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§1. Introduction

The main purpose of this paper is to describe the structure of the
sets of solutions of systems of decomposable form equations over finitely
generated domains over Z. Such a system of equations can be written in
the form

(1.1) Fi(x1, . . . , xm) = βi in x1, . . . , xm ∈ R, i = 1, . . . , k,

or, more generally, 1)

(1.2) Fi(x1, . . . , xm) ∈ βiR
∗ in x1, . . . , xm ∈ R, i = 1, . . . , k,

where R is a finitely generated extension ring of Z in a finitely generated
extension field K of Q, the βi are elements of K∗ and the Fi are decom-
posable forms with coefficients in K (i.e. homogeneous polynomials which
factorize into linear factors over some finite extension of K). In (1.2), two
solutions are identified if they differ only by a proportional factor from
R∗. Decomposable form equations (case k = 1) and systems of decom-
posable form equations are of fundamental importance in the theory of
diophantine equations. Many problems in number theory can be reduced
to equations or systems of equations of this type. Norm form equations
form an important class of decomposable form equations. In the case that
K = Q, R = Z, k = 1 and F1 is a norm form, Schmidt [29] proved that

1)For any integral domain R, R∗ will denote the unit group of R. If in particular K is
a field, then K∗ = K \ {0}.
Research supported in part by Grant 1641 from the Hungarian National Foundation for
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all solutions of (1.1) belong to finitely many families of solutions. This
was extended by Schlickewei [25] to the case of arbitrary finitely gen-
erated subrings R of Q. Later, Laurent [18] generalized these results to
norm form equations over finitely generated extension rings R of Z (general
case), with a slightly weaker notion of family of solutions.

In our paper, we define families of solutions for systems of equa-
tions (1.1) and (1.2) and generalize the results of Schmidt, Schlick-
ewei and Laurent for arbitrary systems of decomposable form equations
over finitely generated domains over Z. We prove that the set of solu-
tions of (1.1) (resp. of (1.2)) is the union of finitely many families of solu-
tions. Moreover, we derive upper bounds for the numbers of these families
of solutions which are independent of the coefficients of the decompos-
able forms involved (cf. Theorems 1,2 in § 3). In fact, we consider more
general systems of decomposable form equations (cf. §§ 2 and 3). As a
consequence, we get (cf. Corollaries 1 and 1’) a general and quantitative
finiteness criterion for (1.2) to have only finitely many solutions for ev-
ery finitely generated subring R of K and every βi in K∗. This implies
some earlier results of Evertse and Győry [6] and Evertse, Gaál and
Győry [10] on decomposable form equations.

More precise and explicit versions of Theorem 1 are established (cf.
Theorems 4, 4’ in § 4) in the special case when K is an algebraic num-
ber field and R is the ring of S-integers of K (number field case). As a
consequence, an explicit upper bound is given for the number of solutions,
provided that this number is finite (cf. Corollary 2). Further, a quantita-
tive finiteness criterion is established in the case when the ground ring is
fixed, and only the constant terms βi vary.

In § 5, our results are specialized to norm form equations. We obtain
as a consequence quantitative versions (cf. Theorems 6 and 7) of the above
mentioned finiteness results of Schmidt, Schlickewei and Laurent on
families of solutions. As a further consequence, we establish in the number
field case some finiteness criteria and, under the finiteness condition, we
derive explicit upper bounds for the numbers of solutions (cf. Theorem 8
and Corollary 4). These are quantitative generalizations for the number
field case of well-known qualitative finiteness results of Schmidt [28]
and Schlickewei [25] concerning the numbers of solutions of norm form
equations. It should be remarked that in the case K = Q, R = Z, Schmidt
[32] has recently obtained a better bound for the number of solutions of
norm form equations in terms of certain parameters.

In § 6, some applications are presented to generalized systems of unit
equations and, in the number field case, an explicit version of a finiteness
result of Laurent [18] is established (cf. Theorem 9).

In the general case, our proofs involve a general finiteness result of
Evertse and Győry [8] on unit equations whose proof depends among
other things on Schlickewei’s p-adic generalization [24] of Schmidt’s
subspace theorem [30].Consequently, all results in this paper are ineffective.
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It is a consequence of the non-explicit character of the utilized result of [8]
that, in the general case, we are not able to make explicit our upper bounds
in terms of each parameter. Over number fields, for the case of S-unit
equations, the result in question of [8] has recently been made explicit by
Schlickewei [26] by means of his p-adic generalization [27] of Schmidt’s
recent quantitative subspace theorem [31]. This explicit version enables us
to make explicit all our bounds in the number field case.

Schmidt [29] and Schlickewei [25] deduced their finiteness results
on the families of solutions of norm form equations from their subspace
theorems. In [6], we gave with Evertse another proof for these theorems
by using qualitative finiteness results (cf. [21], [4]) on the number of non-
degenerate solutions (cf. § 6) of unit equations. Further, we pointed out
that our general finiteness criteria obtained in [6] for decomposable form
equations are in fact equivalent with these finiteness results concerning unit
equations. The results of the present paper illustrate that there is also a
close connection between the structure of the sets of solutions of systems of
decomposable form equations and that of systems (or generalized systems)
of unit equations. Apart from the form of the bounds, our Theorems 4 and
4’ concerning systems of decomposable form equations and our Theorem
9 concerning generalized systems of unit equations are in fact equivalent.

Obviously, the main results of our paper can also be applied to other
classes of decomposable form equations, for example to Thue equations,
discriminant form equations and index form equations. We shall not, how-
ever, deal with these applications because effective results and better up-
per bounds are known for these equations (see e.g. [12], [13], [7] and the
references given there).

Finally, we remark that, in the number field case, some qualitative
finiteness results on families of solutions of decomposable form equations
have been established independently by Evertse (private communica-
tion).

§2. Notation, terminology and preliminary remarks

For certain applications, it will be convenient to consider decompos-
able forms and systems of decomposable form equations in a more general
context. Let K be a finitely generated extension field of Q, and V a finite
dimensional K-vector space. A decomposable form on V over K is a func-
tion F : V → K for which there are a field extension G/K and K-linear
functions `1, . . . , `f : V → G such that

(2.1) F (x) = `1(x) · · · `f (x) for all x ∈ V.

Then we say that F factorizes into linear factors over G and that F is of
degree f . The degree is uniquely determined. F is called reducible over K
if it is the product of two decomposable forms on V of lower degree over K
and irreducible otherwise. The rank of F is defined as the dimension of the
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G-vector space of K-linear functions generated by {`1, . . . , `f}. The rank
is independent of the choice of `1, . . . , `f and G and is at most dimK V .
The form F is called of maximal rank over K if rankF = dimK V . If
in particular V = Kn for some n ≥ 2 and e1 = (1, 0, . . . , 0)T , . . . , en =
(0, . . . , 0, 1)T is the standard basis of Kn, we identify F (x) on Kn with
the homogeneous polynomial

F (X) = F (X1e1 + · · ·+ Xnen) ∈ K[X1, . . . , Xn].

This polynomial is also called a decomposable form. For these definitions
and further general facts about decomposable forms, we refer to [9].

Let R be a subring of K with 1 which is finitely generated over Z
and which has K as its quotient field. By a theorem of Nagata [19], the
integral closure of R in K is also finitely generated over Z. Hence, for later
convenience, we asssume that R itself is already integrally closed in K. As
is known (see e.g. [17]), R∗ is finitely generated. Let M be an R-lattice,
i.e. a finitely generated R-submodule of some K-vektor space. Put KM :=
{λx : λ ∈ K, x ∈ M} and assume that n := dimK KM ≥ 2. Consider
k ≥ 1 decomposable forms F1, . . . , Fk on KM over K with respective
degrees f1, . . . , fk which factorize into linear factors over G. The product
F1 . . . Fk is also a decomposable form on KM over K. We assume that it
is of maximal rank over K. Further, we may assume that G is the splitting
field of F1, . . . , Fk, i.e. the smallest extension of K over which F1, . . . , Fk
factorize into linear factors. Let β1, . . . , βk be non-zero elements of R. We
shall deal with the system of decomposable form equations

(2.2) Fi(x) ∈ βiR
∗ in x ∈ M, i = 1, . . . , k.

This is obviously a generalization of (1.2).
Denote by Gal(G/K) the Galois group of G/K. The form F1 · · ·Fk

can be factorized as

(2.3) F1(x) · · ·Fk(x) = α

f∏

j=1

`j(x) for all x ∈ KM,

where α ∈ K∗ and `1, . . . , `f : KM → G are linear functions with the
following properties: `i = `j if `i and `j are linearly dependent over G and

(2.4) σ(`j) = `σ(j) for j = 1, . . . , f and for all σ ∈ Gal(G/K),

where {σ(1), . . . , σ(f)} is a permutation of {1, . . . , f}. Moreover, putting
J = {1, . . . , f}, there is a partition {J1, . . . ,Jk} of J such that for i =
1, . . . , k, there exists an αi ∈ K∗ for which

(2.5) Fi(x) = αi

∏

j∈Ji

`j(x) for x ∈ KM, σ(Ji) = Ji for σ ∈ Gal(G/K).

Partition J into Gal(G/K)-orbits C1, . . . , Cv sucht that j1 and j2 belong
to the same orbit if and only if `j2 = σ(`j1) for some σ ∈ Gal(G/K). For
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given w with 1 ≤ w ≤ v, `j occurs with the same multiplicity, say ew, in
(2.3) for each j ∈ Cw. For k = 1, v = 1, and e1 = 1, F1(x) is in fact a
norm form on KM over K, and (2.2) is a system of norm form equations.

We introduce now the concept of family of solutions. Denote by M
the set of tuples λλλ = (λ1, . . . , λf ) ∈ Gf for which

(2.6)

{
λj = λj′ if `j = `j′ , j, j′ ∈ J and σ(λj) = λσ(j)

for all j ∈ J and σ ∈ Gal(G/K),

where {σ(1), . . . , σ(f)} is the same permutation of {1, . . . , f} as in (2.4)
and (2.5). Defining the product of λλλ ∈ M and µµµ ∈ M coordinatewise,
M becomes a K-subalgebra of Gf . It is easy to see that dimK M = r,
where r denotes the maximal number of pairwise linearly independent
linear functions in {`j}j∈J . The element 1 = (1, . . . , 1) of M is the unit
element of M. We denote by M∗ the multiplicative group of invertible
elements of M. For i = 1, . . . , k, we define Ni(λλλ) as the product of all
coordinates λj of λλλ ∈ M with j ∈ Ji. It is clear that Ni( ) is multiplicative
and that Ni(λλλ) ∈ K for all λλλ ∈ M, i = 1, . . . , k. The linear mapping

(2.7) Ψ : KM → Gf : x 7→ (`1(x), . . . , `f (x))

is injective because F1 · · ·Fk is of maximal rank. In view of (2.4) and (2.6),
Ψ(KM) is contained in M. Further, M := Ψ(M) is an R-lattice in M,
and Ψ induces an isomorphism between M and M (as well as between
KM and KM). We say that M is full in M if KM = M.

It will be more convenient to consider the system of equations (2.2)
in the form

(2.2’) αiNi(µµµ) ∈ βiR
∗ in µµµ ∈M, i = 1, . . . , k.

