On the characterization of additive functions on Gaussian integers

By KATALIN KOVÁCS (Budapest)

Abstract

Let f denote an additive function on the Gaussian integers. We prove some theorems of characterization with linear and quadratic arguments. If e.g. for a completely additive function $f(a \alpha+b)-t f(\alpha)=c$ or $f\left(\alpha^{2}+1\right)+f\left(\alpha^{2}-1\right)=c$, then $f(\alpha)=0$ for all nonzero Gaussian integers α.

In 1946 Erdős [2] proved the following theorems:
Theorem 1 (Erdős). Let f be a real valued additive function. If $f(n+1)-f(n) \rightarrow 0$, then $f(n)=c \log n$ for all $n \in \mathbb{N}$.

Theorem 2 (Erdős). If a real valued additive function f is monotonically increasing, then $f(n)=c \log n$ for all $n \in \mathbb{N}$.
I. Kátai [3] generalized Theorem 1 for completely additive functions using a result of E. Wirsing [6]:

Theorem 3 (КÁtai). Let f be a completely additive function. If $\sum_{i=1}^{m} c_{i} f\left(n+a_{i}\right)=o(\log n)$, then $f(n)=c \log n$ for all $n \in \mathbb{N}$ or $f=0$.

The following generalizations are due to P.D.T.A. Elliott [1] and myself ([4], [5]):

Theorem 4 (Elliott, [1]). Let f be an additive function, $A>0$, $C>0, B, D$ integers and $\Delta_{1}=A C(A D-B C) \neq 0$. If $f(A n+B)-$ $f(C n+D) \rightarrow c$, then $f(n)=c^{\prime} \log n$ for all $\left(n, \Delta_{1}\right)$.

Mathematics Subject Classification: 11A25.
Key words and phrases: characterization of additive functions on Gaussian integers. Research partially supported by the Hungarian National Foundation for Scientific Research Grants No. T 017433 and T 029759.

Theorem 5 [5]. Let f be a completely additive function. If $f(2 n+A)-$ $f(n)$ is monotonic from some number on, then $f(n)=c \log n$ for all $n \in \mathbb{N}$.

Theorem 6 [4]. Let f denote a completely additive function. If $f\left(n^{2}+1\right)=s_{1} f(n)+s_{2} f(n-1)+o(\log n)\left(s_{1}, s_{2}\right.$ are not both zero $)$, then $f(n)=c \log n$.

In this article we intend to prove some similar results on the set of the Gaussian integers. Let G^{*} denote the set of the nonzero Gaussian integers. Let α, β be the elements of this set and $N(\alpha):=\alpha \bar{\alpha}$.

Definition 1. The function f is G-additive, if $f(\alpha \beta)=f(\alpha)+f(\beta)$ for all relatively prime $\alpha, \beta \in G^{*}$.

Definition 2. The function f is completely G-additive, if $f(\alpha \beta)=$ $f(\alpha)+f(\beta)$ for all $\alpha, \beta \in G^{*}$.

Remark. We can prove easily that $f(\epsilon)=0$ for any additive f and arbitrary Gaussian unit ϵ.

We prove the following results:
Theorem 7. Let a, b denote some fixed elements of G^{*} and let $t \in \mathbb{C} \backslash\{0\}$.
(i) If for a G-additive function

$$
\begin{equation*}
f(a \alpha+b)-t f(\alpha) \rightarrow c \tag{1}
\end{equation*}
$$

then $f(n)=c^{\prime} \log n$ for all $n \in \mathbb{N}^{+}$coprime to $2 N(a b)$.
(ii) If for a completely G-additive function

$$
\begin{equation*}
f(a \alpha+b)-t f(\alpha)=c \tag{1'}
\end{equation*}
$$

then $f(\alpha)=0$ for all $\alpha \in G^{*}$.
Theorem 8. If for a completely G-additive function

$$
f\left(\alpha^{2}+1\right)+f\left(\alpha^{2}-1\right)=c
$$

then $f(\alpha)=0$ for all $\alpha \in G^{*}$.

Theorem 9. (i) If for a completely G-additive function
$f\left(\alpha^{2}+1\right)=s_{1} f(\alpha)+s_{2} f(\alpha-1)+o(\log N(\alpha)) \quad\left(s_{1}, s_{2}\right.$ are not both zero $)$, then $f(z)=0$ for all $z \in \mathbb{Z} \backslash\{0\}$.
(ii) If for a completely G-additive function

$$
f\left(\alpha^{2}+1\right)=s_{1} f(\alpha)+s_{2} f(\alpha-1)+c \quad\left(s_{1}, s_{2} \text { are not both zero }\right),
$$

then $f(\alpha)=0$ for all $\alpha \in G^{*}$.

