(f))µ1 ≤ 0, we have

∫
M1

g2(∆2τ(f),∆τ(f)) ≥ 0,
and it follows from Lemma 3.5 that f is harmonic. ¤

Lemma 3.9. If
∫

M1
g2(∆4τ(f), ∆3τ(f))µ1 ≥ 0 then f is harmonic.

Proof. By Theorem 2.5,
2

∇∆3τ(f) = 0. Thus div ∆3τ(f) = 0 and it
follows from Lemma 3.8 that f is harmonic. ¤
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Proof of Theorem 3.1. The above lemmas show that Theorem 3.1
is true for k = 0, 1, 2, 3. Now suppose the theorem is true for k =
0, 1, 2, 3, . . . , 2m, 2m + 1, where m ≥ 1. We show that the theorem is
true for k = 2m + 2 and k = 2m + 3.

Let
∫

M1
(div ∆2m+2τ(f))µ1 ≥ 0. Then, since ∂M1 = ∅, by Theo-

rem 2.2,
∫

M1

(div ∆2m+2τ(f))µ1 +
∫

M1

g2(∆2m+2τ(f), τ(f))µ1 = 0.

But by Theorem 2.6,
∫

M1

g2(∆2m+2τ(f), τ(f))µ1 =
∫

M1

g2(∆m+1τ(f), ∆m+1τ(f))µ1.

Hence by
∫

M1
(∆2m+2τ(f))µ1 ≥ 0, it follows that g2(∆m+1τ(f), ∆m+1

τ(f)) = 0, that is, ∆m+1τ(f) = 0. Thus, by the induction hypothesis,
either of (a) or (b) implies that f is harmonic.

Now let
∫

M1
g2(∆2m+3τ(f), ∆2m+2τ(f))µ1 ≥ 0. Then by Theorem 2.5,

2

∇∆2m+2τ(f) = 0. Thus div ∆2m+2τ(f) = 0 and it follows from the above
case that f is harmonic. Consequently we showed that the theorem is true
for k = 2m + 2. Now we show that the Theorem is true for k = 2m + 3.

Let
∫

M1
(div ∆2m+3τ(f))µ1 ≤ 0. Then, since ∂M1 = ∅, by Theo-

rem 2.2,
∫

M1

(div ∆2m+3τ(f))µ1 +
∫

M1

g2(∆2m+3τ(f), τ(f))µ1 = 0.

But by Theorem 2.6,
∫

M1

g2(∆2m+3τ(f), τ(f))µ1 =
∫

M1

g2(∆m+2τ(f), ∆m+1τ(f))µ1.

Hence by
∫

M1
(div ∆2m+3τ(f))µ1 ≤ 0, we have

∫
M1

g2(∆m+2τ(f),∆m+1τ

(f))µ1 ≥ 0, and it follows by the induction hypothesis that (b) implies f

is harmonic.
Now let

∫
M1

g2(∆2m+4τ(f), ∆2m+3τ(f))µ1 ≥ 0. Then, by Theo-

rem 2.5,
2

∇∆2m+3τ(f) = 0. Thus div ∆2m+3τ(f) = 0 and it follows from
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the above case that f is harmonic. This completes the proof of the theo-
rem. ¤

Finally we make an application of Theorem 3.1 to closed geodesics on
Riemannian manifolds. Let (M1, g1) = (S1, dθ2), where θ is the polar coor-
dinate on S1, and orient S1 by

[
∂
∂θ

]
. Then note that dθ is the Riemannian

volume form of (S1, dθ2). Also, let (M2, g2) = (M, g) be a Riemannian
manifold with Levi–Civita connection ∇. Let γ : (S1, dθ2) → (M, g) be a
(curve) map. Define the velocity vector field of γ by γ̇ = γ∗ ∂

∂θ . Now, if
we set ∇k

∂
∂θ

= ∇ ∂
∂θ
· · · ∇ ∂

∂θ
(k ≥ 1 times), then it can be easily seen that

τ(γ) = ∇ ∂
∂θ

γ̇, div ∆kτ(γ) = g(∇2k+2
∂

∂θ

γ̇, γ̇) and g(∆k+1τ(γ),∆kτ(γ)) =

g(∇2k+3
∂

∂θ

γ̇,∇2k+1
∂

∂θ

γ̇), where k ≥ 0. Thus by Theorem 3.1, if either

(−1)k+1

∫ 2π

0

g(∇2k
∂

∂θ
γ̇, γ̇)dθ ≥ 0 or

∫ 2π

0

g(∇2k+1
∂

∂θ

γ̇,∇2k−1
∂

∂θ

γ̇)dθ ≥ 0

for some integer k ≥ 1, then γ is harmonic and hence a geodesic of (M, g),
that is ∇ ∂

∂θ
γ̇ = 0.

Remark 3.10. It is easy to observe that Theorem 3.1 remains valid if
(M1, g1) is not orientable. In this case, by passing to the Riemannian ori-
entation covering (M̃1, g̃1) of (M1, g1), since the Riemannian covering map
χ : (M̃1, g̃1) → (M1, g1) is a local isometry, the integral inequalities in the
statement of Theorem 3.1 hold on (M1, g1) if and only if the corresponding
integral inequalities hold on (M̃1, g̃1) for the lift of f to (M̃1, g̃1), that is
f ◦χ. (In fact the mentioned integrals on (M̃1, g̃1) are the twice of the cor-
responding ones on (M1, g1).) Thus the same conclusion of Theorem 3.1
follows from the fact that f ◦ χ is harmonic if and only if f is harmonic,
since χ is a local isometry. (See [1], p. 15.)

Remark 3.11. Note that if f : (M1, g1) → (M2, g2) is a map between
Riemannian manifolds (M1, g1) and (M2, g2), where (M1, g1) is compact,
then the vanishing kth covariant differential of τ(f) implies either (a) or
(b) of Theorem 3.1. In fact, the vanishing odd powers of the covariant
differential of τ(f) implies (a) of Theorem 3.1 and the vanishing even
powers of the covariant differential of τ(f) implies (b) of Theorem 3.1.
Hence this also proves the claim in ([1], p. 9) mentioned in the Introduction.
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