(2.7) establishes a one-to-one correspondence between the solutions x of
(2.2) and the solutions µµµ of (2.2’). If in particular k = 1, v = 1 and e1 = 1
then (omitting everywhere the subscripts), (2.2’) reduces to the norm form
equation

(2.2”) αNM/K(µ) ∈ βR∗ in µ ∈M
where M denotes now the R-module {`(x) : x ∈ M} and M is a suitable
subfield of G containing K and KM.

A partition I ={A1, . . . , Ah} of J (into non-empty subsets A1, . . . , Ah)
will be called symmetric with respect to Gal(G/K) or simply sysmmetric
if

(2.8)





j, j′ ∈ J belong to the same subset if `j = `j′ in (2.3)
and σ(A1), . . . , σ(Ah) is a permutation of A1, . . . , Ah

for each σ ∈ Gal(G/K).
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For a symmetric partition I = {A1, . . . , Ah} of J , we denote by L =
L(I) the subset of M consisting of all elements λλλ of M for which λj =
λj′ whenever j and j′ belong to the same subset in the partition I of
J . Partition now J into Gal(G/K)-orbits such that the elements of the
subsets A` and Am of the partition I belong to the same orbit if and only
if σ(A`) = Am for some σ ∈ Gal(G/K). Pick a full set of representatives,
say {j1, . . . , jb}, of these orbits. Then it is easy to see that for given a with
1 ≤ a ≤ b, the coordinates λja

in λλλ ∈ L form a subfield Lja
of G containing

K, that L is a K-subalgebra of M with unit element 1 and that

(2.9) L = L(I) is isomorphic to the K-algebra Lj1 ⊕ · · · ⊕ Ljb
,

(where the fields Lj1 , . . . , Ljb
are not necessarily distinct). We note that

for k = 1 and v = 1 we have b = 1 in (2.9). If in particular I = {J }, then
b = 1, Lj1 = K and the corresponding subalgebra L(J ) is denoted by K.
Sometimes we shall identify K by K. Further, if I0 denotes that partition
of J for which j, j′ ∈ J belong to the same subset if and only if `j = `j′

in (2.3), then M = L(I0). Finally, it is not difficult to show that for any
K-subalgebra L of M with 1 there is a symmetric partition I of J such
that L = L(I). Consequently, the K-subalgebras L = L(I) of M under
consideration are precisely the subalgebras L of M containing K.

Let L be a subalgebra of M containing 1; then L = L(I) with a
symmetric partition I of J . Let RL denote the set of those elements
λλλ = (λj) of L for which all coordinates λj are integral over R. It is easy
to see that RL is a subring of L with unit element 1. Further, for the unit
group R∗L of RL, we get by (2.9) that

(2.10) R∗L is isomorphic to R∗LJ1
× · · · ×R∗Ljb

,

where R∗Lja
denotes the unit group of the subring of Lja consisting of all

integral elements of Lja over R. The group R∗Lja
is finitely generated for

each a (cf. [19], [17]) hence, by (2.10), R∗L is also finitely generated.
For every solution µµµ′ of (2.2’) and every subalgebra L of M containing

1 for which µµµ′L ⊆ KM, all elements of (µµµ′R∗L)∩M are solutions of (2.2’).
Such a subset of solutions (µµµ′R∗L)∩M of (2.2’) is called an (M,L)-family
of solutions in a wider sense or simply a wide (M,L)-family of solutions2).

To state our results in a quantitative form, we need some further no-
tation and assumptions. Let m be the minimal cardinality of the sets of
generators of M. A set of generators of minimal cardinality is called min-
imal. We assume that the decomposable forms F1, . . . , Fk are integral on
M, i.e. that for some set of generators {a1, . . . ,am} of M, the polynomial
Fi(

∑m
j=1 Xjaj) has its coefficients in R for i = 1, . . . , k. This notion of

2)Later, we shall also define families of solutions in a restricted sense.
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integrality is independent of the choice of a1, . . . , am. In what follows, we
fix a minimal set of generators {a1, . . . ,am} of M. We denote by mi the
number of those variables in the polynomial Fi(

∑m
j=1 Xjaj) which have

non-zero coefficients, i = 1, . . . , k. It is clear that mi ≤ m for i = 1, . . . , k.
By the assumption made on R, there exists a divisor theory for R. For

a non-zero element α ∈ R and for a positive integer q, we denote by τq(α)
the number of factorizations of the principal divisor (α) into q integral
divisors in R, and by ω(α) the number of distinct prime divisors of (α).
Denote by RG the integral closure of R in G. Then both RG and R∗G are
finitely generated (cf. [17], [19]). For all x ∈ M, there is at least one tuple
(x1, . . . , xm) ∈ Rm for which

(2.11) x = x1a1 + · · ·+ xmam

holds. A solution x ∈ M of (2.2) is called primitive (with respect to
{a1, . . . ,am}) if x has a representation of the form (2.11) such that the
divisors (x1), . . . , (xm) are relatively prime in R.

For i = 1, . . . , k, ti (resp. ri) denotes the maximal number of (pairwise)
linearly independent linear functions in {`j}j∈Ji , qi := min{mi−1, ti} and
ui is the maximum of the degrees of the irreducible factors of Fi over K.
We note that r ≤ r1 + · · · + rk. Throughout this paper, Ck and C∗k will
denote the following expressions:

(2.12) Ck =
k∏

i=1

(
ri
qi

)ω(βi)

τqi+1(βui
i )

and

(2.13) C∗k =
k∏

i=1

(
ri
qi

)ω(βi)

τqi(β
ui
i ).

For any finitely generated multiplicative subgroup Γ of G∗ and for
any integer p ≥ 2, there is a number B(p,Γ) with the following property:
if α1, . . . , αi ∈ G∗ with 2 ≤ i ≤ p, then the solutions of the equation

(2.14) α1x1 + · · ·+ αixi = 1 in x1, . . . , xi ∈ Γ

are contained in the union of at most B(p, Γ) (i − 1)-dimensional linear
subspaces of Ki. The existence of such a bound B(p,Γ) was proved by
Evertse and Győry [8]. Equations of the form (2.14) are called unit
equations.

§3. Results for systems of decomposable
form equations in the general case

In this section, we keep the notation and assumptions made in § 2.
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Theorem 1. The set of solutions of (2.2’) is the union of at most

(3.1) Ck

n∏

i=2

B(i, R∗G)

wide families of solutions. Further, if M is full in M then the set of
solutions of (2,2’) is contained in the union of at most Ck wide (M,M)-
families of solutions.

Let U be an arbitrary subgroup of R∗, and consieder the generalization

(3.2) αiNi(µµµ) ∈ βiU in µµµ ∈M, i = 1, . . . , k

of (2.2’). For any subalgebra L of M containing 1, denote by UL the
subgroup of R∗L consisting of all elements λλλ with Ni(λλλ) ∈ U for i = 1, . . . , k.
Then UL is also finitely generated. Further, for every solution µµµ of (3.2)
with µµµL ⊆ KM, all elements of (µµµUL) ∩M are also solutions of (3.2).
Such a set of solutions is called a wide (M,L)-family of solutions of (3.2).

From Theorem 1, it is easy to deduce a similar result for (3.2). Indeed,
by Theorem 1, all solutions of (3.2) are contained in the union of finitely
many sets of the form µµµR∗L ∩M where µµµ is a solution of (2.2’) and L is a
subalgebra of M with 1 and with µµµL ⊆ KM. But if µµµR∗L has an element
which satisfies (3.2) then we may assume that µµµ itself is such an element.
Hence all elements of µµµR∗L satifsfying (3.2) belong to µµµUL. This implies
the following.

Theorem 2. The set of solutions of (3.2) is the union of finitely many
wide families of solutions of (3.2). Further, the number of these families
of solutions is bounded above by (3.1) in general, and by Ck if M is full
in M.

For U = R∗, Theorem 2 gives Theorem 1 and hence Theorems 1 and 2
are equivalent. Another interesting special case is when U = {1}. Denote
by EL the subgroup of R∗L consisting of elements λλλ with Ni(λλλ) = 1 for
i = 1, . . . , k. Then, by Theorem 2, the set of solutions of the system of
equations

(3.3) αiNi(µµµ) = βi in µµµ ∈M, i = 1, . . . , k,

is the union of finitely many sets of the form (µµµEL) ∩ M where µµµ is a
solution of (3.3) with µµµL ⊆ KM. Further, Theorem 2 furnishes an upper
bound for the number of these sets.

We shall say that M is degenerate ( resp. non-degenerate) if there ex-
ists (no) a subalgebra L of M with 1, different from K = K(J ), such that
νννL ⊂ KM for some ννν ∈ M∗. If M is non-degenerate then, by Theorem 1,
all solutions of (2.2’) are contained in the union of at most CkΠn

i=2B(i, R∗G)
sets of the form µµµR∗K. Since, by assumption, R is integrally closed, we may
take µµµR∗ instead of µµµR∗K. A set of solutions of the form µµµR∗ is called an
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R∗-coset of solutions of (2.2’). Hence Theorem 1 implies the implication
(i) =⇒ (ii) in Corollary 1 below. The implication (ii) =⇒ (i) follows from
Theorem 4 of [6] and Lemma 8 of the present paper.

Corollary 1. The following two statements are equivalent.
(i) M is non-degenerate;
(ii) For every (β1, . . . , βk) ∈ (K∗)k and every integrally closed subring

R of K with 1 which has K as its quotient field and which is finitely
generated over Z, the system of equations (2.2’) has only finitely many
R∗-cosets of solutions.

Moreover, if (i) holds then under the notation and assumptions made in §
2 on M and β1, . . . , βk, the number of R∗-cosets of solutions is bounded
above by the number occurring in (3.1) of Theorem 1.

In order to compare Corollary 1 with earlier finiteness criteria con-
cerning decomposable form equations, we now reformulate the finiteness
condition (i) for the system of equations (2.2). If x is a solution of (2.2)
then xR∗ is called an R∗-coset of solutions of (2.2). If in particular x is
a primitive solution then every element of xR∗ is also a primitive solu-
tion. We recall that `1, . . . , `f are the linear functions in the factorization
(2.3) of F1 . . . Fk over G. Denote by L the collection of linear functions
{`1, . . . , `f}. A non-zero subspace H of KM is called L-admissible (or
simply admissible) if no linear function in L vanishes identically on H.
Further, an L-admissible subspace H of KM is called L-non-degenerate
or L-degenerate (or simply non-degenerate or degenerate) according as L
does or does not contain a subset of at least three linear functions which
are linearly dependent on H, but pairwise linearly independent on H. In
particular, H is degenerate if H has dimension 1. We shall show in §7
(cf. Lemma 8) that M is non-degenerate if and only if every admissible
subspace of KM of dimension ≥ 2 is non-degenerate. Hence, for k = 1 and
KM = Kn, our Corollary 1 implies Theorem 1 of [6] and (the case L = ∅
of ) Corollary 1 of [10]. Further, under the above assumptions concerning
F1, . . . , Fk and β1, . . . , βk, we have

Corollary 1’. Suppose that every admissible subspace of KM of di-
mension ≥ 2 is non-degenerate. Then the number of R∗-cosets of solutions
of (2.2) is bounded above by the number occurring in (3.1) of Theorem 1.
Further, the number of R∗-cosets of primitive solutions is at most

C∗k

n∏

i=2

B(i, R∗G).