Proofs

Proof of Theorem 7. (i) If f is G-additive, then by substituting $\bar{a} b N(b) \alpha$ into (1) we have

$$
\begin{equation*}
f(N(a b) \alpha+1)-t f(\alpha) \rightarrow C^{\prime}, \tag{2}
\end{equation*}
$$

for all α coprime to $N(a b)$ with $C^{\prime}=c+t f(\bar{a} b N(b))-f(b)$. By substituting 2α into (2) we have

$$
\begin{equation*}
f(2 N(a b) \alpha+1)-t f(\alpha) \rightarrow C^{\prime \prime} \tag{3}
\end{equation*}
$$

for all α coprime to $2 N(a b)$ with $C^{\prime \prime}=c+t f(2 \bar{a} b N(b))-f(b)$. The difference of (3) and (2) shows that

$$
\begin{equation*}
f(2 N(a b) \alpha+1)-f(N(a b) \alpha+1) \rightarrow C^{\prime \prime \prime} \tag{4}
\end{equation*}
$$

for all α coprime to $2 N(a b)$. By substituting $2 N(a b) \alpha+1$ into (4) we have that

$$
f\left(4 N^{2}(a b) \alpha+2 N(a b)+1\right)-f\left(2 N^{2}(a b) \alpha+N(a b)+1\right) \rightarrow C^{\prime \prime \prime}
$$

for all $\alpha \in G^{*}$. Applying Theorem 4 we get that $f(n)=c^{\prime} \log n$ for all $n \in \mathbb{N}$ coprime to $2 N(a b)$.
(ii) Let f be a completely G-additive function.

By substituting $b \alpha$ into (1^{\prime}) we have

$$
\begin{equation*}
f(a \alpha+1)=t f(\alpha)+c_{1} \tag{5}
\end{equation*}
$$

with $c_{1}=c+(t-1) f(b)$. Therefore

$$
f\left((a \alpha+1)^{2}\right)=f(a[\alpha(a \alpha+2)]+1)=t f(\alpha)+t f(a \alpha+2)+c_{1}
$$

and

$$
f\left((a \alpha+1)^{2}\right)=2 f(a \alpha+1)=2 t f(\alpha)+2 c_{1},
$$

i.e.

$$
\begin{equation*}
f(a \alpha+2)=f(\alpha)+c_{1} / t . \tag{6}
\end{equation*}
$$

By substituting 2α into (6) we get

$$
\begin{equation*}
f(a \alpha+1)=f(\alpha)+c_{1} / t . \tag{7}
\end{equation*}
$$

By the comparison of (5) and (7) f is constant, i.e. $f(\alpha)=0$ for all $\alpha \in G^{*}$ or $t=1$. If $t=1$, then we also prove, that $f(\alpha)=0$ for all $\alpha \in G^{*}$. First we prove by induction, that

$$
\begin{equation*}
f(a \alpha+s)=f(\alpha)+c_{1} \tag{8}
\end{equation*}
$$

for all $s \in \mathbb{N}^{+}$. For $s=1$ it is true by (7). By the assumption of induction for $s \leq z$ we have

$$
f((a \alpha+1)(a \alpha+z))=f(a \alpha+1)+f(a \alpha+z)=2 f(\alpha)+2 c_{1}
$$

and

$$
f(a[\alpha(a \alpha+z+1)]+z)=f(\alpha)+f(a \alpha+z+1)+c_{1},
$$

which follow $f(a \alpha+z+1)=f(\alpha)+c$. By substituting $s=a$ into (8) we have $f(\alpha+1)=f(\alpha)+c_{1}-f(a)$. By restricting α to the natural numbers $f(n)-f(n-1)=c_{1}-f(a)$ for all $n \in \mathbb{N}$. By substituting n^{2} here we have $c_{1}-f(a)=f\left(n^{2}\right)-f\left(n^{2}-1\right)=[f(n)-f(n-1)]-[f(n+1)-f(n)]=0$, i.e. $c_{1}=f(a)$. Applying Theorem $1 f(n+1)=f(n)$ follows $f(n)=0$ for all $n \in \mathbb{N}$. Using that $f(\alpha+1)=f(\alpha)$ for all $\alpha \in G^{*}$, we prove by induction that $f(\delta)=0$ also for all not real Gaussian primes δ. By the Remark it is enough to consider the Gaussian primes of form $\pi=1+i$ and $\pi=x+y i$ with even number x and odd number y as $f(\pi)+f(\bar{\pi})=f(N(\pi))=0$ and $f(i \pi)=f(-i \pi)=f(-\pi)=f(\pi)$. We have $0=f(2)=2 f(1+i)$. For any other π the Gaussian integer $\pi-1$ is divisible by $1+i$, i.e. it is not a Gaussian prime. We assume that $f(\gamma)=0$ for all Gaussian-primes which
norm is less then $f(\pi)$. As $f(\pi)=f(\pi-1)$ and $f(\beta)=0$ for all prime divisors β of $\pi-1$ by the hypotesis of the induction, therefore $f(\pi)=0$ is also satisfied as f is a completely G-additive function.