In certain important special cases, Theorems 1 and 2 can be made
more precise. Let L be a subalgebra of M with 1 and denote by ML the
set of elements µµµ ∈M such that λλλ ·µµµ ∈ KM for every λλλ ∈ L. It is easy to
see that in this case even λλλ ·µµµ ∈ KML holds. Further, it is not difficult to
show that ML is an R-sublattice of M and MK = M. If M is full in M



74 K. Győry

then MM = M. Suppose now that µµµ ·L ⊆ KM for some subalgebra L of
M with 1 and some solution µµµ of (3.2). Then µµµ ∈ML and hence we have
ML∩M∗ 6= 0. We shall say that a subalgebra L of M with 1 is admissible
with respect to M or simply admissible if ML ∩M∗ 6= 0 and if there is
no subalgebra L′ with 1 in M such that L $ L′ and KML′ = KML. If
M is full then M is admissible. Denote by DL

M the set of those λλλ ∈ L
for which λλλ · µµµ ∈ ML for all µµµ ∈ ML. Then DL

M is a subring of RL with
1 and KDL

M = L. Further, DL
M contains R as a subring (identifying the

elements a of R with (a, . . . , a)). DL
M is called the ring of coefficients of

ML. Denote by DL∗
M the unit group of DL

M, and put

U ′
L = UL ∩ DL∗

M .

Consider a full set of representatives (εεεj)j∈I of UL modulo U ′
L. It is easy

to see that the wide family of solutions (µµµUL) ∩ M of (3.2) splits into
disjoint subsets of the form (µµµεεεj)U ′

L where j runs over the set of indices
sucht that µµµ · εεεj ∈ ML. If µµµ′ ∈ ML is a solution of (3.2) then so are all
elements of µµµ′ · U ′

L. Such a set is called a family of solutions of (3.2), or
more precisely an (M,L)-family of solutions. If in particular U = R, then
U ′

L = DL∗
M . Hence, if µµµ ∈ ML is a solution of (2.2’) then µµµDL∗

M is called a
family of solutions of (2.2’).

From Theorem 2 it follows the following
Theorem 3. Suppose that

(FN) for all admissible subalgebras L of M, U ′
L is of finite index in UL.

Then the set of solutions of (3.2) is the union of at most
∑
L

[UL : U ′
L]

families of solutions, where the sum is taken over at most CkΠn
i=2B(i, R∗G)

admissible subalgebras L of M for which (3.2) has an (M,L)-family of
solutions (and among which there can be identical subalgebras L). Further,
if M is full in M then the set of solutions of (3.2) is the union of at most
[UM : U ′

M] · Ck (M,M)-families of solutions.

Theorem 3 is a quantitative generalization of Theorem 9 of Laurent
[18] concerning norm form equations. As was pointed out by Laurent
[18] in the case of norm form equations, the finiteness condition (FN) does
not hold in general, for the case of arbitrary finitely generated field K and
arbitrary finitely generated and integrally closed subring R.

Theorem 3 can be applied in an obvious way to the solutions of (2.2’)
and of (2.2) as well, provided that the finiteness condition corresponding
to (FN) is satisfied.

In the following section, we shall show that in the number field case
and for an important class of rings R, the finiteness condition (FN) always
holds. Further, we shall make more precise and explicit the results of § 3.



On the numbers of families of solutions of systems . . . 75

§4. Results for systems of decomposable
form equations in the number field case

In this section, we specialize our results to the algebraic number field
case. We keep the notation of § 2. Throughout this section, let in particular
K be an algebraic number field, and R = OS , the ring of S-integers in K,
where S is a finite subset of the set of places M(K) of K with cardinality
s which contains the set of infinite places M∞(K) of K. We recall that
OS = {α ∈ K : |α|v = 1 for all v ∈ M(K) \ S}. In this case, the system of
equations (2.2’) takes the form

(4.1) αiNi(µµµ) ∈ βiO
∗
S in µµµ ∈M, i = 1, . . . , k.

Denote by d the degree of K over Q, by D the degree of the normal closure
of G over Q, and by IL the index [R∗L : DL∗

M ] where L is an admissible
subalgebra of M with 1. We shall show (cf. Lemma 9) that in this special
situation the finiteness condition (FN) of Theorem 3 holds. Further, in this
case one can derive an explicit upper bound for Πn

i=2B(i, R∗G) (cf. Lemma
10) by using a recent explicit estimate of Schlickewei [26]. Thus, using
Theorem 3 we get the following.

Theorem 4. Under the above notation and assumptions, the set of
solutions of (4.1) is the union of at most

∑
L IL families of solutions, where

the sum is taken over at most

(4.2) Ck exp{237nD · s6 · log(4sD)}
admissible subalgebras L of M for which (4.1) has an (M,L)-family of
solutions (and among which there can be identical subalgebras L). Further,
if M is full in M then the set of solutions of (4.1) is the union of at most
IM · Ck (M,M)-families of solutions.

From Theorem 3 one can deduce a similar result for the solutions of
the system of equations corresponding to (3.2).

A family of solutions of (4.1) is called maximal if it is not properly con-
tained in another family of solutions. If µµµ1DL1∗

M and µµµ2DL2∗
M are families

of solutions of (4.1) such that µµµ1DL1∗
M ⊆ µµµ2DL2∗

M then µµµ1DL2∗
M = µµµ2DL2∗

M
and so DL1∗

M ⊆ DL2∗
M . Further, if µµµ1DL1∗

M is properly contained in µµµ2DL2∗
M

then DL1∗
M is properly contained in DL2∗

M . M has only finitely many ad-
missible subalgebras L, hence there are only finitely many groups DL∗

M .
This implies that every family of solutions is contained in a maximal fam-
ily of solutions. Using a generalization of some arguments of Schmidt
[29] concerning norm form equations, we shall deduce from Theorem 4 the
following Theorem 4’. Thus Theorem 4 and 4’ are in fact equivalent.
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Theorem 4’. The system of equations (4.1) has at most
∑

L IL max-
imal families of solutions, where the sum is taken over at most

(4.3) Cknr exp{237nD · s6 · log(4sD)}
admissible subalgebras L of M for which (4.1) has a maximal (M,L)-
family of solutions (and among which there can be identical subalgebras
L). Further, if M is full in M then (4.1) has at most IM · Ck maximal
families of solutions and all these are (M,M)-families of solutions.

It is easy to show that in our bounds, the factors IL, IM cannot be
omitted. Further, D ≤ (dr)!.

For k = 1, some qualitative versions of Theorems 4 and 4’ have been
established independently by Evertse (private communication). He uses
different terminology which is however equivalent to ours.

From Theorem 4 we shall deduce the following.

Corollary 2. Suppose that the system of equations (4.1) has only
finitely many O∗

S-cosets of solutions. Then the number of its O∗S-cosets of
solutions is at most

(4.4) Ck exp{237nD · s6 · log(5sD)}.
We say that a solution µµµ of (4.1) is degenerate if it is contained in an

(M,L)-family of solutions of (4.1) with some admissible subalgebra L of M
different from K, and non-degenerate otherwise. If µµµ is a degenerate (resp.
non-degenerate) solution of (4.1) then so is every element of the O∗

S-coset
µµµO∗

S . Since the O∗
S-cosets of solutions are precisely the (M,K)-families of

solutions, we get from Theorem 4 as an immediate consequence that the
number of O∗S-cosets of non-degenerate solutions of (4.1) is bounded above
by the number occurring in (4.2).

It is easy to see thatM is degenerate if and only if there is a subalgebra
L of M with 1 which is different from K and is admissible with respect
to M, and non-degenerate otherwise. If M is non-degenerate then every
solution of (4.1) is non-degenerate. Hence Corollary 3 below immediately
follows from the above consequence of Theorem 4.

Corollary 3. If M is non-degenerate, then the number of O∗S-cosets
of solutions of (4.1) is bounded above by the number occurring in (4.2).

Remark 1. If we consider the system of equations (4.1) in the equiv-
alent form (2.2), then, by Corollary 1’, we get

(4.5) C∗k exp{237nD · s6 · log(4sD)}
as an upper bound for the number of O∗

S-cosets of primitive solutions of
this system of equations.
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Remark 2. For a consequence of Corollary 3 for norm form equations,
see Corollary 4 in § 5. Qualitative versions of Corollary 3 were earlier
established by Schmidt [28] (in case K = Q, OS = Z), Schlickewei
[25] (in case K = Q) and Laurent [18] (in the general case) for norm
form equations, and by Evertse and Győry [6] for decomposable form
equations. In the case when K = Q, OS = Z, k = 1 and (4.1) is a norm
form equation, Schmidt [32] has recently derived in the non-degenerate
case the bound

(4.6)
(

r
m− 1

)ω(β)

τm(βr)rc1 with c1 = min(229n · r2, (2n)n·2n+4
)

for the number of primitive solutions of (4.1). In terms of r, this bound is
better than (4.2) and (4.5) in the special case under consideration.

Remark 3. Very recently Evertse (private communication) has ob-
tained another version of Corollary 3 for k = 1 with a bound which is
better than (4.2) and (4.5) in terms of D but is in general weaker in
terms of β. On combining our method of proof with that of Evertse,
both Evertse’s bound and our bound can be improved. Namely, the factor
exp{237nD · s6 · log(4sD)} in our bounds (4.2), (4.5), (4.3) and (4.4) can
be replaced by

(4.7) exp{238nd · s6 · log(8sD)}.
Corollary 1 in § 3 provides a finiteness criterion for the number of O∗S-

cosets of solutions of (4.1) in the case when S and β1, . . . , βk in (4.1) vary.
We shall now deduce from Theorem 4 a finiteness criterion in the case
when S and hence OS is fixed, only β1, . . . , βk vary. In order to formulate
our criterion, we have to introduce some further concepts and notation.
Let L = L(I) be an admissible subalgebra of M where I = {A1, . . . , Ah}
is a symmetric partition of J . Consider again the partition of J into
Gal(G/K)-orbits such that the elements of A` and Am belong to the same
orbit if and only if σ(A`) = Am for some σ ∈ Gal(G/K). If {j1, . . . , jb} is
a full set of representatives of these orbits then we have (2.9) where Lja is
the subfield of G consisting of the coordinates λja in λλλ ∈ L, a = 1, . . . , b.
The following cases will play an important role in our criterion:

(4.8)





(4.8a) b = 1, Lj1 = K;
(4.8b) b = 1, K is totally real, Lj1 is a totally imaginary

quadratic extension of K, and each place in
S has a unique extension to Lj1 ;

(4.8c) b ≥ 2, K = Q, S = M∞(Q) and Lja is either Q
or an imaginary quadratic field for a = 1, . . . , b;

(4.8d) b ≥ 2, K is an imaginary quadratic field,
S = M∞(K) and Lja = K for a = 1, . . . , b.
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One can easily show that each of the cases (4.8a) to (4.8d) can appear.
We shall say that M is degenerate (resp. non-degenerate) with respect

to OS if there is (resp. there is no) a subalgebra L of M with 1 which is
admissible with respect to M and is not of the type (4.8a), (4.8b), (4.8c)
or (4.8d). It is easy to see that M is non-degenerate if and only if it
is non-degenerate with respect to OS for all finite sets of places S on K
containing M∞(K). By means of Theorem 4 and Corollary 2 we shall
prove the following criterion.

Theorem 5. The following two statements are equivalent:
(i) M is non-degenerate with respect to OS ;
(ii) For all β1, . . . , βk in OS \ {0}, the system of equations (4.1) has only

finitely many O∗S-cosets of solutions.
Moreover, if (i) holds then, under the notation and assumptions concerning
F1, . . . , Fk, β1, . . . , βk and S, the number of O∗S-cosets of solutions of (4.1)
is bounded above by the number occurring in (4.4).

We remark that the last assertion of Theorem 5 follows immediately
from the equivalence of (i) and (ii) and from Corollary 2 above.

§5. Applications to norm form equations

In this section, we apply the results of §§ 3 and 4 to norm form
equations. We shall keep the notation of §§ 2, 3 and 4. First consider
the general case. Let K and R be as in § 2, i.e. let K be a finitely
generated extension field of Q and R a finitely generated and integrally
closed integral domain in K with quotient field K. Let M be a finite
extension of K of degree r, G the normal closure of M over K, RG the
integral closure of R in G, M an R-lattice in the integral closure of R in
M with dimK KM = n ≥ 2, m the minimal number of generators of M,
q = min{m− 1, n}, β ∈ R \ {0},

C =
(

r
q

)ω(β)

τq+1(βr)

and

C∗ =
(

r
q

)ω(β)

τq(βr).

Consider the norm form equations

(5.1) NM/K(µ) ∈ βR∗ in µ ∈M
and more generally

(5.2) NM/K(µ) ∈ βU in µ ∈M,
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where U is a subgroup of R∗. We may assume without loss of generality
that there are no µ ∈ M∗ and a proper subfield M ′ of M with µM⊆ M ′.
We say that M is full in M if KM = M .

For an intermediate field L with K ⊆ L ⊆ M , denote by RL the
integral closure of R in L, and by UL the subgroup of R∗L consisting of all
elements λ with NM/K(λ) ∈ U . For a solution µ of (5.2) with µL ⊆ KM,
the set (µUL) ∩ M is called a wide (M, L)-family of solutions of (5.2).
For (5.1), wide families of solutions can be defined in a similar way. From
Theorem 2, we get the following

Theorem 6. The set of solutions of (5.2) is the union of at most
CΠn

i=2B(i, R∗G) wide families of solutions. Further, if M is full then this
bound can be replaced by C.

A similar statement follows from Theorem 1 for equation (5.1). The-
orem 6 implies Theorem 8 of Laurent [18] (see also Theorems 6 and 6’
of [6]).

Next consider equations (5.1) and (5.2) in the special case when K
is an algebraic number field of degree d and R = OS , where S is a finite
subset of M(K) with cardinality s which contains M∞(K). Then (5.1)
takes e.g. the form

(5.3) NM/K(µ) ∈ βO∗
S in µ ∈M.

In this case, a more precise result follows from Theorem 4’. Then m = n
or m = n + 1 according as M is free or not (see e.g. [16], [20]). For
every intermediate field L with K ⊆ L ⊆ M , let ML = {µ ∈ M :
µL ⊆ KM}. Then ML is an OS-sublattice of M. We say that L is
admissible if ML 6= {0} and if there is no subfield L′ in M with L $ L′

and KML′ = KML. In what follows, we assume that L is admissible.
Then DL

M := {λ ∈ L : λµ ∈ MLfor all µ ∈M} is a subring of OS,L, the
integral closure of OS in L. DL

M is called the ring of coefficients of ML.
If µ ∈ ML is a solution of (5.3) then so is every element of µDL∗

M which
is called an (M, L)-family of solutions. µDL∗

M is called maximal if it is not
properly contained in another family of solutions. Put IL := [O∗

S,L : DL∗
M ].

It follows from Lemma 9 that IL is finite. Denote by D the degree of the
normal closure of G over Q. We get from Theorem 4’ the following

Theorem 7. Equation (5.3) has at most
∑
L

IL maximal families of

solutions, where the sum is taken over at most

nr

(
r
q

)ω(β)

τq+1(βr) exp{237nD · s6 · log(4sD)}

admissible subfields L of M for which (5.3) has a maximal family of solu-
tions (and among which there can be identical subfields L). Further, if M
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is full then (5.3) has at most
(

r
q

)ω(β)

τq+1(βr)IM

maximal families of solutions, and all these are (M,M)-families of solu-
tions.

For K = Q, this gives a quantitative version of well-known finiteness
results of Schmidt [29] (case OS = Z) and Schlickewei [25] on norm
form equations.

We deduce now Theorem 6 from Theorem 2, and Theorem 7 from
Theorem 4. In the general case, denote by λ → λ(i), i = 1, . . . , r, the K-
isomorphisms of M in G. For every σ ∈ Gal(G/K) there is a permutation
of {1, . . . , r}, denoted also by σ, sucht that σ(λ(i)) = λ(σ(i)) for all λ ∈ M
and for i = 1, . . . , r. Denote by M the set of tuples {λλλ ∈ Gr : σ(λi) = λσ(i)

for i = 1, . . . , r, σ ∈ Gal(G/K)}. Define the K-algebra isomorphism
Ψ : M → M by Ψ(λ) = λλλ = (λ(1), . . . , λ(r)). By (2.9), this is indeed
an isomorphism. Further, by (2.9) again, Ψ establishes a bijective map-
ping from the fields L with K ⊆ L ⊆ M to the subalgebras L(I) of M
such that Ψ(L) = L(I) where I is a symmetric partition of {1, . . . , r}.
Let Ψ(M) = M1. It is easy to see that L is admissible if and only if
L(I) is admissible. Further, in the number field case, Ψ(ML) = ML

1 ,
Ψ(DL

M) = DL
M1

, Ψ(DL∗
M1

) = DL∗
M1

if L is admissible. From these it follows
immediately that Ψ maps the wide families of solutions of (5.2) onto the
wide families of solutions of the equation N(µµµ) ∈ βU in µµµ ∈ M1 and
Theorem 6 follows from Theorem 2. Further, in the number field case
(when R = OS), Ψ maps the maximal families of solutions of (5.3) onto
the maximal families of solutions of the equation N(µµµ) ∈ βO∗

S in µµµ ∈M1

and Theorem 7 follows from Theorem 4’.
Consider again the number field case (when K is a number field and

R = OS). From Theorem 5, one can deduce in a similar way the following
criterion. If µ is a solution of (5.3), then µO∗S is called an O∗S-coset of
solution of (5.3). We say that M is degenerate with respect to OS if M
contains an admissible subfield L % K which is not of the following type:

(5.4)
{

K is totally real, L is a totally imaginary quadratic extension
of K and each place in S has a unique extension to L.

Otherwise M is called non-degenerate with respect to OS .
Together with (2.9), Theorem 5 implies the next theorem.

Theorem 8. The following two statements are equivalent:
(i) M is non-degenerate with respect to OS ;
(ii) For every β ∈ OS\{0}, equation (5.3) has only finitely many O∗S-cosets

of solutions.
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Moreover, if (i) holds, then the number of O∗S-cosets of solutions of
(5.3) it at most

(5.5)
(

r
q

)ω(β)

τq+1(βr) exp{237nD · s6 · log(5sD)}.

Apart from the form of the bound, this can be considered as a gen-
eralization of results of Schmidt [28], [32] obtained in the case K = Q,
OS = Z.

In the number field case, M is called degenerate if M contains an
admissible subfield L with L % K and non-degenerate otherwise. Suppose
that M is contained in the ring of integers of M . It is easy to show that
M is non-degenerate if and only if it is non-degenerate with respect to OS

for all finite subsets S of M(K) containing M∞(K). Hence our Theorem
8 implies that, in the number field case, equation (5.3) has finitely many
O∗S-cosets of solutions for all finite subsets S of M(K) containing M∞(K)
and for all β ∈ OS \ {0} if and only if M is non-degenerate. Further, as a
consequence of Corollary 3 we get

Corollary 4. If M is non-degenerate, then the number of O∗S-cosets
of solutions of (5.3) is bounded above by the number occurring in (5.5).

Theorem 4 and Corollary 2 in § 4 have similar consequences for norm
form equations.

As was mentioned after the enunciation of Corollary 3, qualitative
versions of Corollary 4 were earlier established by Schmidt [28] (in case
K = Q, OS = Z), Schlickewei [25] (in case K = Q) and Laurent [18]
(in the general case). Further, in the case K = Q, OS = Z, Schmidt
[32] has recently derived the bound (4.6) for the number of solutions of
(5.3) in the non-degenerate case. Using (4.7) from § 4, the bound (5.5) in
Corollary 4 can be replaced by

(
r
q

)ω(β)

τq+1(βr) exp{238nd · s6 · log(8sD)}.

Further, considering (5.3) in the form (2.2) and taking into consideration
only the O∗S-cosets of primitive solutions, τq+1(βr) can be replaced by
τq(βr) in view of Corollary 1’. Finally, we note that in the case n = 2,
better bounds have been derived by Evertse [5], Bombieri and Schmidt
[2] and Bombieri [1] for the number of O∗S-cosets of solutions of (5.3).

§6. Applications to generalized systems of unit equations

In this section, we restrict ourselves to the number field case, that is
K denotes an algebraic number field and OS its ring of S-integers. Let
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m ≥ 2 be an integer. For any m-tuple λ = (λ1, . . . , λm) of non-negative
integers, put xλ = xλ1

1 . . . xλm
m . Consider the following generalization of

S-unit equations

(6.1) Pi(x) =
∑

λ∈Li

pi(λ)xλ = 0 in x ∈ (O∗
S)m for i ∈ I

where I is a finite index set, pi(λ) ∈ K, and Li is the support of Pi (i.e. the
set of exponents λ for which the coefficient pi(λ) of xλ in Pi is non-zero).
Denote by L the disjoint union L =

∐
i∈I Li of the sets Li. Consider a

partition P of L; it induces partitions Li =
∐

j∈Ii
Li,j on each Li. The

partition P is said to be compatible with a γ ∈ Om
S if

∑

λ∈Li,j

pi(λ)γλ = 0 for each i ∈ I and j ∈ Ii.

Further, P is said to be maximal compatible with γ if P ′ is not compatible
with γ for any refinement P ′ of P. Denote by HP that subgroup of (O∗S)m

whose elements γ have the property that for each Li,j , γλ = γλ′ if λ,
λ′ ∈ Li,j . If γ is a solution of (6.1) then so are all elements of γHP ,
where P is a partition of L, compatible with γ. Laurent [18] showed
that the set of solutions of (6.1) is the union of finitely many sets of the
form γHP where γ is a solution and P is a partition of L which is maximal
compatible with γ. In fact Laurent proved this result in a more general
case, for subgroups of finite rank of C∗ instead of O∗S .

As a consequence of Theorem 4’, the following quantitative version
can be proven. As in § 4, denote by d the degree of K and by s the
cardinality of S. Further, let r denote the cardinality of L, and k the rank
of the matrix (pi(λ))i∈I,λ∈L formed from the coefficients pi(λ) in (6.1).
Put n = r − k.