Proof of Theorem 8. As $\alpha^{2}+1=(\alpha+i)(\alpha-i)$, we have

$$
\begin{equation*}
f(\alpha+i)+f(\alpha-i)+f(\alpha+1)+f(\alpha-1)=c . \tag{9}
\end{equation*}
$$

By substituting $\alpha-i$ into (9), ($1+i$) α into (10), $2 \alpha+i$ and $(1-i) \alpha+i$ into (11) we have that

$$
\begin{align*}
f(\alpha)+f(\alpha-2 i)+f(\alpha+1-i)+f(\alpha-1-i) & =c \tag{10}\\
f(\alpha)+f(\alpha-1-i)+f(\alpha-i)+f(\alpha-1) & =c_{1}, \tag{11}\\
f(2 \alpha+i)+f(2 \alpha-1)+f(\alpha)+f(2 \alpha-1+i) & =c_{2} \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
f(2 \alpha-1+i)+f(2 \alpha-1-i)+f(\alpha)+f(\alpha-1)=c_{3} . \tag{13}
\end{equation*}
$$

The difference of (12) and (13) shows that

$$
\begin{equation*}
f(2 \alpha+i)-f(2 \alpha-1-i)+f(2 \alpha-1)-f(\alpha-1)=c_{4} . \tag{14}
\end{equation*}
$$

By substituting 2α into (11) and (9) we have

$$
\begin{equation*}
f(\alpha)+f(2 \alpha-1-i)+f(2 \alpha-i)+f(2 \alpha-1)=c_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
f(2 \alpha+i)+f(2 \alpha-i)+f(2 \alpha+1)+f(2 \alpha-1)=c \tag{16}
\end{equation*}
$$

The difference of (15) and (16) shows that

$$
\begin{equation*}
f(2 \alpha+i)-f(2 \alpha-1-i)+f(2 \alpha+1)-f(\alpha)=c_{5} . \tag{17}
\end{equation*}
$$

By the comparison of (14) and (17) we get

$$
\begin{equation*}
f(2 \alpha+1)-f(\alpha)=f(2 \alpha-1)-f(\alpha-1)+c_{6} . \tag{18}
\end{equation*}
$$

By restricting α to natural numbers (18) follows that $f(2 n+1)-f(n)$ is monotonic. Applying Theorem 5 we obtain $f(n)=0$ for all $n \in \mathbb{N}$ and also that $c_{6}=0$. We prove by induction that $f(\pi)=0$ also for all not
real Gaussian primes. As the norm of $2 \alpha+1$ is greater than the norm of any other argument in (18) and the minimal value of $N(2 \alpha+1)$ is 13 , it is enough to verify that $f(1+i)=f(2+i)=f(2+3 i)=0$ using the Remark. It is true as $0=f(2)=2 f(1+i)$ and $\alpha=1+i$ and $\alpha=i$ in (18) imply $f(1+2 i)=f(3+2 i)$ and $f(1+2 i)=f(1+i)$.

Proof of Theorem 9. (i) is a direct consequence of Theorem 6 and the Remark.
(ii) By induction we prove that $f(x+y i)=0$ for all $x \in \mathbb{Z}$ and $y \in \mathbb{N}$. For $y=0$ it is true by (i) (x can be arbitrarily choosen). Let us assume that it is true for all $0 \leq y \leq s$. If we substitute $x+s i$ in the condition of the theorem we get

$$
f(x+(s+1) i)+f(x+(s-1) i)=s f(x+s i)+t f(x-1+s i),
$$

i.e. by the assumption of the induction $f(x+(s+1) i)=0$. If $y<0$, then $f(x+i y)=f(-x-i y)=0$ as $-y \in \mathbb{N}$.

References

[1] P.D.T.A. Elliott, Arithmetic functions and integer products, Grundlehren der mathematischen Wissenschaften, Bd. 272, Springer Verlag, New York, Berlin, 1985.
[2] P. Erdős, On the distribution function of additive functions, Ann. of Math. (2) 47 (1946), 1-20.
[3] I. KÁtai, Characterization of $\log n$, Studies in Pure Mathematics, Birkhäuser-Verlag, Basel, Boston, Mass., 1983, 415-421.
[4] K. Kovács, On total additive solutions of some equations, Acta Math. Hung. 59 (1-2) (1992), 33-38.
[5] K. Kovács, On a conjecture concerning additive number theoretical functions II, Publ. Math. Debrecen. 50 (1-2) (1997), 177-179.
[6] E. Wirsing, Additive and completely additive functions with restricted growth, Recent Progress in Analytic Number Theory, (Proc. Sympos. Durham, 1979), Vol.2, Academic Press, London, New York, 1981, 231-280.

Katalin kovács

EÖTVÖS UNIVERSITY
DEPT. OF ALGEBRA AND NUMBER THEORY
H-1053, BUDAPEST
KECSKEMÉTI U. 10-12
HUNGARY
(Received March 2, 1999; revised April 26, 2000)