Theorem 9. The set of solutions of (6.1) is the union of at most

(6.2) nr exp{237nd! · s6 · log(4sd!)}
sets of the form γHP where γ is a solution of (6.1) and P is a partition of
L which is maximal compatible with γ. Further, if K/Q is normal then d!
can be replaced by d.

For a deduction of Theorem 9 from Theorem 4’, see our recent paper
[14].

Of particular interest is the special case when (6.1) consists of a single
linear equation, i.e. when it is an S-unit equation

(6.3) α1x1 + · · ·+ αnxn = 1 in x = (x1, . . . , xn) ∈ (O∗
S)n

where α1, . . . , αn ∈ K∗. Then Theorem 9 describes, in a quantitative form,
the structure of the set of solutions of (6.3). Further, it gives an explicit
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upper bound for the number of non-degenerate solutions. A solution x of
(6.3) is called non-degenerate if there is no vanishing subsum in α1x1 +
· · ·+αnxn and degenerate otherwise. Theorem 9 provides the bound (6.2)
with r = n + 1 for the number of the sets of solutions of the form γHP0 of
(6.3) where P0 = {L}, and P0 is maximal compatible with γ. But these
solutions γ are just the non-degenerate solutions and HP0 = (1, . . . , 1).
Hence Theorem 9 implies the following recent theorem of Schlickewei [26]
which has been established with a slightly better bound.

Corollary 5. Equation (6.3) has at most

exp{238nd! · s6 · log(4sd!)}
non-degenerate solutions. Further, if K/Q is normal then d! can be re-
placed by d.

We should, however, remark that the proof of Theorem 9 depends
on (another version of) this result of Schlickewei (cf. Lemma 10 of the
present paper). We note that Theorem 9 can also be proven (with a slightly
different bound) by combining the proof of Laurent with Corollary 5.
Finally, we mention that using Theorem 4’ with the improved bound (4.7),
the second factor in (6.2) can be replaced by (4.7) with the choice D = d!.

A less explicit version of Theorem 9 can also be deduced from Theorem
3 in the general case when K is an arbitrary finitely generated field over
Q and O∗

S is replaced by an arbitrary finitely generated subgroup of K∗.

§7. Proofs of Theorem 1 and Corollary 1’

To prove Theorem 1, we need several lemmas. In Lemmas 1 to 7 it
will be more convenient to consider the system of equations (2.2’) in the
form (2.2).

We keep the notation of §§ 2 and 3. Since Fi maps KM to K for all
i with 1 ≤ i ≤ k, Fi(x) can be factorized as

(7.1) Fi(x) = αi

ri∏

j=1

`i,j(x)ki,j for all x ∈ KM,

where αi ∈ K \ {0}, `i,1, . . . , `i,ri : KM → G are pairwise linearly inde-
pendent linear functions and ki,j are positive integers such that

(7.2) σ(`i,j) = `i,σ(j), ki,j = ki,σ(j) for j = 1, . . . , ri, σ ∈ Gal(G/K),

where (σ(1), . . . , σ(ri)) is a permutation of (1, . . . , ri) for each σ∈
Gal(G/K).

We recall that RG denotes the integral closure of R in G. By a theorem
of Nagata [19], RG is finitely generated. Further, R and RG are integrally
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closed in K and G, respectively. Hence both in R and in RG there exists
a divisor theory. Then for every prime divisor p of R there is an additive
valuation v = vp on K such that, for every α ∈ K∗, v(α) denotes the
exponent of p in the prime divisor decomposition of the principal divisor
(α). A similar assertion holds for the prime divisors P of RG and the
corresponding additive valuations wP on G. Denote by MK and MG the
sets of additive valuations with value group Z, which correspond to the
divisor theory of R and of RG, respectively. Then we have

R = {α ∈ K : v(α) ≥ 0 for all v ∈MK}
and

RG = {α ∈ G : w(α) ≥ 0 for all w ∈MG}.
Further, every w ∈MG is an extension of some v ∈MK .

For every y = (y1, . . . , ym) ∈ Gm and every w ∈MG, we put

w(y) = min
1≤j≤m

w(yj).

Further, for every polynomial P ∈ G[X1, . . . , Xm] and every w ∈ MG, we
denote by w(P ) the minimum of the w-values of the coefficients of P . Let
{a1, . . . ,am} denote the minimal set of generators of M which has been
fixed in § 2, and for x ∈ V = KM, put x = x1a1 + · · · + xmam where
x1, . . . , xm ∈ K. Here x1, . . . , xm are not in general uniquely determined.
For each i with 1 ≤ i ≤ k, consider
(7.3) `∗i,j(X) = X1`i,j(a1) + · · ·+ Xm`i,j(am) for j = 1, . . . , ri

and

(7.4) F ∗i (X) = αi

ri∏

j=1

`∗i,j(X)ki,j

in G[X1, . . . , Xm] and K[X1, . . . , Xm], respectively. By the assumption
made on Fi, F ∗i has mi variables with non-zero coefficients and has its
coefficients in R. We identify x ∈ V with the set of tuples (x1, . . . , xm) ∈
Km with x = x1a1 + · · ·+ xmam. Then
(7.5) `∗i,j(x) = `i,j(x) and F ∗i (x) = Fi(x) for all i, j and x ∈ V.

By a generalization of Gauss’ lemma (cf. [17]) it follows from (7.4) that

(7.6) w(αi) +
ri∑

j=1

ki,jw(`∗i,j) = w(F ∗i ) for all w ∈MG.

Further, for each solution x ∈ M of (2.2), we get from (2.2), (7.1) and
(7.5) that

(7.7) w(αi) +
ri∑

j=1

ki,jw(`∗i,j(x)) = w(F ∗(x)) = w(βi)
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for all w ∈ MG. Together with the fact that F ∗i has its coefficients from
R, (7.6) and (7.7) imply that

(7.8)
ri∑

j=1

ki,j{w(`∗i,j(x))− w(`∗i,j)} = w(βi)− w(F ∗i ) ≤ w(βi).

On the other hand, it follows from (x1, . . . , xm) ∈ Rm that

(7.9) 0 ≤ w(`∗i,j(x))− w(`∗i,j).

We partition the set of solutions x ∈ M of (2.2) into classes such that
two solutions x1 and x2 of (2.2) belong to the same class if and only if

(7.10) w(`i,j(x1)) = w(`i,j(x2)) for all i, j and w ∈MG.

This is equivalent to the fact that

(7.11) `i,j(x2)/`i,j(x1) ∈ R∗G for all i and j.

For a solution x of (2.2), we put

(7.12) wi,j := w(`i,j(x)) for all i and j.

For w(βi) = 0, (7.5), (7.8) and (7.9) imply that wi,j = w(`∗i,j) for all
j, while if w(βi) > 0, then wi,1, . . . , wi,ri can assume only finitely many
values. Hence there are only finitely many classes of solutions.

We derive now an upper bound for the number of classes of solutions
of (2.2). Given an arbitrary but fixed w ∈ MG, we derive first an upper
bound for the number of tuples wi = (wi,1, . . . , wi,ri) ∈ Zri for which there
is a solution x of (2.2) with (7.12). In the proof we shall need the following
three lemmas which are appropriate modifications of Lemmas 11 to 13 of
Schmidt [32]. In Lemmas 1 to 3 below, we fix an element w of MG.

Lemma 1. Let `1(x), . . . , `h(x) be linearly dependent linear forms in
m variables with coefficients in G. Given integers w1, . . . , wh, let X be the
set of x ∈ Gm for which

w(`i(x)) ≥ wi for i = 1, . . . , h.

Then X may already be defined by h− 1 of these inequalities.

Proof. This is in fact Lemma 11 of Schmidt [32]; we use here ad-
ditive valuations instead of multiplicative ones.

Lemma 2. Let `1(x), . . . , `m(x) be linear forms in m variables and
with coefficients in G. Suppose that there exists an x′ ∈ Rm with x′ 6= 0
and

(7.13) w(x′) = w0 ≥ 0 and w(`i(x′)) ≥ wi, i = 1, . . . ,m,
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where w1, . . . , wm are given integers. Then there is an i0 with 1 ≤ i0 ≤ m
such that the solutions of

w(x) ≥ w0 and w(`i(x)) ≥ wi in x ∈ Rm,

i = 1, . . . , i0 − 1, i0 + 1, . . . , m
(7.14)

imply that

(7.15) w(`i(x)) ≥ wi for i = 1, . . . , m.

Proof. We follow the argument of the proof of Lemma 12 of [32].
By Lemma 1, it suffices to deal with the case when `1, . . . , `m are linearly
independent. Then there are γi,j ∈ G, i ≤ i, j ≤ m, such that

(7.16) Xj = γj1`1(x) + · · ·+ γjm`m(x), j = 1, . . . , m.

One may suppose without loss of generality that

(7.17) w(γ11) + w1 = min
1≤i,j≤m

{w(γji) + wi}.

For the given x′ = (x′1, . . . , x
′
m), we have by (7.16), (7.13) and (7.17)

w(x′j) ≥ min
i
{w(γji) + wi} ≥ w(γ11) + w1 for j = 1, . . . , m.

Hence, by (7.13), we have

(7.18) w0 ≥ w(γ11) + w1.

This implies that γ11 6= 0. Let x ∈ Rm satisfy (7.14). Then for i0 = 1,
(7.16), (7.14), (7.17) and (7.18) give

w(γ11) + w(`1(x)) ≥ min{w(γ12) + w2, . . . , w(γ1m) + wm, w(x1)} ≥
w(γ11) + w1

whence w(`1(x)) ≥ w1 and (7.15) follows.

Lemma 3. Let `1, . . . , `r be linear forms in m variables and with
coefficients in G, and put q = min{m − 1, t}, where t is the maximal
number of linearly independent forms among `1, . . . `r. Let w1, . . . , wr be
integers, and suppose that there is an x′ ∈ Rm with x′ 6= 0 and

w(x′) = w0 ≥ 0 and w(`i(x′)) ≥ wi, i = 1, . . . , r.

Then there are q among these forms, say `i1 , . . . , `iq , such that every x ∈
Rm with

w(x) ≥ w0 and w(`ij (x)) ≥ wij , j = 1, . . . , q

satisfies
w(`i(x)) ≥ wi for i = 1, . . . , r.
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Proof. The assertion follows by r− t applications of Lemma 1 and,
if t = m, a further application of Lemma 2.

In the next lemma, let again αi, `i,1, . . . , `i,ri
, ki,1, . . . , ki,ri

be as in
(7.1) with property (7.2). For i = 1, . . . , k, define the fields Mi,j (j =
1, . . . , ri) by

(7.19) Gal(G/Mi,j) = {σ ∈ Gal(G/K) : σ(j) = j}.
For a non-zero divisor a of R, we define τq+1(a) and τq(a) in a similar way
as for principal divisors. Let p be a prime divisor of R, v = vp ∈ MK the
associated additive valuation and w ∈MG an extension of v.

Lemma 4. For i = 1, . . . , k, the number of tuples wi = (wi,1, . . . , wi,ri
)

∈ Zri for which there exists a solution x of (2.2) with

(7.20) wi,j = w(`i,j(x)) for j = 1, . . . , ri

is at most

(7.21)
(

ri
qi

)
τqi+1(puiv(βi)).

Further, if we restrict ourselves to primitive solutions, this bound can be
replaced by

(7.22)
(

ri
qi

)
τqi(p

uiv(βi)).

Proof. Fix a subscript i with 1 ≤ i ≤ k. For simplicity, we omit
everywhere i. For v(β) = 0, it follows from (7.8), (7.9) and (7.5) that w =
(w(`∗1), . . . , w(`∗r)) ∈ Zr is the only tuple for which (2.2) can have a solution
x with (7.20). Hence we assume that v(β) > 0 and that (2.2) is solvable.
First we deal with the general (not necessarily primitive) solutions. Let
w = (w1, . . . , wr) ∈ Zr be a tuple for which there is a solution x of (2.2)
with the property (7.20). Then, by (7.5) and (7.7), we have

(7.23) w(α) +
r∑

j=1

kjwj = w(β).

It suffices to give an upper bound for the number of tuples w = (w1, . . . , wr)
∈ Zr for which (7.23) holds and for which there is an x ∈ M with x 6= 0
and with the property (7.20).

Let w = (w1, . . . , wr) ∈ Zr be such a tuple, and denote by w0 the min-
imum of values w(x) when x runs over all tuples 0 6= x = (x1, . . . , xm) ∈
Rm for which the corresponding x ∈ M satisfy (7.20), i.e., by (7.5),

(7.24) wj = wj(`j(x)) = w(`∗j (x)) for j = 1, . . . , r.
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By Lemma 3, we get linear forms `∗j1 , . . . , `
∗
jq

among the forms `∗1,. . . ,`
∗
r

with the property specified in Lemma 3. Denote by wj1 , . . . , wjq
the

corresponding components in the tuple w. Following Schmidt [32], we
call (`∗j1 , . . . , `

∗
jq

, wj1 , . . . , wjq
) an anchor of the solutions under consider-

ation which comes from the tuple w = (w1, . . . , wr). We show now that
different tuples yield different anchors. Assume, to the contrary, that
w′ = (w′1, . . . , w

′
r) ∈ Zr is another tuple for which there is an x ∈ M with

(7.25) w(`j(x)) = w(`∗j (x)) = w′j for j = 1, . . . , r

and

(7.26) w(α) +
r∑

j=1

kjw
′
j = w(β).

Further, assume that the anchor coming from w′ coincides with the above-
considered anchor coming from w. Then w′ji

= wji for i = 1, . . . , q. Let
min

x∈Rm
w(x) = w′0, where the minimum is taken over all tuples 0 6= x =

(x1, . . . , xm) ∈ Rm for which the corresponding x ∈ M satisfy (7.25).
Suppose that w0 ≥ w′0. Then for every 0 6= x ∈ Rm which satisfies (7.24)
we have

w(x) ≥ w′0 and w(`∗ji
(x)) ≥ w′ji

for j = 1, . . . , q.

Hence, it follows from Lemma 3 that wj ≥ w′j for j = 1, . . . , r. Finally,
together with (7.23) and (7.26) this implies that w′j = wj for j = 1, . . . , r
which proves our claim.

It remained to estimate the number of possible anchors. The number

of q-tuples (j1, . . . , jq) with 1 ≤ j1 < · · · < jq ≤ r is
(

r
q

)
. Hence it will

be enough to prove that for given j1, . . . , jq, the number of possibilities
for wj1 , . . . , wjq is at most τq+1(puv(β)). For convenience, we estimate the
number of anchors (`∗1, . . . , `

∗
q , w1, . . . , wq), i.e. the number of possibilities

for w1, . . . , wq. For this purpose it suffices to estimate the number of
possibilities for vj := wj − w(`∗j ), j = 1, . . . , q.

For the tuples (v1, . . . , vq) under consideration, we have by (7.8) and
(7.9)

(7.27)
q∑

j=1

vj ≤ w(β) = e · v(β) and vj ≥ 0 for j = 1, . . . , q,

where e denotes the ramification index of w with respect to v. Denote by
w(j) the extension of v to the extension field Mj of K defined by (7.19),
and by e

(j)
1 , e

(j)
2 the ramification index of w(j) with respect to v, and the
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ramification index of w with respect to w(j). Then e
(j)
1 e

(j)
2 = e. Further,

in view of vj = w(`j(x))−w(`∗j ), there is a non-negative integer v
(j)
j such

that vj = e
(j)
2 v

(j)
j . Hence, by (7.27),

q∑

j=1

v
(j)
j

e
(j)
1

≤ v(β) and v
(j)
j ≥ 0 for j = 1, . . . , q.

But e
(j)
1 ≤ [Mj : K] and [Mj : K] ≤ u (see e.g. [3]), where u is the

maximum of the degrees of the irreducible factors of F over K. Thus
it suffices to estimate from above the number of (v(1)

1 , . . . , v
(q)
q ) ∈ Zq for

which

(7.28)
q∑

j=1

v
(j)
j ≤ u · v(β) and v

(j)
j ≥ 0 for j = 1, . . . , q.

However, the number of these tuples is equal to τq+1(pu·v(β)).
Next we consider only the primitive solutions. Then following the

above arguments, it is easy to see that if in (7.28) v
(1)
1 , . . . , v

(q)
q and v

′(1)
1 ,. . . ,

v
′(q)
q come from anchors and v

′(j)
j ≤ v

(j)
j for j = 1, . . . , q then v

′(j)
j = v

(j)
j

for j = 1, . . . , q. This implies that for given v
(1)
1 . . . , v

(q−1)
q−1 , there is at

most one possibility for v
(q)
q in (7.28). Thus, in this case the number of

tuples satisfying (7.28) is equal to τq(puv(β)).

We are now in a position to give upper bound for the number of classes
of solutions of (2.2).

Lemma 5. The number of classes of solutions of (2.2) is at most

(7.29) Ck =
k∏

i=1

(
ri
qi

)w(βi)

τqi+1(β
ui
i ).

Further, if we restrict ourselves to primitive solutions, then this bound can
be repleced by

(7.30) C∗k =
k∏

i=1

(
ri
qi

)w(βi)

τqi(β
ui
i ).

Proof. Fix a subscript i with 1 ≤ i ≤ k. For simplicity, we omit
again i everywhere in the proof below.

By the definition of the classes of solutions, every class C of solutions
x of (2.2) is uniquely determined by the tuples (wP(`j(x))1≤j≤r where
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x ∈ M with x ∈ C and where P runs over all prime divisors of RG. But,
for a prime divisor P for which P - (β) in RG, the corresponding tuple
(wP(`j(x))1≤j≤r coincides with the tuple (wP(`∗j ))1≤j≤r by (7.5), (7.8)
and (7.9). Further, G/K being a normal extension, the prime divisors of
(β) in RG are conjugate to each others (see e.g. [3], Ch. III). This implies
that for each σ ∈ Gal(G/K), (wσ(P)(`j(x))1≤j≤r is uniquely determined
by (wP(`j(x)))1≤j≤r. Thus, the number of classes of solutions of (2.2) is
equal to the number of tuples of vectors

(wP1(`j(x)))1≤j≤r, . . . , (wPs
(`j(x)))1≤j≤r,

where x ∈ M runs over all solutions x of (2.2) and {P1, . . . , Ps} is a
maximal set of prime divisors of (β) in RG which are not conjugate to
each others. Here s = w(β). By appling now Lemma 4, using the fact that
τq+1( ) (and similarly τq( )) is multiplicative, and repeating the above
argument for i = 1, . . . , k, we get (7.29). In case of primitive solutions, we
get (7.30) in a similar way, using (7.22) instead of (7.21) in Lemma 4.

Next we consider the solutions of (2.2) contained in an L-admissible,
L-non-degenerate subspace (cf. § 3) of KM. We recall that B(p,R∗G) was
defined in 2.

Lemma 6. Let C be a class of solutions of (2.2), and let H be an
admissible, non-degenerate subspace of KM with dimension p ≥ 2. All
solutions x of (2.2) in C with x ∈ H are contained in the union of at most
B(p,R∗G) admissible, proper subspaces of H.

Proof. We shall use some argument from the proof of Lemma 2 of
[6]. Let x0 be a fixed solution of (2.2) from C. Put

`′i(x) = `i(x)/`i(x0) for x ∈ KM, i = 1, . . . , f.

Then
(7.31) `′i(x) ∈ R∗G for i = 1, . . . , f,

and for all solutions x ∈ C with x ∈ H. Since by assumption H is non-
degenerate, there exist linear functions `′i1 , . . . , `

′
ih

in {`′1, . . . , `′f} which
are pairwise linearly independent on H such that

(7.32)
h∑

j=1

cj`
′
ij

(x) = 0 identically on H

for some c1, . . . , ch ∈ G∗. Let h be the smallest integer with this property;
then we have 3 ≤ h ≤ p + 1. From (7.32) it follows that

h−1∑

j=1

(−cj/ch)`′ij
(x)/`′ih

(x) = 1
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for all solutions x with x ∈ C∩H. Since R∗G is finitely generated, it follows
from Theorem 3 of [8] that the tuples (`′i1(x)/`′ih

(x), . . . , `′ih−1
(x)/`′ih

(x))
for which x ∈ C∩H, are contained in at most B(p,R∗G) (h−2)-dimensional
subspaces of Gh−1. For each of these subspaces of Gh−1, there are γ1, . . . ,
γh−1 ∈ G, not all zero, such that

h−1∑

j=1

γj`
′
ij

(x)/`′ih
(x) = 0,

that is

(7.33)
h−1∑

j=1

γj`
′
ij

(x) = 0

for the corresponding solutions x with x ∈ C ∩H. By the minimality of h,
(7.33) cannot hold for all x ∈ H. Therefore, the x ∈ H satisfying (7.33)
lie in a (p− 1)-dimensional subspace H ′ of H which is admissible.

Lemma 7. Suppose that KM is non-degenerate, and let C be a class
of solutions of (2.2). Then all solutions of (2.2) which belong to C are
contained in the union of at most

n∏

i=2

B(i, R∗G)

admissible, degenerate subspaces of KM.

Proof. Lemma 7 follows immediately by repeated applications of
Lemma 6.

Let H be a non-zero subspace of KM, and consider the linear mapping
Ψ : KM → Gf introduced in (2.7). Then Ψ establishes an isomorphism
between H and the subspace Ψ(H) of M.

Lemma 8. Let H be a non-zero subspace of KM. Then the following
two statements are equivalent:
(i) H is admissible and degenerate;
(ii) Ψ(H) = ννν · L for some ννν ∈ Ψ(H) ∩ M∗ and some K-subalgebra

L = L(I) of M where I is a symmetric partition of J .
In particular, KM is admissible and degenerate if and only if the R-lattice
M is full in M, and then Ψ(KM) = M.

Remark 1. It follows from Lemma 8 that KM has an admissible,
degenerate subspace of dimension ≥ 2 if and only if M is degenerate (as
defined in § 3).



92 K. Győry

Remark 2. We note that in (ii) the K-subalgebra L of M is uniquely
determined by H.

Proof. We receall that n ( ≥ 2) is the dimension of the K-vector
space KM. Let {e1, . . . , en} be a basis of KM, and put

(7.34) `∗j (X) =
n∑

v=1

`j(ev)Xv for j ∈ J .

We have `∗j = `∗j′ if `j = `j′ , and, by (2.4),

(7.35) σ(`∗j ) = `∗σ(j) for all j and σ ∈ Gal(G/K).

We indentify x ∈ KM with the tuple (x1, . . . , xn) ∈ Kn for which x =
x1e1 + · · · + xnen. Denote by L∗ the collection of linear forms `∗j with
j ∈ J , and by H∗ the set of tuples (x1, . . . , xn) ∈ Kn for which x =
x1e1 + · · · + xnen ∈ H. Then H∗ is a K-vector subspace of Kn having
the same dimension, say p, as H. Further, H∗ is L∗-admissible if H so is,
and H∗ is L∗-non-degenerate or L∗-degenerate according as H is L-non-
degenerate or L degenerate.

Denote by r′ the maximal number of pairwise linearly independent
linear functions among the elements of L over H. Then we have r′ ≥ p.

Now we prove the implication (i) ⇒ (ii). Suppose that H is L-
admissible and L-degenerate. Let j1, . . . , jv be a full set of representa-
tives of the Gal(G/K)-orbits C1, . . . , Cv of J defined in §2. It follows
from the degeneracy of H that H is then also degenerate (and admissible)
with respect to the collection of linear functions {`σ(jw)}σ∈Gal(G/K) for
w = 1, . . . , v. Consequently, H∗ is admissible and degenerate with respect
to the collection of linear forms {`∗σ(jw)}σ∈Gal(G/K) for w = 1, . . . , v. By
Lemma 3 of [6], we have

(7.36)

{
`jw(H) = `∗jw

(H∗) = ν′jw
Ljw for some ν′jw

∈ `jw(H) \ {0}
and some field Ljw with K ⊆ Ljw ⊆ G for w = 1, · · · , v.

It follows from (7.36) that for each j ∈ J ,

(7.37) `j(H) = `∗j (H
∗) = ν′jLj for some ν′j ∈ `j(H) \ {0}

where the Lj are subfields of G with K ⊆ Lj and with the property

(7.38) σ(Lj) = Lσ(j) for all σ ∈ Gal(G/K).

Further, using a well-known theorem (see e.g. [33], Ch. I, Theorem 14), ν′j
can be chosen in (7.37) so that ννν′ = (ν′j)j∈J ∈ Ψ(H) ∩M∗.

If r′ ≤ 2 then, by the degeneracy of H, r′ = p. Suppose now that
r′ ≥ 3. Then p ≥ 2. If r′ > p then there are p + 1 linear functions in
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L which are linearly dependent but pairwise linearly independent on H.
However, this contradicts the fact that H is degenerate, hence r′ = p.

It follows from (7.37) that if `j and `j′ are linearly dependent on H
for some j and j′ in J then Lj = Lj′ . Consider now that partition I of J
in which j and j′ belong to the same subset if and only if `j and `j′ are
linearly dependent on H. By (7.36) and (7.38), I is symmetric. Further, it
is easy to see that there is a ννν ∈ Ψ(H)∩M∗ for which ννν−1Ψ(H) ⊆ L(I). On
the other hand, it is not difficult to show that in view of r′ = p, ννν−1Ψ(H)
contains a basis of L = L(I) as K-vector space and hence Ψ(H) = ννν · L.
This proves (ii).

Next we prove the implication (ii) ⇒ (i). Suppose that Ψ(H) = ννν ·L
for some ννν ∈ Ψ(H) ∩M∗ and some K-subalgebra L = L(I) of M where
I is a symmetric partition of J . Then H is L-admissible. We prove that
H is L-degenerate. It follows from Ψ(H) = ννν · L and (2.9) that r′ = p.
But the above arguments show that if we consider a maximal subset of L
consisting of r′ pairwise linearly independent linear functions over H then
these are also linearly independent on H. Consequently, H is L-degenerate
indeed.

Finally, consider the case when H = KM. It follows from the above
arguments that KM is degenerate if and only if n = dimK KM is equal to
r, the maximal number of pairwise linearly independent linear functions
in the factorization of F1 . . . Fk over G. This is, however, equivalent to the
fact that dimK KM = dimK M, i.e. that M is full in M. This implies
that Ψ(KM) = KM = M.

Proof of Theorem 1. We recall that the linear mapping Ψ defined
by (2.7) establishes a one-to-one correspondence between the solutions x
of (2.2) and the solutions µµµ of (2.2’). By Lemma 5, the solutions of (2.2)
belong to at most Ck classes of solutions. Consider an arbitrary but fixed
class of solutinons C. If KM is degenerate then all solutions of (2.2) in C
are already contained in a single degenerate subspace H of KM, namely
in KM itself. Otherwise, if KM is non-degenerate then, by Lemma 7, all
solutions in C are contained in the union of at most

n∏

i=2

B(i, R∗G)

admissible, degenerate subspaces of KM. Let H be such a subspace.
Then it follows from Lemma 8 that Ψ(H) = µµµ · L for some K-subalgebra
L = L(I) of M where I is a symmetric partition of J , and some µµµ =
(µj) ∈ Ψ(H) ∩ M∗ which can be chosen to be a solution of the system
of equations (2.2’). Further, if M is full in M then KM is degenerate,
i.e. H = KM is the only subspace under consideration. Consider now all
those solutions µµµ′ = (µ′j) of (2.2’) which belong both to Ψ(C) and to µµµ ·L.
Then µ′j/µj ∈ R∗G for j = 1, . . . , f . On the other hand, we have µµµ′ ∈ µµµ ·L.
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Hence µµµ′ ∈ µµµ ·R∗L, i.e. all the µµµ′ considered above belong to the wide family
of solutions (µµµ ·R∗L) ∩M. This completes the proof of Theorem 1.

Proof of Corollary 1’. In view of Lemma 8, the first assertion
is an immediate consequence of Corollary 1. The second assertion (con-
cerning primitive solutions) follows from Lemmas 5, 7 and 8, using the
argument of the proof of Theorem 1.

§8. Proofs of Theorems 4, 4’, 5 and Corollary 2

Theorem 4 follows immediately from Theorem 3 and Lemmas 9 and
10 below. In what follows, we use the notation of §4 and recall that in
this case R is OS , the ring of S-integers of the number field K. In this
special case, the rings RG, RL and RLj , defined in §2, will be denoted by
OS,G, OS,L and OS,Lj , respectively. Let L be an admissible subalgebra of
M containing 1. Consider the unit group DL∗

M of the coefficient ring DL
M

of ML.
Lemma 9. DL∗

M is a subgroup of finite index in O∗
S,L.

Proof. OS,L consists of those elements λλλ = (λj) of L for which
λj ∈ OS,Lj where OS,Lj is the integral closure of OS in Lj . The ring OS,Lj

is a finitely generated OS-module for each j ∈ J . Consequently, by (2.9),
OS,L is an OS-lattice. Hence there exists an α ∈ OS \ {0} such that

(8.1) αMLOS,L ⊆ML.

The ring OS/a is finite for every non-zero integral OS-ideal a in K. Since
OS is a Dedekind ring, the same finiteness assertion is true for OS,Lj /aLj

where aLj is an arbitrary non-zero integral OS,Lj -ideal in Lj for j ∈ J
(cf. [20]). This implies that there exists a positive integer a such that for
every εj ∈ O∗S,Lj

, εa
j ≡ 1 (mod α) in OS,Lj for all j ∈ J . Let now εεε be an

arbitrary element of O∗
S,L. Then we obtain that εεεa−1 ∈ α ·OS,L. Together

with (8.1) this implies that (εεεa−1)ML ⊆ML, whence εεεa ∈ DL
M. Further,

it follows in a similar way that εεε−a ∈ DL
M. Hence εεεa ∈ DL∗

M and so DL∗
M is

indeed of finite index in O∗
S,L.

In the special situation considered above, an explicit upper bound
can be derived for the number B(p,O∗

S,G) (introduced in §2) by means of
a recent result of Schlickewei [26] on S-unit equations.

Lemma 10. The number B(i, O∗
S,G) can be chosen so that

(8.2)
n∏

i=2

B(i, O∗
S,G) ≤ exp

{
237nD · s6 · log(4sD)

}
.
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Proof. Consider equation (2.14) over K with Γ = O∗S,G. Then the
number of extensions to G of the places in S is at most g · s, where g =
[H : K]. Hence, by Lemma 6.1 of Schlickewei [26], B(i, O∗

S,G) can be
chosen so that

B(i, O∗
S,G) ≤ 2(i + 1)sg(4sgD)2

35iD·4s6
,

whence (8.2) follows.

To prove Theorem 4’, we need two further lemmas. Let I1 and I2 be
symmetric partitions of J . It is easy to show that

(8.3) L2(I2) ⊆ L1(I1) ⇐⇒ I1 is a refinement of I2.

The following two lemmas are generalizations of Lemmas 2 and 3 of
Schmidt [29].

Lemma 11. Let L1 and L2 be admissible subalgebras of M with
L1 ⊆ L2. Then DL1

M ⊆ DL2
M and DL1∗

M ⊆ DL2∗
M .

Proof. It follows from L1 ⊆ L2 that ML2 ⊆ ML1 . Hence, for
arbitrary λλλ ∈ DL1

M and µµµ ∈ML2 we have λλλ ·µµµ ∈ML1 ⊆M. Further, λλλ ∈
DL1
M ⊆ L1 ⊆ L2 implies that λλλ ·µµµ ∈ KML2 , whence λλλ ·µµµ ∈ KML2 ∩M =

ML2 . Hence λλλ ∈ DL2
M and so DL1

M ⊆ DL2
M which implies DL1∗

M ⊆ DL2∗
M .

Lemma 12. Let L1 and L2 be subalgebras of M with 1 such that L1 is
admissible with respect to M and L2 is admissible with respect to ML1 .
Then L2 ⊇ L1, L2 is admissible with respect to M, and K(ML1)L2 =
KML2 and (ML1)L2 = ML2 .

Proof. As was mentioned in § 2, there are symmetric partitions
I1 = {A1, . . . , Ah}, I2 = {B1, . . . , B`} of J such that L1 = L1(I1) and
L2 = L2(I2). Put I = {Ai ∩Bj : for i = 1, . . . , h, j = 1, . . . , `} and denote
by L = L(I) the subalgebra associated with I. Then, by (8.3), L1 ⊆ L
and L2 ⊆ L. Further, for all λλλ ∈ L1, µµµ ∈ L2, we have λλλ ·µµµ ∈ L. Denote by
I ′ that symmetric partitions of J for which L′ = L′(I ′) is the subalgebra
of M generated by the products λλλ · µµµ with λ ∈ L1, µµµ ∈ L2. Then L′ ⊆ L.
Further, L′ contains L1 and L2, hence I ′ is a refinement both of I1 and
of I2. This implies that I ′ is a refinement of I, i.e. that L ⊆ L′, whence
L′ = L.

For λλλ ∈ L1, µµµ ∈ L2, we have (λλλ · µµµ)(ML1)L2 = λλλ(µµµ(ML1)L2) ⊆
λλλKML1 ⊆ KM which yields L(ML1)L2 ⊆ KM. This implies that
(ML1)L2 ⊆ML and so K(ML1)L2 ⊆ KML. On the other hand,ML·L ⊆
KML ⊆ KML1 , whence

KML ⊆ {µµµ ∈ KML1 : µµµ · L ⊆ KML1} = K(ML1)L ⊆ K(ML1)L2
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and so
K(ML1)L2 = K(ML1)L = KML.

But , by assumption, L2 is admissible with respect to ML1 , hence we get
that L = L2 and so K(ML1)L2 = KML2 . Further, L1 ⊆ L2. If L′2 is a
subalgebra of M with L′2 ⊇ L2 and KML′2 = KML2 then one can see
as above that K(ML1)L

′
2 = KML′2 and so K(ML1)L

′
2 = K(ML1)L2 . It

follows now that L′2 = L2, i.e. that L2 is admissible with respect to M.
Finally,

(ML1)L2 = K(ML1)L2 ∩ML1 = KML2 ∩M = ML2

and the proof of Lemma 12 is completed.

Proof of Theorem 4’. The number of admissible subalgebras of
M is at most nr. Indeed, if L = L(I) is an admissible subalgebra of M
associated with a symmetric partition I of J , then there is a ννν ∈ KML ∩
M∗ for which ννν · L ⊆ KM. It follows from (2.9) that L has dimension
ρ ≤ n over K, where ρ is the number of sets in I and n = dimK KM.
But it is easy to see that the number of partitions I of J with at most n
subsets is at most nr which proves our claim.

Let L be an admissible subalgebra of M. We shall show that under
the notation and assumptions of Theorem 4’, (4.1) has only finitely many
maximal (M,L)-families of solutions. Further, we shall give an upper
bound for the number of these families.

If L = K (i.e. if I consists of one subset) then IK = 1 and Theorem
4 gives the bound

(8.4) Ck exp
{
237nD · s6 · log(4sD)

}

for the number of maximal (M,K)-families of solutions. Hence it suffices
to deal with the case when K $ L. All (M,L)-families of solutions are
contained in ML. Thus we consider these solutions of (4.1) in ML instead
of M, i.e. we deal with the solutions of

(8.5) αiNi(µµµ) ∈ βiO
∗
S in µµµ ∈ML, i = 1, . . . , k.

We have 2 ≤ dimK ML ≤ n. It follows from Theorem 4 that the set of
solutions of (8.5) is the union of at most

(8.6)
∑

L′

[
O∗S,L′ : DL′∗

ML

]

families of solutions µµµDL′∗
ML , where the sum is extended to at most

Ck exp{237nD · s6 · log(4sD)}
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subalgebras L′ of M which are admissible with respect to ML and for
which (8.5) has an (ML,L′)-family of solutions (and among which there
can be identical subalgebras L′). Let

(8.7) µµµ1DL′1∗
ML , . . . ,µµµtDL′t∗

ML

be these families of solutions.
The family of solutions µµµiDL′i∗

ML is contained in (ML)L
′
i for i = 1, . . . , t.

By Lemma 12, we get that L ⊆ L′i, that L′i is admissible with respect to
M and that (ML)L

′
i = ML′i . Hence µµµiDL′i∗

ML = µµµiDL′i∗
M for i = 1, . . . , t.

This implies that the set of solutions of (8.5) is the union of the families
of solutions

(8.8) µµµiDL′i∗
M , i = 1, . . . , t.

Further,
[
O∗S,L′i

: DL′i∗
ML

]
=

[
O∗

S,L′i
: DL′i∗

M
]

for i = 1, . . . , t,

hence, in (8.6),
[
O∗

S,L′ : DL′∗
ML

]
can be replaced by IL′ . Let now µµµDL∗

M be

a maximal (M,L)-family of solutions of (4.1). Then µµµDL∗
M is contained in

the union of the families of solutions (8.8). We may assume without loss of
generality that µµµ ∈ µµµ1DL′1∗

M , whence µµµ1DL′1∗
M = µµµDL′1∗

M . Since L ⊆ L′1, by
Lemma 11 we have DL∗

M ⊆ DL′1∗
M . Thus we have µµµDL∗

M ⊆ µµµDL′1∗
M = µµµ1DL′1∗

M .
But, by assumption, µµµDL∗

M is a maximal family, hence we have µµµDL∗
M =

µµµ1DL′1∗
M . Consequently, µµµDL∗

M is one of the families of solutions listed in
(8.8). This completes the proof of the first assertion of the theorem.

Now suppose that M is full in M. Then, by Lemma 8, KM is L-
degenerate and Ψ(KM) = M. If (4.1) is solvable, it follows from Theorem
4 that the set of solutions is contained in at most CkIM (M,M)-families of
solutions, say µµµ1DM∗

M , . . . , µµµtDM∗
M . Let now µµµ′DL′∗

M be a maximal family
of solutions of (4.1) where L′ is an admissible subalgebra of M. Then
we may suppose that µµµ′ ∈ µµµ1DM∗

M , whence µµµ′DM∗
M = µµµ1DM∗

M . Further,
by Lemma 11, DL′∗

M ⊆ DM∗
M . Consequently, µµµ′DL′∗

M ⊆ µµµ′DM∗
M = µµµ1DM∗

M .
Since µµµ′DL′∗

M is maximal, it follows that µµµ′DL′∗
M = µµµ1DM∗

M which completes
the proof of Theorem 4’.

The following two lemmas will be used in the proofs of Corollary 2
and Theorem 5.

Lemma 13. Let L be an admissible subalgebra of M. Then O∗
S,L/O∗S

is finite if and only if one of the cases (4.8a) to (4.8d) holds.
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Proof. It follows from (2.10) and a generalized version of Dirichlet’s
unit theorem (see e.g. [15], p. 549) that if one of the cases (4.8a) to (4.8d)
holds then O∗

S,L/O∗S is finite. Conversely, assume now that O∗
S,L/O∗S is

finite. By assumption, L = L(I) with some symmetric partition I =
{A1, . . . , Ah} of J . Consider the Gal(G/K)-orbits of J introduced before
(4.8), and let again {j1, . . . , jb} be a full set of representatives of these
orbits. Then, by (2.10), O∗

S,Lja
/O∗

S must be finite for a = 1, . . . , b.
We distinguish two cases:

b = 1. If Lj1 = K then, in view of OS,K = OS , O∗S,K/O∗
S is finite and we

get (4.8a). If Lj1 is a proper extension of K, then using Dirichlet’s unit
theorem one can easily show that the case (4.8b) holds.
b ≥ 2. First we prove that O∗

S is finite. Suppose, on the contrary, that O∗S
is infinite. Each orbit considered above consists of sets of I of the same
cardinality. Denote by qja the common cardinality of these sets in the
orbit represented by ja. There exist rational integers pj1 , . . . , pjb

, not all

zero, such that
b∑

a=1
pjaqja [Lja : K] = 0. We note that not all of the pja can

be equal. Choose an element η of O∗S which is not a root of unity, and for
t ∈ Z put εεεt = (ηj)j∈J , where ηj = ηtpja if j ∈ J is contained in the orbit
represented by ja. It is easy to see that εεεt ∈ O∗S,L and, for distinct t1, t2,
we have εεεt1/εεεt2 6∈ O∗S . However, this would imply that O∗

S,L/O∗S is infinite
which is impossible. Hence O∗S is finite indeed. Then, by Dirichlet’s unit
theorem, K is equal to Q or an imaginary quadratic number field and
S = M∞(K). Further, O∗S,Lja

/O∗S being finite, O∗S,Lja
must also be finite

for a = 1, . . . , b. But OS,Lja
is the ring of S-integers of Lja , a = 1, . . . , b,

hence Dirichlet’s unit theorem implies that one of the cases (4.8c), (4.8d)
holds.

Lemma 14. Let L be an admissible subalgebra of M which is of the
type (4.8). Then we have

[
O∗

S,L : O∗S
]





= 1 if L is of the type (4.8a),
≤ 40d2 if L is of the type (4.8b),
≤ 6n if L is of the type (4.8c),
= 1 if L is of the type (4.8b).

Proof. For brevity, we put JL = [O∗S,L : O∗S ]. By assumption, L is
of the type (4.8). Hence, by Lemma 13, JL < ∞. We shall use repeatedly
(2.10). If L is of the type (4.8a) or (4.8d) then we have obviously JL = 1.
Consider now the case when L is of the type (4.8b). Then it follows e.g.
from Theorem 1 of [11] that JL ≤ 2 × the number of roots of unity of
Lj1 . Denote by ρ the maximum of the numbers of roots of unity in totally
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imaginary quadratic extensions of K. Then ϕ(ρ) ≤ 2d, where ϕ( ) denotes
Euler’s function. But, by a theorem of Rosser and Schoenfeld [23]

ρ

ϕ(ρ)
< eλ log log ρ +

2, 6
log log ρ

,

where λ = 0, 577 . . . denotes Euler’s constant. Hence

(8.9) ρ ≤ 20d log log(3d),

whence
JL ≤ 2ρ ≤ 40d2.

Finally, consider the case when L is of the type (4.8c). Since there are
at most 6 roots of unity in an imaginary quadratic number field, we have
JL ≤ 6b. Further, it is easy to see that b ≤ n. Thus JL ≤ 6n, and this
completes the proof of Lemma 11.

Proof of Corollary 2. By Theorem 4, the solutions of (4.1) be-
long to at most

(8.10)
∑

L

IL

families of solutions, where the sum is taken over at most

(8.11) Ck exp
{
237nD · s6 · log(4sD)

}

admissible subalgebras L of M for which (4.1) has an (M,L)-family of
solutions (and among which there can be identical subalgebras L). Ev-
ery (M,L)-family of solutions µµµDL∗

M splits into
[DL∗

M : O∗
S

]
O∗S-cosets of

solutions. But, by assumption, (4.1) has only finitely many O∗S-cosets of
solutions, hence

[DL∗
M : O∗

S

]
must be finite for all admissible subalgebras

L involved in (8.10). Thus
[
O∗S,L : O∗S

]
= IL ·

[DL∗
M : O∗S

]

is also finite and hence, by Lemma 13, each of the L involved is of the type
(4.8). Further, in view of (8.10) the solutions of (4.1) belong to at most

(8.12)
∑

L

[
O∗S,L : O∗S

]

O∗S-cosets of solutions, where the sum is taken over the same admissible
subalgebras L as in (8.10). By Lemma 14, we have

[
O∗

S,L : O∗S
] ≤ max{40d2, 6n}

for each L involved in (8.10) and (8.12). Together with (8.11) this implies
the assertion of Corollary 2.
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Proof of Theorem 5. It suffices to prove the equivalence of the
statements (i) and (ii). Then the bound (4.4) in Theorem 5 follows imme-
diately from Corollary 2.

By Theorem 4, the solutions of (4.1) are contained in the union of
finitely many sets of the form µµµDL∗

M , where L is an admissible subalgebra
of M and µµµ ∈ ML is a solution of (4.1). This implies that (4.1) has
finitely many O∗

S-cosets of solutions for all β1, . . . , βk ∈ OS \ {0} if and
only if DL∗

M/O∗S is finite for all admissible subalgebras L of M. But, by
Lemma 9, O∗

S,L/DL∗
M is finite. Hence the statement (ii) in Theorem 5 is

equivalent to the fact that O∗S,L/O∗
S is finite for all admissible subalgebras

L of M. Finally, in view of Lemma 13 we get that the statements (i) and
(ii) of Theorem 5 are indeed equivalent.
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